
© 2009 Shawn A. Bohner

Shawn Bohner
Office: Moench Room F212

Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Applying Patterns to
NextGen POS Iteration 3

  Local caching
●  Used Adapter and Factory

  Failover to local services
●  Used Proxy, Adapter, and Factory

  Support for third-party POS devices

  Handling payments

Accessing External Physical Devices

  POS devices include cash drawer, coin
dispenser, digital signature pad, & card reader

  They must work with devices from a variety of
vendors like IBM, NCR, Fijitsu …

  UnifiedPOS: an industry standard OO interface
●  JavaPOS provides a Java mapping as a set of Java

interfaces

4

Standard JavaPOS Interfaces for
Hardware Device Control

Manufacturers Provide Implementations

 Device driver for
hardware

 The Java class for
implementing
JavaPOS interface

What does this mean for NextGen POS?

  What types does NextGen POS use to
communicate with external devices?

  How does NextGen POS get the appropriate
instances?

Abstract Factory

  Problem: How can we create families of
related classes while preserving the
variation point of switching between
families?

  Solution: Define an abstract factory
interface. Define a concrete factory for
each family.

Abstract Factory Example

First Attempt at Using Abstract Factory

Use an Abstract Class Abstract Factory

Using a Factory Factory

Handling Payments

  What do we do with different payment
types? Cash, Credit, a Check?
●  Need authorization for credit and check…

  Follow the “Do It Myself” Guideline:
●  “As a software object, I do those things that are

normally done to the actual object I represent.”

  A common way to apply Polymorphism
and Information Expert

“Do It Myself” Example

Creating a CheckPayment

Creating a CreditPayment

Frameworks with Patterns

  Framework: an extendable set of objects for
related functions, e.g.:
●  Swing GUI framework

●  Java collections framework

  Provides cohesive set of interfaces & classes
●  Capture the unvarying parts

●  Provide extension points to handle variation

  Relies on the Hollywood Principle:
●  “Don’t call us, we’ll call you.”

Designing a Persistence Framework

17

Domain Layer Persistence
Framework

Relational
Database

Name City

RHIT Terre Haute

Purdue W. Lafayette

Indiana U. Bloomington

Butler U. Indianapolis

University Table

:University

name = Butler

city = Indianapolis

University
object

PersistenceFaçade

get(OID, class):Object

put(OID, object)

Retrieve from RDB

get(OID, University)

Store object in RDB

 put(OID, Butler U.)

Accessing Persistence Service via Façade

  Unified interface to set of interfaces in a
subsystem

  Façade defines a higher-level interface that
makes the subsystem easier to use

  Façade Applications:
●  Layer the subsystem using Facade to define an

entry point to each subsystem level

●  Introduce a Facade to decouple subsystems from
clients and other subsystems

– Promotes independence and portability

●  Façade produces simple default view of subsystem
18

The Façade Pattern for Object ID

  Need to relate objects to database records
and ensure that repeated materialization of a
record does not result in duplicate objects

  Object Identifier Pattern
●  assigns an object identifier (OID) to each record

●  Assigns an OID to each object (or its proxy)

●  OID is unique to each object

19

Maps between Persistent Object & Database

20

University Table

:University
name = Butler

city = Indianapolis

oid = xyz123

OID name city

XI001 RHIT Terre Haute

wxx246 Purdue W. Lafayette

xxz357 Indiana U. Bloomington

xyz123 Butler U. Indianapolis

1

The Persistence Façade

21

:DBProductAdapter :PersistenceFaçade

pd = get(…)

PersistenceFaçade

getInstance():
 PersistenceFacade

get(OID, class)

put(OID,Object)

Façade Design Pattern with Brokers

22

PersistenceFacade

getInstance():
PersistenceFacade

get(OID, class) : Object

put(OID, Object)

ProductSpecification
RDBMapper

get(OID):Object

put(OID, Object)

<<interface>>
DBMapper

get(OID):Object

put(OID, Object

class

ProductSpecification
FlatFileMapper

get(OID):Object

put(OID, Object

Manufacturer
RDBMapper

get(OID):Object

put(OID, Object

Template Method Pattern

  Problem: How can we record the basic
outline of an algorithm in a framework (or
other) class, while allowing extensions to
vary the specific behavior?

  Solution: Create a template method for the
algorithm that calls (often abstract) helper
methods for the steps. Subclasses can
override/implement these helper methods
to vary the behavior.

Example: Template Method used for
Swing GUI Framework

24

GUIComponent

update()

paint()

Template Method

Hook Method

MyButton

paint()
Hook method
overridden to supply
class specific detail

Design Studio:
Team 13: CSSE Portfolio

~5 minutes:
Team describes problem and current solution (if any)

~3 minutes:
Class thinks about questions, alternative approaches

~12 minutes:
On-board design with team modeling and instructor
advising/facilitating

26

Homework and Milestone Reminders

  Read Chapter 38

  Milestone 5 – Iteration 3 Junior Project
System with finalized Design Document
●  Preliminary Design Walkthrough on Friday,

February 12th, 2010 during project meeting.

●  Final Project Due by 11:59pm Friday, February
19th, 2010.

