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General Responsibility Assignment Software Patterns or P

s (GRASP)

C}“ 7 C ’\' Q‘ll()q

Pa'tte.rn/ Description
Principle
Information A general principle of object design and responsibility assignment?
Expert
Assign a responsibility to the information expert—the class that has the information neces-
sary to fulfill the responsibility.
Creator Who creates? (Note that Factory is a common alternate solution.)
Assign class B the responsibility to create an instance of class A if one of these is true:
1. B contains A 4. Brecords A
2. B aggregates A 5. B closely uses A
3. B has the initializing data for A
Controller What first object beyond the Ul layer receives and coordinates (“controls”) a system opera-

tion?

Assign the responsibility to an object representing one of these choices:

1. Represents the overall “system,” a “root object,” a device that the software is running
within, or a major subsystem (these are all variations of a facade controller).

2. Represents a use case scenario within which the system operation occurs (a use-case or
session controller)

Low Coupling

How to reduce the impact of change?

(evaluative)
Assign responsibilities so that {unnecessary) coupling remains low. Use this principle to
evaluate alternatives.
High How to keep objects focused, understandable, and manageable, and as a side-effect, support
Cohesion Low Coupling?
(evaluative)
Assign responsibilities so that cohesion remains high. Use this to evaluate alternatives.
Polymorphism Who is responsible when behavior varies by type?
When related alternatives or behaviors vary by type (class), assign responsibility for the
behavior—using polymorphic operations—to the types for which the behavior varies.
Pure Who is responsible when you are desperate, and do not want to violate high cohesion and
Fabrication low coupling?
Assign a highly cohesive set of responsibilities to an artificial or convenience “behavior”
class that does not represent a problem domain concept—something made up, in order to
support high cohesion, low coupling, and reuse.
Indirection How to assign responsibilities to avoid direct coupling?
Assign the responsibility to an intermediate object to mediate between other components or
services, so that they are not directly coupled.
Protected How to assign responsibilities to objects, subsystems, and systems so that the variations or
Variations instability in these elements do not have an undesirable impact on other elements?

Identify points of predicted variation or instability; assign responsibilities to create a stable
“interface” around them.
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Sequence Diagram
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