Architectural Analysis

Shawn Bohner

Office: Moench Room F212

Phone: (812) 877-8685 Email: bohner@rose-hulman.edu

Today's Agenda

Architectural Analysis

Design Studio:
 Team 11 – Excel Graphing Solution

Recall Architectural Building Blocks

Component – a unit of computation or a data store (either atomic or composite)

Connector – an architectural element that models <u>interactions</u> among components and <u>rules</u> that govern those interactions

Configuration (or topology) – a connected graph (composite) of components and connectors which describe architectural structure

Architectural Analysis

The <u>identification</u> and <u>resolution</u> of the system's non-functional requirements (e.g., security, maintainability) in the context of functional requirements (e.g., calculate trajectory, generate report)

Goals of Architectural Analysis

- Identify and resolve non-functional requirements
- Identify variation points
- Identify most probable evolution points
- Hierarchy of Decision Goals
 - Inflexible constraints (e.g., safety or legal)
 - Business goals (they pay the money...)
 - All others

Why does Architectural Analysis Matter?

- Reduce risk of missing something key to the design of the system
- Avoid applying excessive effort to low priority issues
- Help align the software product with the business (or system) goals

When do we Analyze the Architecture?

- Before first iteration, to manage risk
- In elaboration and after each design iteration
 - Act as 'toll-gate' before starting next phase

Recall Points of Change from Protected Variation Discussion...

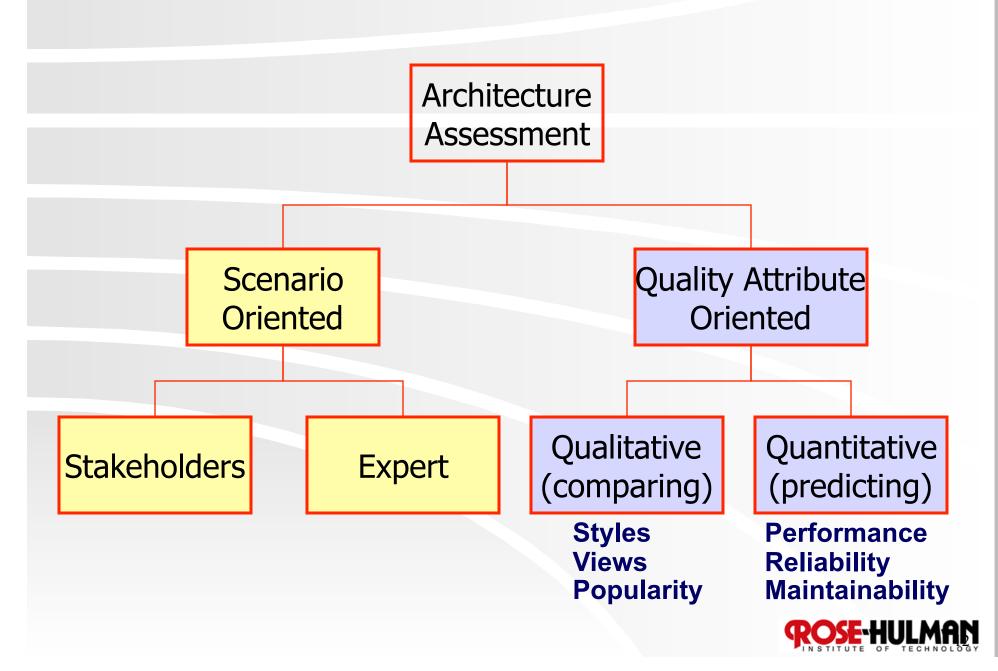
- Variation points: points of change in the existing system or requirements
 - e.g., multiple tax calculators
- Evolution points: points of change that may arise in the future but not currently present
 - e.g., hand-held POS devices

Cartoon of the Day

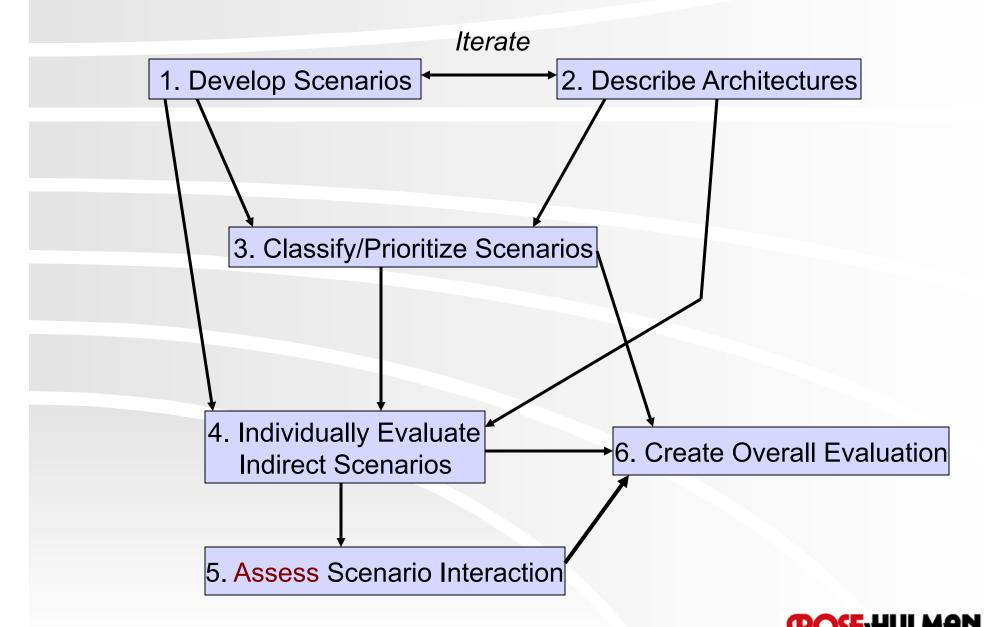
Used by permission. http://notinventedhe.re/on/2009-11-23

