
© 2009 Shawn A. Bohner

Shawn Bohner
Office: Moench Room F212

Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

2

GRASP II – And Furthermore…

  Polymorphism

  Indirection

  Pure Fabrication

  Protected Variations

Polymorphism

Problem:
● How do we handle alternatives based on type?
  Chained ifs and lots of switch statements are a bad code smell
→ new types require finding conditions and editing

● How do we create pluggable software components
  Pluggable components require swapping one module for

another without changing surrounding design

Solution:
●  When related alternatives vary by type, assign

responsibility to the types for which the behaviors
varying.

  Use subtypes and polymorphic methods

  Eliminates lots of conditional logic based on type
  Corollary: Avoid instanceof tests

Polymorphism Example

Bad:
switch (square.getType()) {
case GO:

 …
case INCOME_TAX:

 …
case GO_TO_JAIL:

 …
default:

 …
}

5

Monopoly Polymorphism Example

Polymorphism Example (continued)

7

Monopoly Polymorphism Example

8

Monopoly Polymorphism Example

9

Monopoly Polymorphism Example

10

Monopoly Polymorphism Example

Polymorphism Observations

  Using polymorphism indicates that Piece class
not needed since it’s a proxy for the Player

  A design using Polymorphism can be easily
extended for new variations

  When should supertype be an interface?

●  Don’t want to commit to a class hierarchy

●  Need to reduce coupling

  Contraindication: Polymorphism can be over
used – speculative future-proofing

Team Polymorphism

Working with your project team, identify a situation in
your project where Polymorphism might be applicable.

If no such situation exists, try to come up with an
extension to your system that might use Polymorphism.

What method(s) would behave differently for the
different subtypes?

Pure Fabrication

  Problem:
What object should have responsibility
when solutions for low representation gap
(like Info. Expert) lead us astray (i.e., into
high coupling and low cohesion)

  Solution:
Assign a cohesive set of responsibilities to
an artificial (not in the domain model) class

14

Monopoly Pure Fabrication Example

  How do we model the player rolling the dice?
  If Player rolls dice, then dice rolling behavior not

very reusable

  How do we provide something that would be

more reusable?

Player

Cup

Roll
getTotal

Die

Face Value

Role
getFV

Cup

1

Dice

*
{ordered}

Pure Fabrication

15

Monopoly Pure Fabrication Example

Common Design Strategies

  Representational decomposition
●  Lowering the representation gap (noun-based)

  Behavioral decomposition
●  Centered around behaviors (verb-based)

Pure Fabrication Observations

  Benefits:
●  Higher cohesion

●  Greater potential for reuse

  Contraindications:
●  Can be abused to create too many behavior

objects

●  Watch for data being passed to other objects
for calculations

Cartoon of the Day

Indirection

  Problem:
●  Where do we assign responsibility if we want to

avoid direct coupling between two or more
objects?

  Solution:
●  Assign responsibility to an intermediate object to

mediate between the other components

20

Indirection & Polymorphism Example

21

NexGen POS Indirection Example

  TaxMasterAdapter is a Pure Fabrication offering
a level of Indirection

  Shields client (Sale) from variable server
(proprietary tax calculator system)

Protected Variation

  Problem:
How do we design objects and systems so
that instability in them does not have
undesirable effects on other elements?

  Solution:
Identify points of predicted instability
(variation) and assign responsibilities to
create a stable interface around them

Protected Variation Pervasive in Computing

  Virtual machines and operating systems

  Data-driven designs (e.g., configuration
files)

  Service lookup (URLs, DNS)

  Uniform access to methods/fields (Ada,
Eiffel, C#, Objective-C, Ruby, …)

  Standard languages (SQL)

  Liskov Substitution Principle

24

Protected Variations: Observations

  When to use it?
●  Variation point is a known area where clients need

to be protected from variable servers

●  Evolution point is an area where future variation
may occur

  Should we invest in protecting against future
variation?
●  How likely is it to occur? If it is, then should

probably use PV now

●  If unlikely, then should probably defer using PV

Law of Demeter, or “Don’t Talk to Strangers”

  Within a method,
messages should
only be sent to:

●  this

●  a parameter

●  field of this

●  element in
collection of field
of this

●  new objects

Protected Variations Observations

  Benefits (if we guessed variation points
correctly):
●  Extensions easy to add

●  Can plug in new implementations

●  Lower coupling

●  Lower cost of change

  Risk: watch out for speculative future-
proofing

Protected Variations by Other Names

  Information hiding [Parnas72]
●  “We propose instead that one begins with a list

of difficult design decisions which are likely to
change. Each module is then designed to hide
such a decision from the others.”

  Open-Closed Principle [Meyer88]
●  “Modules should be both open (for extension …)

and closed (… to modification[s] that affect
clients)”

28

Homework and Milestone Reminders

  Read Chapter 26

  Homework 6 – More GRASP on Video Store
Design
●  Due by 5:00pm Tuesday, January 26th, 2010

  Milestone 4: Patterns and Detailed Design,
with some Iteration 2 on the Side
●  Due by 11:59pm Friday, January 29th, 2010

