Design Class Diagramming

CSSE 374: Session 11

Shawn Bohner
Office: Moench Room F212

Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

Ql

© 2009 Shawn A. Bohner

Plan for the Day

<+ Pre-break course
evaluations

«» Design Class Diagrams

e Abbreviated - pre-course
exam showed solid
understanding of this

+ Design exercise that
should help with

Homework #4

H e I p M e H e I p YO u 1;5 e THE BERATLES -

<+ Pre-break course evaluation " " k-*

on ANGEL

+» Please take 10 minutes or so
to help me improve the
course

TTTTTTTTTTTTTTTTTTTTT

UML Class Diagrams

Design Class Diagrams (DCD)

«» Creation of DCDs builds on prior:

e Domain Model (adds detail to the class definitions)
e Interaction diagrams (identifies class methods)

«» Creation of DCDs and interaction diagrams
are usually created in parallel

+» DCDs illustrates the specifications for
software classes and interfaces including:
Classes, associations, and attributes
Interfaces, with their operations and constants
Methods
Attribute type information
Navigability
Dependencies

ROSE-HULMAN

INSTITUTE OF TECHNOLOGY

SuperclassFoo
or
SuperClassFoo { abstract }

lassOrStaticAttribute : Int

3 common
compartments

1. classifi er

2. attributes

3. operations™—_|

B+ publicAttribute : String

- privateAttribute

assumedPrivateAttribute
isInitializedAttribute : Bool = true
aCollection : VeggieBurger [*]
attributeMayLegallyBeNull : String [0..1]

fi nalConstantAttribute: Int =5 {readOnly }
/derivedAttribute

me

—

an interface
shown with a
keyword

\:classOrStaticMethod()
+ publicMethod()
assumedPublicMethod()

- privateMethod()
protectedMethod()
~ packageVisibleMethod()

«constructor» SuperclassFoo(Long)
methodWithParms(parm1 : String, parm2 : Float)
methodReturnsSomething() : VeggieBurger

«interface»
Runnable

methodThrowsException() {exception IOException}
abstractMethod()
abstractMethod2() { abstract } // alternate

run()

fi nalMethod) { leaf } // no override in subclass

synchronizedMethod() { guarded }

interface
implementation
and
subclassing

SubclassFoo

Common UML
Class Notation

Fruit

dependency H

PurchaseOrder

1

run()

order

- ellipsis “...” means there may be elements, but not shown
- a blank compartment offi cially means “unknown” but as a
convention will be used to mean “no members”

association with
multiplicities

INSTITUTE OF TECHNOLOGY

1)

2)
3)

4)

5)
6)

7)

8)

Recipe for a Design Class Diagram

Identify all the c/lasses participating in the software
solution by analyzing the interaction diagrams

Draw them in a class diagram

Duplicate the attributes from the associated concepts
in the conceptual model

Add method names by analyzing the interaction
diagrams

Add type information to the attributes and methods

Add the associations necessary to support the
required attribute visibility

Add navigability arrows to the associations to
indicate the direction of attribute visibility

Add dependency relationship lines to indicate non-
attribute visibility

ROSE-HULMAN

INSTITUTE OF TECHNOLOGY

Class Diagrams Do Double Duty

Domain Model Sale
7 Register 1 Captures 1
time
conc iIsGomplgtaasanolean
=<1 Multiplicity only at targetend | Navigability arrow

Register Sale
Design Model k / time
=<)isComplete : Boolean
DCD; software endSale() ftotal
perspective enterltem(...)
makePayment(...) makeLineltem(...)

«» Call them Domain M
analysis at the conceptual

« Call them Design Class Diagrams when use
for design

TTTTTTTTTTTTTTTTTTTTT

Attribute Text vs. Association Line Notation

. . ' |
using the attribute Register Sale

text notationto @ [
indicate Register has
a reference to one
Sale instance

O currentSale : Sale

Avoid Role name is attribute name
OBSERVE: this styleL Register \ Sale
visually emphasizes 1

the connection
between these classes

©. currentSale

using the association notation to indicate
P refe rred Register has a reference to one Sale instance
thorough and l Register Sale
unambiguous, but some currentSale : Sale 1

people dislike the
possible redundancy

Avoid
Q3 ROSE-HULMAN

currentSale

Guideline Good Practice: Example

Register Sale
<m — time: DateTime

. Store
location J™address: Address
phone:
PhoneNumber

TTTTTTTTTTTTTTTTTTTTT

Showing Collection Attributes

Wluili el

Sale SalesLineltem

- time: DateTime

lineltems : SalesLineltem [1..*]
or

lineltems : SalesLineltem [1..*] {ordered}

Sale SalesLineltem
| *
time: DateTime 1.
lineltems
/ordered, List}
O
Preferred, less visual clutter "

