
© 2009 Shawn A. Bohner 

Shawn Bohner 
Office: Moench Room F212 

Phone: (812) 877-8685 
Email: bohner@rose-hulman.edu 



2 

GRASP 

  General Responsibility Assignment Software 
Patterns (or Principles) 

1.  Low Coupling   
2.  High Cohesion 
3.  Information Expert 
4.  Creator    
5.  Controller 



Coupling 

  A measure of how strongly one element: 
●  is connected to,  

●  has knowledge of, or  

●  relies on other elements 

  Want low (or weak) coupling 



Cohesion 

  A measure of how  
strongly related and  
focused the responsibilities of a class 
(or method or package…) are 

  Want high cohesion 



5 

Low Coupling and High Cohesion 

  Inherent trade-offs of Cohesion and Coupling 
●  To minimize coupling, a few objects have most of the 

responsibility 

●  To maximize cohesion, a lot of objects have limited 
responsibility 

●  Trade-off from alternative designs for best results 

  Support both by 
●  Evaluating alternatives to keep objects focused, 

understandable, and maintainable 

●  Assigning so object’s responsibilities are closely 
related 

●  Avoid spreading the responsible objects too thin 

●  “Teamwork” 



Information Expert 

  Problem: What is a general principle of 
assigning responsibilities? 

  Solution: Assign a responsibility to the 
class that has the necessary information 



Creator 

  Problem: Who should be responsible for 
creating a new instance of some class? 

  Solution: Make B responsible for creating A 
if… 
●  B contains or is a composition of A 

●  B records A 

●  B closely uses A 

●  B has the data to initialize A 



Team Creativity 



Controller 

  Problem: What first object beyond the UI 
layer receives and coordinates a  
system operation!

  Solution: Assign the responsibility to 
either… 
●  A façade controller, representing the overall 

system and handling all system operations, or 

●  A use case controller, that handles all system 
events for a single use case 



Controller Example 

 What domain 
layer class 
should own 
handling of 
the enterItem 
system 
operation? 



Controller Guidelines 

  Controller should delegate to other 
domain layer objects 

  Use façade controller when… 
●  There are a limited number of system 

operations, or 

●  When operations are coming in over a single 
“pipe” 

  Use use case controller when a façade 
would be bloated (low cohesion!) 



Controller Benefits 

  Increased potential for reuse 

  Can reason/control the state of a use case 
●  e.g., don’t close sale until payment is accepted 



Controller Issues 

  Controller bloat—too many system operations 

  Controller fails to delegate tasks 

  Controller has many attributes 



Team Control 



Cartoon of the Day 



16 

Getting a GRASP on Design 

  No ‘magic’ to assigning responsibilities 

  If you don’t have a reason for placing a method 
in a class, it shouldn’t be there! 
●  You should be able to say: ‘I placed method X in 

class Y based on  GRASP Z’ 



Use Case Realization 



Use Case Realization 

 The process of generating the design 
model from use cases and other 
requirements artifacts 

● Use Cases drove the development of 

– Domain Model 

– System Sequence Diagrams 

– Operation Contracts 



System Sequence Diagrams 

  Helped us identify system operations!

  Use these to begin interaction diagrams 
●  System operations are the starting messages 

●  Starting messages are directed at controller 
objects 



Operation Contracts 

  Defined post-conditions of system 
operations as changes to objects/
associations in the domain model!

  Use post-conditions to help determine… 
●  What should happen in the interaction diagrams 

●  What classes belong in the design class 
diagram 



Where to Begin 

  In code, you begin at the beginning 

  In design, you defer design of the Start Up UC 
●  Start Up handles created and initializing objects 

●  Discover necessary objects as we do the other Ucs 

●  So defer Start Up design to avoid rework 

Register (the controller) implements  
to system operation makeNewSale() 



Example: Design makeNewSale 



23 

Homework and Milestone Reminders 

  Read Rest of Chapter 18 and Chapter 19 

  Milestone 3 – Iteration 1: Junior Project  
●  Finish Analysis Model (SSDs, OCs)  

●  Logical Architecture - Package Diagrams, and  

●  1st (initial) Version of System 
●  Due by 11:59pm on Friday, January 8th, 2009 

  Homework 5 – Practice GRASP on Video 
Store Design and Midcourse Team 
Evaluation  
●  Due by 5:00pm Tuesday, January 12th, 2010 

● NO LATE DAYS on this assignment 