Common Steps in Architectural Analysis

- Identify and analyze non-functional requirements (AKA architectural drivers or factors) that impact architecture
- Evaluate alternative designs and create solutions to resolve impacts (AKA architectural decisions)
 - Formulate "quality scenarios" that define measurable/observable metrics

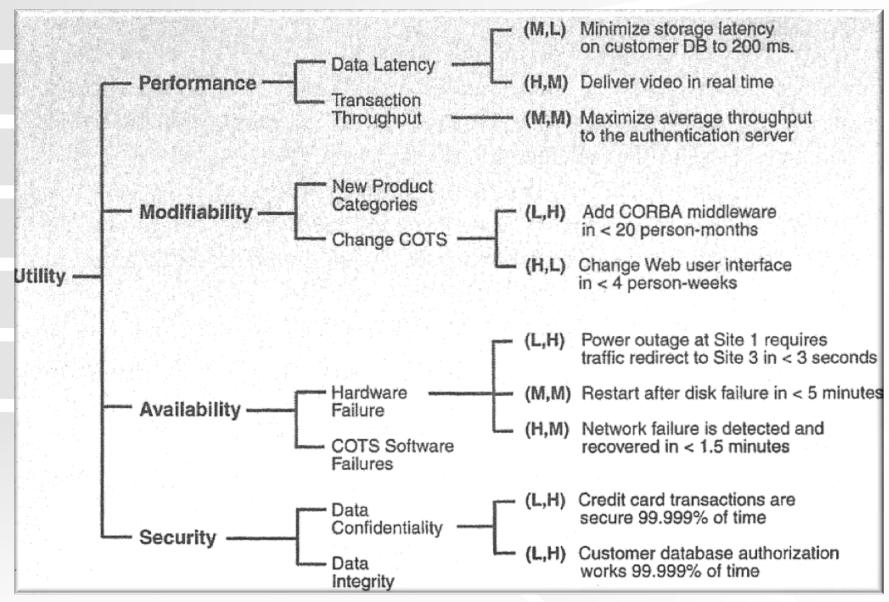

Priorities and Future Proofing

- Future Proofing can lead to over-engineering for changes that are unlikely to occur
 - Exception: Prudent Future Proofing like Year 2000
- Priorities drive under-engineering
 - Getting it done over getting it done right


The art of the architect is knowing what battles are worth fighting – where it's worth investing in designs that provide protection against evolutionary change.

Architecture Analysis/Assessment

SAAM – SW Architecture Analysis Method



Factor Table in Supplementary Spec.

Factor	Measures and quality scenarios	Variability (current flexibility and future evolution)	Impact of factor (and its variability) on stakeholders, architecture and other factors	Prior- ity for Suc- cess	Diffi- culty or Risk
Reliability—Red	coverability	REPORT OF THE PARTY OF THE PARTY OF THE PARTY OF	the Committee Committee Committee		
Recovery from remote service failure	When a remote service fails, reestablish connectivity with it within 1 minute of its detected re-availability, under normal store load in a production environment.	current flexibility - our SME says local client- side simplified services are acceptable (and desirable) until reconnection is possible. evolution - within 2 years, some retailers may be willing to pay for full local replication of remote services (such as the tax calculator). Probability? High.	High impact on the large- scale design. Retailers really dislike it when remote services fail, as it pre- vents them from using a POS to make sales.	H	M
Recovery from remote product database failure	as above	current flexibility - our SME says local client- side use of cached "most common" product info is acceptable (and desirable) until recon- nection is possible.	as above	Н	M
ne dur- more	with the suppers	evolution - within 3 years, client-side mass storage and replication solutions will be cheap and effective, allowing permanent complete replication and thus local usage. Probability? High.			

Factors: Quality Attribute Utility Tree

Note: <u>High-Medium-Low for (Priority, Risk)</u>

Technical Memos: Documenting Decisions

- Summarize the issue
- List the relevant architectural factors
- Describe the chosen solution
- Give the motivation for choosing the solution
- Note any unresolved issues
- Identify alternatives considered

Including rationale for rejecting alternatives

Separation of Concerns

Architectural factors often cross-cutting

- Some large-scale techniques for SoC:
 - Modularize/encapsulate into separate components
 - E.g., persistence service/façade, layered arch.
 - Use decorators
 - Use post-compilers or aspect-oriented techniques
 - Architecture description languages (ADLs)

Key Themes in Architectural Analysis

- Architectural concerns especially related to non-functional requirements
- Architectural concerns involve system-level, large-scale, and broad problems that involve fundamental design decisions
- Architectural analysis is about understanding the interdependencies and tradeoffs in design decisions
- Architectural analysis is about the generation and evaluation of alternative solutions

Design Studio: Team 11: Excel Graphing Solution

- ~5 minutes: team describes problem and current solution (if any)
- ~3 minutes: class thinks about questions, alternative approaches
- ~12 minutes: on-board design with team modeling and instructor advising/facilitating

Homework and Milestone Reminders

- Read Chapters 34 and 35
- Milestone 5— Iteration 3 Junior Project System with finalized Design Document
 - Due by 11:59pm Friday, February 19th, 2010.

