Sample Unified Process Artifacts and Timing (s-start; r-refine)

Discipline Artifact Incep. | Elab. | Const. | Trans,
Iteration=» 11 E1.En C1..Cn T1..T2
Business Modeling |Domain Model s
Requirements Use-Case Model S r
Vision s r
Supplementary Specification s r
Glossary] r
Design Design Model 8 r
SW Architecture Document]
Data Model 8 r
Implementation Implementation Model (code, html, ...) s r r
Sample Unified Process Artifact Relationships
g Domain Model
Sale Captured-on | Register ProductCatalog
; dateTime 1 1 '
7N S
domain concepts \
; Use-Case Model

@
—F

2

conceptual Y
classes in
the
domain

inspire the

AN
Castiar g
<
\;ﬁ]
i
]

Use Case Diagrams

Process Sale

o Proca;s\‘) Hse
. Sole 1. Customer
n‘;‘::s arrives ...
2. Cashier
[

makes new
sale.
K

P S

—

Use Case Text

: System

GCashier |
| make |
| NewSale]

system i
events | enterltem
—_> |

(id, quantity) »

T

1
!
{
(
|

System Sequence Diagrams

S

names of
some

\

software
classes in
the design

" use-case
realization
interaction

\ diagrams

|
makeNewSale !

Design Model

w/th\
: Register

.

create

enterftem(id, quantity) :

desc = getDescription(id)

: ProductCatalog

»

————b e

addLineltem(desc, quantity } —

+—
|
]
I
3

|
Ak [ProductCatalog
1‘
{ ;r:\atzﬁltﬂemSa)le() catalog getDescription(...) : ProductDescription

the design
classes
discovered
while designing
UCRs can be
summarized in
class diagrams

General Responsibility Assignment Software Patterns or P

s (GRASP)

C}“ 7 C ’\' Q‘ll()q

Pa'tte.rn/ Description
Principle
Information A general principle of object design and responsibility assignment?
Expert
Assign a responsibility to the information expert—the class that has the information neces-
sary to fulfill the responsibility.
Creator Who creates? (Note that Factory is a common alternate solution.)
Assign class B the responsibility to create an instance of class A if one of these is true:
1. B contains A 4. Brecords A
2. B aggregates A 5. B closely uses A
3. B has the initializing data for A
Controller What first object beyond the Ul layer receives and coordinates (“controls”) a system opera-

tion?

Assign the responsibility to an object representing one of these choices:

1. Represents the overall “system,” a “root object,” a device that the software is running
within, or a major subsystem (these are all variations of a facade controller).

2. Represents a use case scenario within which the system operation occurs (a use-case or
session controller)

Low Coupling

How to reduce the impact of change?

(evaluative)
Assign responsibilities so that {unnecessary) coupling remains low. Use this principle to
evaluate alternatives.
High How to keep objects focused, understandable, and manageable, and as a side-effect, support
Cohesion Low Coupling?
(evaluative)
Assign responsibilities so that cohesion remains high. Use this to evaluate alternatives.
Polymorphism Who is responsible when behavior varies by type?
When related alternatives or behaviors vary by type (class), assign responsibility for the
behavior—using polymorphic operations—to the types for which the behavior varies.
Pure Who is responsible when you are desperate, and do not want to violate high cohesion and
Fabrication low coupling?
Assign a highly cohesive set of responsibilities to an artificial or convenience “behavior”
class that does not represent a problem domain concept—something made up, in order to
support high cohesion, low coupling, and reuse.
Indirection How to assign responsibilities to avoid direct coupling?
Assign the responsibility to an intermediate object to mediate between other components or
services, so that they are not directly coupled.
Protected How to assign responsibilities to objects, subsystems, and systems so that the variations or
Variations instability in these elements do not have an undesirable impact on other elements?

Identify points of predicted variation or instability; assign responsibilities to create a stable
“interface” around them.

Sample UML Notation

Class Diagram

| AlternateUMLFor Abstract | j «interface» ’
AbstractClass | . ClassX | InterfaceX
{abstract} e e
rﬁ S pLI J i operationi()
. o Y U A
o >
N s

f%%kEQW
' {leaf) {

. interface
7 N n
N7 implementation
|

N
generalization®

L B ClassY
T o]
1| Singleton | . operation1() |
e 1,;;(“ _
|
T ’ Whole !
(AlternateUMLFor |]
ImplOfinterfacex ! InterfaceX s 1
- e o agr
j operation1() : . Composition
eSSV | | L r
] Part ;
-]

Associations:

L ClassA 1 Association-name LJ ClassB f
L

- role-1 : role-2 - - ‘
i
AssociationClass
Muttiplicity:
* WC‘ zerogr 1.40 ' oneto 1.7
— ‘ ass more; ———— Class T
b) "many" Lﬁ_J forty i

f home package of class

L Domain::ClassX « }

L,

i myClock : Runnable

[

NextGen POS

Extension Points:
N \ Payment

Cashier P
I - —

«extend»
Payment, if Customer p
presents a gift certificate /

/

o ———
‘ - Handle Gift Certificate o (*‘

Payment

[.

" Process Sale -

BN N

___ VIP Customer

4l N
" «includen

|
i
|
|
R
e =3 i
“Handle Credit : /
|

,F. classQrStaticAttribute : |nt
f + publicAttribute : String

- privateAttribute
' assumedPrivateAttribute
‘ islnitializedAttribute - Bool = true
. burgerColiection VeggieBurger [*
| attributeMayL egallyBeNul - String [0 1]
‘ finalConstantAttribute : Int = 5 { readOnly }
f /derivedAttribute
l
j

* classOrStaticMethod()
+ publicMethod()
assumedPublicMethod()
- privateMethod()
L # protectedMethod()
~ packageVisibleMethody()
«constructor» SuperclassFoo(Long)
methodWithParms(parm1 ; String. parm2 - Float)
methodReturnsSomethingy() : VeggieBurger
methodThrowsException() {exception I0Exception}
abstractMethod()
abstractMethod2() { abstract } // alternate
finalMethod() { leaf } // no override in subclass

synchronizedMethod() { guarded }
—

¥ | .

Class S (el -~j5 | Class | &xactly
J more I five

! Clock | -Runnable .

myThread : Thread !

[|

O — A

' I active class J

«actor»
CreditAuthorization
Service

—

-

_ Payment /

,

Sequence Diagram

““M\««T " Singleton design
:ProductCatalog) ‘ServicesFacto Y pattern
4 : y
|

initialize, |

]
|

= getProductsAdapter

In Java (as an
example), run may
be considered an
asynchronous
message. These are
ilfustrated with a
stick arrowhead.

e

I
doX >

W [oobor=red] o '

Communication Diagram

firstMessage —» anX : ClassX

When methods run on a different thread,
the sequence expression can start with a
name or letter indicating the thread. All

messages running on the LocalProducts
thread will start with "A", for example.

]
t
|

- visibility via

object running on its
| own thread of control

1
!
!

e arm—
L _create -pl e&xternalService : !
DBProductsAdapter
1

______ croate(extemalService)

psa : LocalProducts

' { active }

fi
[grever] A: products =

1/ activation is on its own thread
{ loop forever:

-sleep N minutes

-ask for product updates }

1 - messagei(anX) —
2 [color=red] ; message2() —»

p1: Person

getSubtotal —» lineitemsii]:
iteration across all SalesLineltem
elements of a collection

