
© 2009 Shawn A. Bohner

Shawn Bohner
Office: Moench Room F212

Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Agenda

  Work some O-O Design Examples

  Outline Thursday’s Exam

  Review what we covered so far

Example: Grading System Problem Statement

A Sampling of Use Cases

  Create assignment

  Import student submissions

  Create feedback item

  Edit feedback item

  Add feedback to a submission

  Export graded student submissions

See Domain Model and SSDs in handout

Create New Assignment

Create New Rubric

Add Requirement

Students

YIKES!!!!!!! �

HECK IS �

Edit Feedback Item

Add Submission

Progression From Analysis into Design

  Use Cases drove the development of
●  Domain Model (DM)

●  System Sequence Diagrams (SSD)

●  Operation Contracts (OC)

  DM is starting point for Design Class Diagram

  SSDs help identify system operations, the
starting point for Interaction Diagrams
●  System operations are the starting messages

●  Starting messages are directed at controller objects

  Use OC post-conditions to help determine…
●  What should happen in the interaction diagrams

●  What classes belong in the design class diagram

Thursday’s Exam

  Basic structure
●  10-15 minutes of breadth (multiple choice and

short answer)

●  Staged problem solving

– Finish first part, hand it in to get next part

– Next part has our answer to first part for
you to use on second part

– And so on…

  Exam is 15% of course grade

12

13

Engineering Design – A Simple Definition

  “Design” specifies the strategy of
“how” the Requirements will be
implemented

  Design is both a “Process”
… and an “Artifact”

©2005 Shawn Bohner"

14

Ways to use Unified Modeling Language
(UML)

  Sketch

  Blueprint

  Executable programming language

Domain Model – An Abstraction of
Conceptual Classes

  Most important model in
Object-Oriented Analysis

  Illustrates noteworthy
concepts in a domain

  Source of inspiration for
designing software
objects

  Goal: to lower
representational gap

  Helps us understand &
maintain the software

Strategies to Find Conceptual Classes

1.  Reuse or modify existing models

2.  Identify noun phrases; linguistic analysis

3.  Use a category list

Associations

Attributes

  Include attributes that the
requirements suggest
need to be remembered

  The usual ‘primitive’ data types
  Common compound data types

  Notation (“[]”indicate optional parts):
●  [+|-] [/] name [: [type] [multiplicity]] [= default] [{property}]

Summary of Domain Model Guidelines

  Classes first, then associations and attributes

  Use existing models, category lists, noun phrases

  Include “report objects”, like Receipt, if they’re part of the
business rules

  Use terms from the domain
  Don’t send an attribute to do a conceptual class’s job

  Use description classes to remember information independent
of instances and to reduce redundancy

  Use association for relationship that must be remembered

  Be parsimonious with associations

  Name associations with verb phrases (not “has” or “uses”)
  Use common association lists

  Use attributes for information that must be remembered

  Use data type attributes

  Define new data types for complex data

  Communicate with stakeholders

System Sequence Diagrams

How To “Tips” on Creating SSDs

  Show one scenario of a use case

  Show events as intentions, not physical
implementation

●  E.g., enterItem not scanItem

  Start system event names with verbs

  Can model collaborations between
systems

22

Parts of the Operation Contract

Operation: Name Of operation, and parameters.

Cross-
References: (optional) Use cases this can occur within.

Preconditions: Noteworthy assumptions about the state of
the system or objects in the Domain Model before
execution of the operation.

Postconditions: The state of objects in the Domain Model
after completion of the operation.

Postconditions

  Describe changes in the state of DM objects

  Typical changes: Created/Deleted Instances,
Formed/Broke Associations, Changed
Attributes

  Express post-conditions in the past tense

  Give names to instances

  Capture information from system operation by
noting changes to domain objects

Logical Architecture

Dynamic Modeling with Interaction Diagrams

  Sequence Diagrams (SD)
●  Clearer notation and semantics

●  Better tool support

●  Easier to follow

●  Excellent for documents

  Communication Diagrams (CD)
●  Much more space efficient

●  Easier to modify quickly

●  Excellent for UML as sketch

Sequence Diagrams

Common Frame Operators

Communication Diagrams

Conditional Messages Use Guards

DMs to Design Class Diagrams

31

Recipe for a Design Class Diagram

1)  Identify all the classes participating in the software
solution by analyzing the interaction diagrams

2)  Draw them in a class diagram

3)  Duplicate the attributes from the associated concepts
in the conceptual model

4)  Add method names by analyzing the interaction
diagrams

5)  Add type information to the attributes and methods

6)  Add the associations necessary to support the
required attribute visibility

7)  Add navigability arrows to the associations to
indicate the direction of attribute visibility

8)  Add dependency relationship lines to indicate non-
attribute visibility

Keywords Categorize Model Elements

33

GRASP

  GRASP: General Responsibility Assignment
Software Patterns (or Principles)
●  A set of patterns for assigning responsibilities to

software objects

  Five Initial GRASPs
1.  Creator
2.  Information Expert
3.  Low Coupling
4.  Controller
5.  High Cohesion

  Four Later In Chapter 25
●  Polymorphism Pure Fabrication

Indirection Protected Variations

34

RDD: Knowing and Doing Responsibilities

  “Doing” Responsibilities
●  Create another object
●  Perform a calculation
●  Initiate an action in an object
●  Control/coordinate activities of objects

  “Knowing” Responsibilities
●  Knowing it’s own encapsulated data
●  Knowing about other objects
●  Knowing things it can derive or calculate

Coupling

  A measure of how strongly one element:
●  is connected to,

●  has knowledge of, or

●  relies on other elements

  Want low (or weak) coupling

Cohesion

  A measure of how
strongly related and
focused the responsibilities of a class
(or method or package…) are

  Want high cohesion

Information Expert

  Problem: What is a general principle of
assigning responsibilities?

  Solution: Assign a responsibility to the
class that has the necessary information

Creator

  Problem: Who should be responsible for
creating a new instance of some class?

  Solution: Make B responsible for creating A
if…
●  B contains or is a composition of A

●  B records A

●  B closely uses A

●  B has the data to initialize A

Controller

  Problem: What first object beyond the UI
layer receives and coordinates a
system operation!

  Solution: Assign the responsibility to
either…
●  A façade controller, representing the overall

system and handling all system operations, or

●  A use case controller, that handles all system
events for a single use case

40

Homework and Milestone Reminders

  Read Chapter 20 for Monday

  Study for Exam on Thursday

  Homework 5 – Practice GRASP on Video
Store Design and Midcourse Team
Evaluation
●  Due by 5:00pm Tuesday, January 12th, 2010

● NO LATE DAYS on this assignment

