
© 2009 Shawn A. Bohner

Shawn Bohner
Office: Moench Room F212

Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Final Exam - Optional

  Monday, Feb. 22nd, at 8am

  If you don’t take the exam, we’ll use your
exam 1 grade as your final exam grade

  If you sign-up, you must take the exam

  Taking the exam can improve or lower
your grade

Plan for Today

  Short survey on projects

  Finish up Template Pattern

  State Pattern

  Command Pattern

  Design Studio—Team 15: Code Assistant

Template Method Pattern

Problem: How can we record the basic
outline of an algorithm in a framework (or
other) class, while allowing extensions to
vary the specific behavior?

Solution: Create a template method for the
algorithm that calls (often abstract) helper
methods for the steps. Subclasses can
override/implement these helper methods
to vary the behavior.

Example: Template Method used for
Swing GUI Framework

6

GUIComponent

update()

paint()

Template Method

Hook Method

MyButton

paint()
Hook method
overridden to supply
class specific detail

Template Method in NexGen POS (1 of 2)

7

<<interface>>
DBMapper

get(OID):Object

put(OID):Object

Abstract
PersistenceMapper

+get(OID):Object {leaf}

#getObjectFromStorage():Object

Template Method in NexGen POS (2 of 2)

8

ProductDescription
RDBMapper

getObjectFromStorage(OID):Object

AbstractPersistenceMapper

+ get(OID):Object {concrete}

getObjectFromStorage(OID):Object

{abstract}

DBMapper

//template method

public final Object get(OID oid) {

 obj = cachedObjects.get(oid);

 if (obj == null) {

 //hook method

 obj = getObjectFromStorage(oid);

 cachedObject.put(oid, obj); }

 return obj; }

//hook method override

protected Object getObjectFromStorage(OID oid) {

 String key = oid.toString();

 dbRec = SQL execution result of

 “Select* from PROD_DESC where key =“

 +key

ProductDescription = new ProductDescription();

pd.setPrice(dbRec.getColumn(“PRICE”); etc

Persistence Framework

9

NextGen Persistence

Persistence

PersistenceFacade
class

Abstract
RDBMapper

<<interface>>
DBMapper

Abstract
PersistenceMapper

1

ProductDescription
RDBMapper

ProductDescription
FileWithXMLMapper

ProductDescription
InMemoryTestDataMapper

SaleRDBMapper

Transactional States & the State Pattern

10

New

[new (not from DB)]

OldClean

OldDelete

Deleted

[from DB]

save

delete

rollback / reload

commit / insert

commit / delete

delete

rollback / reload
commit / update

OldDirty

State Pattern

Problem: When the behavior of an object, obj,
changes depending on its state, how can we
avoid complicated conditional statements?

Solution: Create state classes implementing a
common interface. Delegate state-
dependent methods from obj to the current
state object.

Example: State Pattern in TCP

12

TCPConnection

Open()

Close()

Acknowledgement()

TCPState

Open()

Close()

Acknowledgement()

TCPEstablished
Open()

Close()

Acknowledgement()

TCPListen
Open()

Close()

Acknowledgement()

TCPClosed
Open()

Close()

Acknowledgement()

state open()

State Patten in Persistence Framework

13

state commit(this);

PersistentObject

commit()

delete()

Rollback()

save()

setState(PObjectState)

oid: OID

state: PObjectState

PObjectState

commit (PersistentObject obj);

delete (PersistentObject obj);

rollback (PersistentObject obj);

save (PersistentObject obj);

OldDirty
State

commit(…)

delete(…)

rollback(…)

OldClean
State

delete(…)

save (…)

New
State

commit(…)

* 1

Cartoon of the Day

Command Pattern

Problem: When we need to record
operations so we can undo them, or
execute them later, what should we do?

Solution: Define a Command interface that
represents all possible operations. Create
subclasses of it for each kind of operation
and instances for each actual operation.

Uses for the Command Pattern

  Undo/redo

  Prioritizing and Queuing operations

  Composing multi-part operations

  Progress bars

  Macro recording

Command Pattern in NextGen POS

17

Design Studio:
Team 15: Code Assistant

~5 minutes:
Team describes problem and current solution (if any)

~3 minutes:
Class thinks about questions, alternative approaches

~12 minutes:
On-board design with team modeling and instructor
advising/facilitating

19

Homework and Milestone Reminders

  Read Chapter 38

  Milestone 5 – Iteration 3 Junior Project
System with finalized Design Document
●  Final Project Due by 11:59pm Friday, February

19th, 2010.