COnStraints

Q5 QROSE-HULMAN

TTTTTTTTTTTTTTTTTTTTT

Operations

«» Syntax:

e visibility name (paramName:type, ...) : returnType
{properties}

e + getPlayer(name:String) : Player {exception IOException}

+» Also use syntax of implementation language
e public Player getPlayer (String name) throws IOException

«» Operation vs. operation contract vs. method

INSTITUTE OF TECHNOLOGY

Cartoon of the Day

L2SERL Y
READY?
J READY.
ﬁ p22208% % <
e Noiwk!
— — Rd\\\ .
> < O3> =5

ROPR' /‘ ©\

BOO‘
boood % \® 5
hittp:/iwwiw.brickfetish.com/toys/duck.html _mDUCKLING LOoP

ROSE-HULMAN

TTTTTTTTTTTTTTTTTTTTT

Keywords Categorize Model Elements

classifier is an actor

shows that classifier is an actor
without getting all xkcd

classifier is an
interface

«interface»
Mouselistener

can'’t be instantiated

follows classifier or operation

set of objects has

follows role name on target end of

defined order association
can't be extended or : '
overridden follows classifier or operation

TTTTTTTTTTTTTTTTTTTTT

Generalization

<+ In domain model:

e Says that the set of all
NumberCards is a subset of

the set of all Cards

<« In DCD:

e Says that, and that
NumberCard inherits
from Card

NumberCard

FaceCard

TTTTTTTTTTTTTTTTTTTTT

Dependencies

Dependency lines are dashed _f’°d“°‘°es°"Pt'°"

om =
- -
—-—
—
-a =
- —

J;.)datePriceFor(productDescription) 1 *
—\ SalesLineltem

lineltems

Attribute lines are solid {ordered}

Use dependency lines when a more
specific line type doesn’t apply.

GANNaH eI MU EPENUENCYAATTOWSS
e z ' f[EATE ~ -

TTTTTTTTTTTTTTTTTTTTT

Interfaces in UML

-1 socket line notation

ﬁ(Window1 uses the Timer

Window1 dependency line notation
interface
_ Window2 has a dependency on the
it has a required interface Timer interface when it collaborates
with a Clock2 object
«interface» Clock2 O-"""V
Timer =~
Timer DA/ Window?2
getTime()
A getTime()
|
: Clock1
: implements and
: “| provides the Clock3
| Timer interface
Clock1 0) Window3
getTime()
socket line notation

getTime()

and provides the Timer interface to clients

Timer is a provided interface

lollipop notation indicates Clock3 implements

Window3 has a dependency on the
Timer interface when it collaborates
with a Clock3 object

INSTITUTE OF TECHN

OLOGY

Q3

Composition

«» More powerful than an attribute arrow
« Describes whole-part relationship

40
] Board Tordered] Square
« Implies Q —J

e Instance of part belongs to only one composite
at a time

e Part always belongs to a composite
e Composite creates/deletes parts

ASSECIAUGRMMAMENNICOMPOSIUERNSTAIWaYSHIMPIICIUY.
SOME has=part relation. So; I's'common toromit

associlation or role name with compositions

Interaction Diagrams and Class Diagrams

« Interaction diagrams show dynamic
behavior

«» Class diagrams show static behavior

< TIpS:
e Draw concurrently

e Use two adjacent whiteboards, one for static
and one for dynamic

e Sketch communication diagrams, document
using sequence diagrams

ROSE-HULMAN

INSTITUTE OF TECHNOLOGY

Example

Q9,10

Homework and Milestone Reminders

+» Read Chapter 17 on GRASP (through pg. 290)

«» Homework 4 — Dog-eDoctor System

Preliminary Logical Architecture and Design

e Due by 5:00pm on Tuesday, January 5th, 2010
e Extra credit if you get it in by 5:00pm this Friday!

«» Milestone 3 — lteration 1: Junior Project
e Finish Analysis Model (SSDs, OCs)
e Logical Architecture - Package Diagrams, and
e 1st(initial) Version of System
e Due by 11:59pm on Friday, January 8th, 2009

ROSE-HULMAN

STITUTE OF TECHNOLOGY

