
© 2009 Shawn A. Bohner

Shawn Bohner
Office: Moench Room F212

Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

2

Gang of Four Patterns

7

Pricing Strategy
Class Diagram

But, how do we handle multiple, conflicting pricing policies?
●  20% senior discount

●  Preferred customer discount, 15% off sales of $400
●  Buy 1 case of Darjeeling tea, get 15% off entire order

●  Manic Monday, $50 off purchases over $500

Composite

8

  Problem: How do we
handle a group of objects
that can be combined, but
should still support the
same polymorphic
methods as any
individual object
in the group?

  Solution: Define a composite object that
implements the same interface as the individual
objects.

9

Composite Pricing Strategy

Can add atomic
or other
composite
pricing
strategies

Composites have
list of contained
strategies

10

Composite Pricing Strategy (continued)

11

Composite Sequence Diagram

Composite object iterates over its collection of atomic
strategy objects

How do we build the Composite Strategy?

  Three places in example where new
pricing strategies can be added:

1.  When new sale is created, add store discount
policy

2.  When customer is identified, add customer-
specific policy

3.  When a product is added to the sale, add
product-specific policy

1. Adding Store Discount Policy

2. Adding Customer Specific Discount Policy

2. Adding Customer Specific Discount Policy
(continued)

Applying Composite

Working with your project team, identify a situation in your
project where Composite might be applicable. If no such
situation exists, try to come up with an extension to your system
that might use Composite.

Façade

  NextGen POS needs pluggable business rules

  Assume rules will be able to disallow certain
actions, such as…

●  Purchases with gift certificates must include just
one item

●  Change returned on gift certificate purchase must
be as another gift certificate

●  Allow charitable donation purchases, but max. of
$250 and only with manager logged-in

Some Conceivable Implementations

  Strategy pattern

  Open-source rule interpreter

  Commercial business rule engine

Façade

  Problem: How do we avoid coupling to a
part of the system whose design is
subject to substantial change?

  Solution: Define a
single point of
contact to the
variable part of the
system—a façade
object that wraps
the subsystem.

Façade Example

Refreshing Display

 How do we refresh the GUI display when the
domain layer changes without coupling the
domain layer back to the UI layer?

Observer (aka Publish-Subscribe/Delegation)

  Problem: Subscriber objects want to be
informed about events or state changes
for some publisher object. How do we do
this while maintaining low coupling from
the publisher to the subscribers?

  Solution: Define an subscriber interface
that the subscriber objects can implement.
Subscribers register with the publisher
object. The publisher sends notifications
to all its subscribers.

23

Observer: Behavioral Pattern

  Observer pattern is a 1:N pattern and is used to
notify and update all dependents automatically
when one object changes.

24

Sale has a List of Listeners

Example: Update SaleFrame when
Sale’s Total Changes

Example: Update SaleFrame when
Sale’s Total Changes (continued)

Observer: Not just for GUIs watching
domain layer…

  GUI widget event handling

  Example:
JButton startButton = new JButton(“Start”);
startButton.addActionListener(new Starter
());

  Publisher: startButton

  Subscriber: Starter instance

32

Homework and Milestone Reminders

  Read Chapters 27 and 28

  Homework 6 – More GRASP on Video Store
Design
●  Due by 5:00pm Today (Tuesday, January 26th)

  Milestone 4: Patterns and Detailed Design,
with some Iteration 2 on the Side
●  Due by 11:59pm Friday, January 29th, 2010

