
© 2009 Shawn A. Bohner

Shawn Bohner
Office: Moench Room F212

Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Applying Patterns to
NextGen POS Iteration 3

  Local caching
●  Used Adapter and Factory

  Failover to local services
●  Used Proxy, Adapter, and Factory

  Support for third-party POS devices

  Handling payments

Accessing External Physical Devices

  POS devices include cash drawer, coin
dispenser, digital signature pad, & card reader

  They must work with devices from a variety of
vendors like IBM, NCR, Fijitsu …

  UnifiedPOS: an industry standard OO interface
●  JavaPOS provides a Java mapping as a set of Java

interfaces

4

Standard JavaPOS Interfaces for
Hardware Device Control

Manufacturers Provide Implementations

 Device driver for
hardware

 The Java class for
implementing
JavaPOS interface

What does this mean for NextGen POS?

  What types does NextGen POS use to
communicate with external devices?

  How does NextGen POS get the appropriate
instances?

Abstract Factory

  Problem: How can we create families of
related classes while preserving the
variation point of switching between
families?

  Solution: Define an abstract factory
interface. Define a concrete factory for
each family.

Abstract Factory Example

First Attempt at Using Abstract Factory

Use an Abstract Class Abstract Factory

Using a Factory Factory

Handling Payments

  What do we do with different payment
types? Cash, Credit, a Check?
●  Need authorization for credit and check…

  Follow the “Do It Myself” Guideline:
●  “As a software object, I do those things that are

normally done to the actual object I represent.”

  A common way to apply Polymorphism
and Information Expert

“Do It Myself” Example

Creating a CheckPayment

Creating a CreditPayment

Frameworks with Patterns

  Framework: an extendable set of objects for
related functions, e.g.:
●  Swing GUI framework

●  Java collections framework

  Provides cohesive set of interfaces & classes
●  Capture the unvarying parts

●  Provide extension points to handle variation

  Relies on the Hollywood Principle:
●  “Don’t call us, we’ll call you.”

Designing a Persistence Framework

17

Domain Layer Persistence
Framework

Relational
Database

Name City

RHIT Terre Haute

Purdue W. Lafayette

Indiana U. Bloomington

Butler U. Indianapolis

University Table

:University

name = Butler

city = Indianapolis

University
object

PersistenceFaçade

get(OID, class):Object

put(OID, object)

Retrieve from RDB

get(OID, University)

Store object in RDB

 put(OID, Butler U.)

Accessing Persistence Service via Façade

  Unified interface to set of interfaces in a
subsystem

  Façade defines a higher-level interface that
makes the subsystem easier to use

  Façade Applications:
●  Layer the subsystem using Facade to define an

entry point to each subsystem level

●  Introduce a Facade to decouple subsystems from
clients and other subsystems

– Promotes independence and portability

●  Façade produces simple default view of subsystem
18

The Façade Pattern for Object ID

  Need to relate objects to database records
and ensure that repeated materialization of a
record does not result in duplicate objects

  Object Identifier Pattern
●  assigns an object identifier (OID) to each record

●  Assigns an OID to each object (or its proxy)

●  OID is unique to each object

19

Maps between Persistent Object & Database

20

University Table

:University
name = Butler

city = Indianapolis

oid = xyz123

OID name city

XI001 RHIT Terre Haute

wxx246 Purdue W. Lafayette

xxz357 Indiana U. Bloomington

xyz123 Butler U. Indianapolis

1

The Persistence Façade

21

:DBProductAdapter :PersistenceFaçade

pd = get(…)

PersistenceFaçade

getInstance():
 PersistenceFacade

get(OID, class)

put(OID,Object)

Façade Design Pattern with Brokers

22

PersistenceFacade

getInstance():
PersistenceFacade

get(OID, class) : Object

put(OID, Object)

ProductSpecification
RDBMapper

get(OID):Object

put(OID, Object)

<<interface>>
DBMapper

get(OID):Object

put(OID, Object

class

ProductSpecification
FlatFileMapper

get(OID):Object

put(OID, Object

Manufacturer
RDBMapper

get(OID):Object

put(OID, Object

Template Method Pattern

  Problem: How can we record the basic
outline of an algorithm in a framework (or
other) class, while allowing extensions to
vary the specific behavior?

  Solution: Create a template method for the
algorithm that calls (often abstract) helper
methods for the steps. Subclasses can
override/implement these helper methods
to vary the behavior.

Example: Template Method used for
Swing GUI Framework

24

GUIComponent

update()

paint()

Template Method

Hook Method

MyButton

paint()
Hook method
overridden to supply
class specific detail

Design Studio:
Team 13: CSSE Portfolio

~5 minutes:
Team describes problem and current solution (if any)

~3 minutes:
Class thinks about questions, alternative approaches

~12 minutes:
On-board design with team modeling and instructor
advising/facilitating

26

Homework and Milestone Reminders

  Read Chapter 38

  Milestone 5 – Iteration 3 Junior Project
System with finalized Design Document
●  Preliminary Design Walkthrough on Friday,

February 12th, 2010 during project meeting.

●  Final Project Due by 11:59pm Friday, February
19th, 2010.

