
© 2009 Shawn A. Bohner

Shawn Bohner
Office: Moench Room F212

Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Final Exam - Optional

  Monday, Feb. 22nd, at 8am

  If you don’t take the exam, we’ll use your
exam 1 grade as your final exam grade

  If you sign-up, you must take the exam

  Taking the exam can improve or lower
your grade

Plan for Today

  Short survey on projects

  Finish up Template Pattern

  State Pattern

  Command Pattern

  Design Studio—Team 15: Code Assistant

Template Method Pattern

Problem: How can we record the basic
outline of an algorithm in a framework (or
other) class, while allowing extensions to
vary the specific behavior?

Solution: Create a template method for the
algorithm that calls (often abstract) helper
methods for the steps. Subclasses can
override/implement these helper methods
to vary the behavior.

Example: Template Method used for
Swing GUI Framework

6

GUIComponent

update()

paint()

Template Method

Hook Method

MyButton

paint()
Hook method
overridden to supply
class specific detail

Template Method in NexGen POS (1 of 2)

7

<<interface>>
DBMapper

get(OID):Object

put(OID):Object

Abstract
PersistenceMapper

+get(OID):Object {leaf}

#getObjectFromStorage():Object

Template Method in NexGen POS (2 of 2)

8

ProductDescription
RDBMapper

getObjectFromStorage(OID):Object

AbstractPersistenceMapper

+ get(OID):Object {concrete}

getObjectFromStorage(OID):Object

{abstract}

DBMapper

//template method

public final Object get(OID oid) {

 obj = cachedObjects.get(oid);

 if (obj == null) {

 //hook method

 obj = getObjectFromStorage(oid);

 cachedObject.put(oid, obj); }

 return obj; }

//hook method override

protected Object getObjectFromStorage(OID oid) {

 String key = oid.toString();

 dbRec = SQL execution result of

 “Select* from PROD_DESC where key =“

 +key

ProductDescription = new ProductDescription();

pd.setPrice(dbRec.getColumn(“PRICE”); etc

Persistence Framework

9

NextGen Persistence

Persistence

PersistenceFacade
class

Abstract
RDBMapper

<<interface>>
DBMapper

Abstract
PersistenceMapper

1

ProductDescription
RDBMapper

ProductDescription
FileWithXMLMapper

ProductDescription
InMemoryTestDataMapper

SaleRDBMapper

Transactional States & the State Pattern

10

New

[new (not from DB)]

OldClean

OldDelete

Deleted

[from DB]

save

delete

rollback / reload

commit / insert

commit / delete

delete

rollback / reload
commit / update

OldDirty

State Pattern

Problem: When the behavior of an object, obj,
changes depending on its state, how can we
avoid complicated conditional statements?

Solution: Create state classes implementing a
common interface. Delegate state-
dependent methods from obj to the current
state object.

Example: State Pattern in TCP

12

TCPConnection

Open()

Close()

Acknowledgement()

TCPState

Open()

Close()

Acknowledgement()

TCPEstablished
Open()

Close()

Acknowledgement()

TCPListen
Open()

Close()

Acknowledgement()

TCPClosed
Open()

Close()

Acknowledgement()

state  open()

State Patten in Persistence Framework

13

state  commit(this);

PersistentObject

commit()

delete()

Rollback()

save()

setState(PObjectState)

oid: OID

state: PObjectState

PObjectState

commit (PersistentObject obj);

delete (PersistentObject obj);

rollback (PersistentObject obj);

save (PersistentObject obj);

OldDirty
State

commit(…)

delete(…)

rollback(…)

OldClean
State

delete(…)

save (…)

New
State

commit(…)

* 1

Cartoon of the Day

Command Pattern

Problem: When we need to record
operations so we can undo them, or
execute them later, what should we do?

Solution: Define a Command interface that
represents all possible operations. Create
subclasses of it for each kind of operation
and instances for each actual operation.

Uses for the Command Pattern

  Undo/redo

  Prioritizing and Queuing operations

  Composing multi-part operations

  Progress bars

  Macro recording

Command Pattern in NextGen POS

17

Design Studio:
Team 15: Code Assistant

~5 minutes:
Team describes problem and current solution (if any)

~3 minutes:
Class thinks about questions, alternative approaches

~12 minutes:
On-board design with team modeling and instructor
advising/facilitating

19

Homework and Milestone Reminders

  Read Chapter 38

  Milestone 5 – Iteration 3 Junior Project
System with finalized Design Document
●  Final Project Due by 11:59pm Friday, February

19th, 2010.

