
© 2009 Shawn A. Bohner

Shawn Bohner
Office: Moench Room F212

Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

2

GRASP

  General Responsibility Assignment Software
Patterns (or Principles)

1.  Low Coupling
2.  High Cohesion
3.  Information Expert
4.  Creator
5.  Controller

Coupling

  A measure of how strongly one element:
●  is connected to,

●  has knowledge of, or

●  relies on other elements

  Want low (or weak) coupling

Cohesion

  A measure of how
strongly related and
focused the responsibilities of a class
(or method or package…) are

  Want high cohesion

5

Low Coupling and High Cohesion

  Inherent trade-offs of Cohesion and Coupling
●  To minimize coupling, a few objects have most of the

responsibility

●  To maximize cohesion, a lot of objects have limited
responsibility

●  Trade-off from alternative designs for best results

  Support both by
●  Evaluating alternatives to keep objects focused,

understandable, and maintainable

●  Assigning so object’s responsibilities are closely
related

●  Avoid spreading the responsible objects too thin

●  “Teamwork”

Information Expert

  Problem: What is a general principle of
assigning responsibilities?

  Solution: Assign a responsibility to the
class that has the necessary information

Creator

  Problem: Who should be responsible for
creating a new instance of some class?

  Solution: Make B responsible for creating A
if…
●  B contains or is a composition of A

●  B records A

●  B closely uses A

●  B has the data to initialize A

Team Creativity

Controller

  Problem: What first object beyond the UI
layer receives and coordinates a
system operation!

  Solution: Assign the responsibility to
either…
●  A façade controller, representing the overall

system and handling all system operations, or

●  A use case controller, that handles all system
events for a single use case

Controller Example

 What domain
layer class
should own
handling of
the enterItem
system
operation?

Controller Guidelines

  Controller should delegate to other
domain layer objects

  Use façade controller when…
●  There are a limited number of system

operations, or

●  When operations are coming in over a single
“pipe”

  Use use case controller when a façade
would be bloated (low cohesion!)

Controller Benefits

  Increased potential for reuse

  Can reason/control the state of a use case
●  e.g., don’t close sale until payment is accepted

Controller Issues

  Controller bloat—too many system operations

  Controller fails to delegate tasks

  Controller has many attributes

Team Control

Cartoon of the Day

16

Getting a GRASP on Design

  No ‘magic’ to assigning responsibilities

  If you don’t have a reason for placing a method
in a class, it shouldn’t be there!
●  You should be able to say: ‘I placed method X in

class Y based on GRASP Z’

Use Case Realization

Use Case Realization

 The process of generating the design
model from use cases and other
requirements artifacts

● Use Cases drove the development of

– Domain Model

– System Sequence Diagrams

– Operation Contracts

System Sequence Diagrams

  Helped us identify system operations!

  Use these to begin interaction diagrams
●  System operations are the starting messages

●  Starting messages are directed at controller
objects

Operation Contracts

  Defined post-conditions of system
operations as changes to objects/
associations in the domain model!

  Use post-conditions to help determine…
●  What should happen in the interaction diagrams

●  What classes belong in the design class
diagram

Where to Begin

  In code, you begin at the beginning

  In design, you defer design of the Start Up UC
●  Start Up handles created and initializing objects

●  Discover necessary objects as we do the other Ucs

●  So defer Start Up design to avoid rework

Register (the controller) implements
to system operation makeNewSale()

Example: Design makeNewSale

23

Homework and Milestone Reminders

  Read Rest of Chapter 18 and Chapter 19

  Milestone 3 – Iteration 1: Junior Project
●  Finish Analysis Model (SSDs, OCs)

●  Logical Architecture - Package Diagrams, and

●  1st (initial) Version of System
●  Due by 11:59pm on Friday, January 8th, 2009

  Homework 5 – Practice GRASP on Video
Store Design and Midcourse Team
Evaluation
●  Due by 5:00pm Tuesday, January 12th, 2010

● NO LATE DAYS on this assignment

