000000000000000000

Persistence Frameworks

with GoF Patterns
(State & Command)

Shawn Bohner
Office: Moench Room F212

Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

el

Final Exam - Optional [Sukilula 9yifissek)
Feb: 16th; to'sign up

for Final Exam.
+» Monday, Feb. 224, at 8am

« If you don’t take the exam, we’ll use your
exam 1 grade as your final exam grade

« If you sign-up, you must take the exam

« Taking the exam can improve or lower
your grade

TTTTTTTTTTTTTTTTTTTTT

Plan for Today

«» Short survey on projects

« Finish up Template Pattern
+» State Pattern

<~ Command Pattern

+» Design Studio—Team 15: Code Assistant

INSTITUTE OF TECHNOLOGY

Template Method Pattern

Problem: How can we record the basic
outline of an algorithm in a framework (or
other) class, while allowing extensions to
vary the specific behavior?

Solution: Create a template method for the
algorithm that calls (often abstract) helper
methods for the steps. Subclasses can
override/implement these helper methods
to vary the behavior.

INSTITUTE OF TECHNOLOGY

Example: Template Method used for
Swing GUI Framework

A
=
-

-

GUIComponent

[lunvarying part of algorithm
public void update {

o update() Q-eeeeedeseiseinenene. Template Method
clearBackground(); _ o Hook Method
[Icall the hook method paint() e etho
paint(); AN

}
MyButton <

Hook method
overridden to supply
class specific detail

O NN Y -0 ooooooooooc

paint()

INSTITUTE OF TECHNOLOGY

Template Method in NexGen POS (10f2)

<<interface>>
DBMapper

get(OID):Object
put(OID):Object

N

Abstract
PersistenceMapper

+get(OID):Object {leaf} ° template method
#getObjectFromStorage():Object .T __________________ hook method {abstract}

INSTITUTE OF TECHNOLOGY

Template Method in NexGen POS (20f2)

DBMapper

/template method
public final Object get(OID oid) {
obj = cachedObijects.get(oid);

if (obj == null) { AbstractPersistenceMapper
/lhook method

obj = getObjectFromStorage(oid); + get(OID):Object {concrete}
cachedObject.put(oid, obj); } # getObjectFromStorage(OID):Object
return obj; } {abstract}

//hook method override
protected Object getObjectFromStorage(OID oid) {
String key = oid.toString();

ProductDescription

RDBMapper
dbRec = SQL execution result of PP

“Select* from PROD_DESC where key =*
+key

0 # getObjectFromStorage(OID):Object

ProductDescription = new ProductDescription();
pd.setPrice(dbRec.getColumn(“PRICE”); etc

ROSE-HULMAN

INSTITUTE TECHNOL

Persistence Framework

NextGen Persistence

ProductDescription ProductDescription
RDBMapper FileWithXMLMapper
SaleRDBMapper ProductDescription
InMemoryTestDataMapper

Persistence

PersistenceFacade <<interface>>
class 1 DBMapper
Abstract VAN

__D_ RDBMapper

Abstract
I PersistenceMapper —4-_

ROSE-HULMAN

INSTITUTE OF TECHNOLOGY

Transactional States & the State Pattern

I [new (not from DB)] I [from DB]
save
»

w commit / insert)
New J {OIdCIeanJm OIdDirty}
_

A
delete
delete
OIdDeIete}

Database transactions —mmmma_b[
heed.:
-insert, delete, modify

Deleted commit / delete
-Delayed updates

/[Explicit Commits
(rollback)

ROSE-HULMAN
INSTITUTE OF TECHNOL Y

State Pattern

Problem: When the behavior of an object, obj,
changes depending on its state, how can we
avoid complicated conditional statements?

Solution: Create state classes implementing a
common interface. Delegate state-
dependent methods from obj to the current
state object.

Q1,2
ROSE-HULMAN
INSTITUTE OF TECHNOLOGY

Example: State Pattern in TCP

TCPConnection

TCPState

0Open()
Close()

Acknowledgement()

Open()
Close()

Acknowledgement()

TCPEstablished TCPListen
Open() Open()

Close() Close()
Acknowledgement()| |Acknowledgement()

TCPClosed
Open()
Close()
Acknowledgement()

INSTITUTE OF TECHNOL Y

State Patten in Persistence Framework

PersistentObject

oid: OID
state: PObjectState

PObjectState

O commit()

delete()

Rollback()

save()
setState(PObjectState)

stae commit(this);

commit (PersistentObject obj);

1 delete (PersistentObject obj);
rollback (PersistentObject obj);
save (PersistentObject obj);
OldDirty OldClean New
State State State

commit(...) delete(...) commit(...)
delete(...) save (...)
rollback(...)

Q3

INSTITUTE OF TECHNOLOGY

Cartoon of the Day

Number 1555: And Some Flame Decals

This is the worst Maybe if we put on a
extreme sport ever spoiler it'll go faster.

Copyright 2003-2009 J. Jacques

Used by permission. http://www.questionablecontent.net/view.php?comic=1555

INSTITUTE OF TECHNOLOGY

Command Pattern

Problem: When we need to record
operations so we can undo them, or
execute them later, what should we do?

Solution: Define a Command interface that
represents all possible operations. Create
subclasses of it for each kind of operation
and instances for each actual operation.

INSTITUTE OF TECHNOLOGY

Uses for the Command Pattern

+» Undo/redo

<« Prioritizing and Queuing operations
+» Composing multi-part operations

+ Progress bars

«» Macro recording

INSTITUTE OF TECHNOLOGY

Command Pattern in NextGen POS

Transaction

commands : List

commit() o

{

sort()

- for each ICommand cmd

cmd.execute()

A

addDelete(obj:PersistentObject)
addInsert(obj:PersistentObject)
addUpdate(obj:PersistentObject)
sort()o. Q

use SortStrategy objects to allow
different sort algorithms to order the
Commands

{

commands.add(new DBUpdateCommand(obj));

}

}
«interface»
ICommand
execute()
undo()

7

DBCommand

object : PersistentObject

more complex
solution adds a

which uniquely

an operation

A

undo is a no-op for
this example, but a

4 polymorphic undo
‘| to each subclass

knows how to undo

PersistentObj

ect

execute() {abstract}
undo() {leaf}

A\

commit()

perhaps simply A DBUpdateCommand

object.commit()

but each Command can -0 execute()

perform its own unique
actions

DBInsertCommand

execute()

DBDeleteCommand

execute()

INSTITUTE OF TECHN

OLLGV

Design Studio:
Team 15: Code Assistant

~5 minutes:
Team describes problem and current solution (if any)

~3 minutes:
Class thinks about questions, alternative approaches Q7

~12 minutes:

On-board design with team modeling and instructor
advising/facilitating

INSTITUTE OF TECHNOLOGY

Homework and Milestone Reminders

+» Read Chapter 38

«» Milestone 5 — Iteration 3 Junior Project
System with finalized Design Document

e Final Project Due by 11:59pm Friday, February
19th. 2010.

INSTITUTE OF TECHNOLOGY

