
© 2009 Shawn A. Bohner

Shawn Bohner
Office: Moench Room F212

Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Plus / Delta Feedback

  Pace
1 – much too fast

12 – somewhat too fast
4 – Somewhat too slow

0 – much too slow

  Working well
●  Diagramming Design examples in class+++, Handouts,

explicit answers to quiz on slides(?), Learning topics for
milestones, Material is better organized…

  Improvements
●  More depth on purpose of diagrams, More

fundamentals, Active learning a examples done on
board, slow down/speed up(?), More concrete examples,
Use machine to draw examples in class, Don’t rush
when we get behind.

2

Plus / Delta Feedback

  Quizzes
6 – Very helpful

9 – somewhat helpful
2 – somewhat unhelpful

0 – Very unhelpful

  Working well
●  Working examples via quiz in class, Point to key areas

in lecture, Reading questions, Indicators where Q’a are
in lecture, Focuses lecture, …

  Improvements
●  Easier questions, Trimming quizzes, More short-answer,

Answers in the text of slides (?), Don’t be too arbitrary,
Shorten them, Sometimes consume too much time --
loose focus.

3

Plus / Delta Feedback

  Reading
1 – all of it

8 – most of it

7 – little of it

1 – none of it

  Homework Difficulty
0 – much too difficult

15 – a bit too difficult

1 – a bit too easy

0 – much too easy

4

Plus / Delta Feedback

  Homework helpfulness
1 – very helpful

8 – somewhat helpful
7 – somewhat unhelpful

1 – very unhelpful

  Working well
●  Re-enforces techniques/tools, Opportunity to

experiment on what is presented in class, Practice
before milestones, PDFs, Well-written task
descriptions…

  Improvements
●  Clarify assignments better, Redo’s on HW, Provide even

more examples to clarify assignments, Give firmer
rubric, Quicker returns to support milestones, Give less
homework (?), Too much reading, Simplify project.

5

Plus / Delta Feedback

  Workload
0 – much higher than average

15 – somewhat higher than average

1 – somewhat lower than average

0 – much lower than average

  General Comments
●  Yikes - Milestones are taking off, speeding through

too many slides – focus on a few a key things (and
reading will cover rest)

●  Stop reading XKCD in class – humor lost in my translation

6

Summary of Plus / Delta Actions

  Active learning a examples done on board - Yes
●  More concrete examples

●  More depth on purpose and fundamentals

  Slow down/speed up – will try not to get behind

  Will make the quizzes less distracting via short
answer and giving more time in lecture

  Will clarify assignments better
●  More examples to clarify assignments and a firmer rubric,

●  Quicker returns to support milestones now with longer lead

  Milestones are taking off – getting to the meat!
●  Give focused homework, reading, and project assignments
●  Will modulate, but do not want diminish value

  Use machine to draw examples in class
(no luck doing this expediently yet – will keep trying)

7

Mastering Object-Oriented Design

  A large set of soft principles
  It isn’t magic. We learn it with:

●  Patterns (named, explained, and applied)

●  Examples

●  Practice

9

Responsibility-Driven Design

  Responsibility Driven Design (RDD)
●  Pioneered by Wirfs-Brock in early 1990s

  Think of objects in terms of what they do or
know (the human worker metaphor!)

  An object’s obligation or contract that it
offers to other objects

Responsibilities for an Object

  Doing
●  a Sale is responsible for creating instances of

SalesLineItem

  Knowing
●  a Sale is responsible for knowing its total cost

11

Knowing and Doing (continued)

  “Doing” Responsibilities
●  Create another object
●  Perform a calculation
●  Initiate an action in an object
●  Control/coordinate activities of objects

  “Knowing” Responsibilities
●  Knowing it’s own encapsulated data
●  Knowing about other objects
●  Knowing things it can derive or calculate

Responsibilities Come in All Sizes

  Big: provide access to a relational
database

  Small: create a Sale

When Do We Assign Responsibilities?

  While coding

  While modeling
●  UML is a low-cost modeling tool

●  Can assign responsibilities with minimal
investment

14

Introducing GRASP

  GRASP: General Responsibility Assignment
Software Patterns (or Principles)
●  A set of patterns for assigning responsibilities to

software objects

  What is a Pattern?
●  A pattern is a named and well-known problem-

solution pair that can be applied in a new context

15

Nine GRASPs
  Five In this chapter

1.  Creator
2.  Information Expert
3.  Low Coupling
4.  Controller
5.  High Cohesion

  Four Later In Chapter 25
●  Polymorphism Pure Fabrication

Indirection Protected Variations

Floor Tiles

Example Pattern

History

  A Pattern Language: Towns, Buildings,
Construction
by Alexander, Ishikawa, and Silverstein

  Kent Beck, Ward Cunningham

  Design Patterns: Elements of Reusable
Object-Oriented Software
Gamma, Helm, Johnson, Vlissides

19

Homework and Milestone Reminders

  Read Chapter 17 on GRASP (Rest of Chapter)

  Homework 4 – Dog-eDoctor System
Preliminary Logical Architecture and Design
●  Due by 5:00pm on Tuesday, January 5th, 2010
●  Extra credit if you get it in by 5:00pm this Friday!

  Milestone 3 – Iteration 1: Junior Project
●  Finish Analysis Model (SSDs, OCs)

●  Logical Architecture - Package Diagrams, and

●  1st (initial) Version of System

●  Due by 11:59pm on Friday, January 8th, 2009

20

Creator Pattern

  Who should create object A?
●  Solution (advice):

– Let B do it if:
– B contains or aggregates A

– B records A
– B closely uses A

– B has the initializing data for A

  Monopoly Board Example
●  When you start a game, who

creates the squares for the board?

●  Let Board create them since it
contains the squares

21

Monopoly Example

22

Create in Action

23

Composition

 Board has a composition relationship with a set of squares

24

Experts and Unique Identifiers

  What is a basic principle of RDD?

 …Assign responsibility to the object that has
the required information
●  “Tell the expert to do it!”

  Who should get a square given a unique ID?
●  Let the Board do it because it knows about the

squares

25

Low Coupling
  Low Coupling Reduces the Impact of Change

●  Evaluate design alternatives to get minimal coupling

●  Assign responsibility to minimize object coupling

●  Can use “Simple chain of command”

Original Design better where Board does getSquare()!

26

Coupling User Interface & Domain Layer

 SSD for playing a Monopoly Game
 User directly interacts with a GUI, not the domain layer
 Which object should relay system operations from UI to

domain layer? Let’s take a look…

27

Layered view of Monopoly Game

 Must translate UI event into system operation
 Who mediates between UI and Domain layers? Hmmm?

28

More on Monopoly

 Let MonopolyGame be controller …
  It represents the system and there aren’t many system

operations!

29

High Cohesion

  Keep objects focused, understandable and
maintainable with Cohesion Principle

  How to support low coupling?
●  Assign so object’s responsibilities are closely related

●  Evaluate alternatives to optimize cohesion

●  “Don’t spread the responsible objects too thin”

●  “Teamwork”

  Inherent trade-offs of Cohesion and Coupling
●  To minimize coupling, a few objects have all

responsibility

●  To maximize cohesion, a lot of objects have limited
responsibility

●  Trade-off from alternative designs for best results

30

Design Alternatives for High Cohesion

