
© 2009 Shawn A. Bohner

Shawn Bohner
Office: Moench Room F212

Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Protected Variation

  Problem:
How do we design objects and systems so
that instability in them does not have
undesirable effects on other elements?

  Solution:
Identify points of predicted instability
(variation) and assign responsibilities to
create a stable interface around them

3

Protected Variations: Observations

  When to use it?
●  Variation point – a known area where variations in

existing requirements or systems need to be
supported

●  Evolution point – an anticipated area (speculative)
where future variation may occur (not in current
requirements)

  Investing in protection against future variation
●  How likely is it to occur? If it is, then should probably

use PV now

●  If unlikely, then should probably defer using PV

Protected Variations by Other Names

  Information hiding [Parnas72]
●  “We propose instead that one begins with a list

of difficult design decisions which are likely to
change. Each module is then designed to hide
such a decision from the others.”

  Open-Closed Principle [Meyer88]
●  “Modules should be both open (for extension …)

and closed (… to modification[s] that affect
clients)”

Gang of Four (GoF)

  Ralph Johnson, Richard Helm, Erich
Gamma, and John Vlissides (left to right)

6

Gang of Four Patterns

Adapter: Structural Pattern

  Problem: How do we
provide a single, stable
interface to similar
components with
different interfaces?
●  How do we resolve

incompatible interfaces?

  Solution: Use an intermediate adapter object
to convert calls to the appropriate interface for
each component

Adapter Examples

GRASP Principles in Adapter?

  Low coupling?

  High cohesion?

  Information Expert?

  Creator?

  Controller?

  Polymorphism?

  Pure Fabrication?

  Indirection?

  Protected
Variations?

Factory (Simplification of Abstract Factory)

  Problem: Who should be responsible for
creating objects when there are special
considerations like:
●  Complex creation logic

●  Separating creation to improve cohesion

●  A need for caching

  Solution: Create a Pure Fabrication called
a Factory to handle the creation

13

Abstract Factory: Creational Pattern

  Provides an
interface to
create and return
one of several
families of
related objects
without needing
to specify their
concrete
classes.

14

Factory Example

Advantages of Factory

  Puts responsibility of creation logic into a
separate, cohesive class—separation of
concerns

  Hides complex creation logic

  Allows performance enhancements:
●  Object caching

●  Recycling

Working for Google

Who creates the Factory?

  Several classes need to access Factory
methods

  Options:
●  Pass instance of Factory to classes that need it

●  Provide global visibility to a Factory instance

Singleton

  Problem: How do we ensure that exactly one
instance of a class is created and is globally
accessible?

  Solution: Define a static
method in the class that
returns the singleton instance
●  Created only once for the life of the program

(a non-creational pattern?)

●  Provides single global point of access to instance

– Similar to a static or global variable variable

20

Singleton Example

Lazy vs. Eager Initialization

  Lazy:
!private static ServicesFactory instance;  
public static synchronized Services Factory
getInstance() {  
!if (instance == null)  
! !instance = new ServicesFactory();  
!return instance;  
}!

  Eager:
!private static ServicesFactory instance = new
ServicesFactory();  
public static Services Factory getInstance()
{  
!return instance;  
}!

Why don’t we just make all the
methods static?

  Instance methods permit subclassing

  Instance method allow easier migration to
“multi-ton” status

Singleton Considered Harmful?

  Hides dependencies by introducing global
visibility

  Hard to test since it introduces global state
(also leaks resources)

  A singleton today is a multi-ton tomorrow

  Low cohesion — class is responsible for
domain duties and for limiting number of
instances

Strategy

  Problem: How do we design for varying, but
related, algorithms or policies?

  Solution:
Define each
algorithm or policy
in a separate class
with a common
interface.

Strategy Example

Strategy Example (cont.)

Where does the PricingStrategy come
from?

Examples of Change and Patterns
What Varies Design Pattern

Algorithms Strategy, Visitor

Actions Command

Implementations Bridge

Response to change Observer

Interactions between
objects

Mediator

Object being created Factory Method, Abstract
Factory, Prototype

Structure being created Builder

Traversal Algorithm Iterator

Object interfaces Adapter

Object behavior Decorator, State

29

Homework and Milestone Reminders

  Homework 6 – More GRASP on Video Store
Design
●  Due by 5:00pm Tuesday, January 26th, 2010

  Milestone 4: Patterns and Detailed Design,
with some Iteration 2 on the Side
●  Due by 11:59pm Friday, January 29th, 2010

