
Operation Contracts
and
From Analysis to Design
Curt Clifton

Rose-Hulman Institute of Technology

No reading quiz questions today

Where Are We?

Use Cases

Domain Model

Operation

Contracts
System

Sequence

Diagrams

From Functional Use Cases
to Object-Oriented System

Domain Model

Conceptual
Classes

Associations
Attributes

System Sequence Diagrams

System
Events

:Cashier :System

makeNewSale

Process Sale Scenario

enterItem(itemID, quantity)

description, total

endSale

total with taxes

loop [more items]

Operation Contracts

Used to give more details for system operations

Together, all the system operations from all the use
cases give the public system interface

From SSDs, messages
coming into the system

Conceptually, it’s like the whole system
is a single object and the system
operations are its public methods

Example

Contract CO2: enterItem
Operation: enterItem(itemID: ItemID, quantity: Integer)

Cross Refs: Use Cases: Process Sale

Preconditions: There is a sale underway

Postconditions: a SalesLineItem instance, sli, was created
sli was associated with the current Sale
sli.quantity became quantity
sli was associated with a
ProductDescription based on itemID
match

Q1,2

Most important

section

(At most) one OC per
System Operation

Any uses cases where
this operation appears

Noteworthy
assumptions

Details

Postconditions

Describe changes in the state of objects in the domain
model

Typical sorts of changes:

Created instances

Form associations

Break associations

Change attributes

Q3,4

Not actions performed
during the operation.
Rather, observations

about what is true after
the operation.

Postconditions

Describe changes in the state of objects in the domain
model

Typical sorts of changes:

Create instances

Form associations

Break associations

Change attributes

a SalesLineItem instance,
sli, was created
sli was associated with the
current Sale
sli.quantity became quantity
sli was associated with a
ProductDescription based
on itemID match

Postconditions

a SalesLineItem instance,
sli, was created
sli was associated with the
current Sale
sli.quantity became quantity
sli was associated with a
ProductDescription based
on itemID match

Q5

Use past tense

Give names to instances

Capture the information
from the system
operation parameters by
noting changes to
domain objects

Can be (somewhat)
informal

When to Use
Operation Contracts

Not always!

When detail and precision are important:

When details would make use cases too verbose

When we don’t know the domain and want a
deeper analysis (while deferring design)

To help validate the domain model

To associate system operations with particular objects

Informs our Assignment of Responsibility

Creating
Operation Contracts

Identify system
operations from SSDs

Identify system
operations that warrant
OCs

Complex, subtle, or
unclear from use case

Make sure
postconditions consider:

Created instances

Formed associations

Broken associations

Changed attributes

Most common omission
Q6

Example…

Q7

You can look at practically any part of anything manmade
around you and think ‘some engineer was frustrated while

designing this.’ It's a little human connection.

ht
tp

:/
/x

kc
d.

co
m

/2
77

/

From Requirements
to Design

Recall…

Analysis: Do the right thing

Design: Do the thing right

Leaving Analysis Behind?

Not really

We’ll learn more about the problem while designing
(and implementing) a solution

Refine the requirements when that happens

Choose high risk activities for early iterations to
provoke changes to the requirements

“Just enough” analysis is often useful

Unknown/unusual
activities are high risk

Logical
Architecture
A very short
introduction

www.lostateminor.com

Where Are We?

Package Diagram/

Logical Architecture

Domain Model

Use Case Model
including System

Sequence Diagrams
and Operation

Contracts

Design Model

Logical Architecture

Large-scale organization of the software classes into:

Packages (a.k.a., namespaces)

Subsystems

Layers

Logical, since implementation/deployment decisions
are deferred

Q8

Layered Architectures

Very common for object-oriented systems

Coarse-grained grouping of components based on
shared responsibility for major aspects of system

Typically higher layers call lower ones,
but not vice-versa

Three Typical Layers

User Interface

Application Domain Layer

Technical Services:

Persistence

Logging

Rules Engine

Heavily influenced
by domain model

Q9

Reusable across
systems

Strict vs. Relaxed
Layered Architectures

Strict: only calls next
layer down

Relaxed: can call any
layer below

Q10

