
© 2009 Shawn A. Bohner

Shawn Bohner
Office: Moench Room F212

Phone: (812) 877-8685
Email: bohner@rose-hulman.edu

2

From Requirements to Architecture

"four bedrooms, three baths,

lots of glass ..."

Customer Requirements

Architectural Design

How do we
get from
there

to here?

3

Where is Logical Architecture?

Defining Software Architecture

  Software architecture: the large-scale motivations,
constraints, organization, patterns, responsibilities,
and connections of a system

 Craig Larman 2003

  The software architecture of a program or
computing system is the structure or structures of
the system, which comprise software components,
the externally visible properties of those
components and the relationships among them.

Bass, et al, 1998

5

Why Software Architecture?

Spaghetti
Integration

6

Architectural Building Blocks

 Component – a unit of computation or a data store

 Connector – an architectural element that models
interactions among components and
rules that govern those interactions

 Configuration (or topology) – a connected graph
(composite) of components and connectors
which describe architectural structure

7

UML Architectural Views

  Logical architecture – describes the system
in terms of its organization in layers,
packages, classes, interfaces & subsystems

  Deployment architecture – describes the
system in terms of the allocation of
processes to processing units and network
configurations

UML Package Diagrams

  Describes grouping of elements

  Can group anything:
●  Classes

●  Other packages

  More general than Java
packages or
C# namespaces

Alternative Nesting Notations
Traditional Notation

Designing with Layers Solves Problems

  Rippling source code
changes

  Intertwining of
application and UI logic

  Intertwining of
application logic and
technical services

  Difficult division of labor

Layers of Benefits

  Separation of concerns
●  Reduces coupling and dependencies; improves

cohesion; increases reuse potential and clarity

  Essential complexity is encapsulated

  Can replace some layers with new
implementations (e.g., platform independence)

  Can distribute some layers

  Can divide development within/across teams

12

Common Layers in More Detail (1 of 2)

Common Layers in More Detail (2 of 2)

Designing the Domain Layer

  Create software
objects with names
and information
similar to the real-
world domain

  Assign application
logic
responsibilities

Terminology: Layers vs. Partitions

Common Mistake:
Showing External Resources

Model-View Separation Principle

  Do not connect non-UI objects directly to
UI objects
●  A Sale object shouldn’t have a reference to a

JFrame

  Do not put application logic in UI object
methods
●  A UI event handler should just delegate to the

domain layer

  Model == domain layer, View == UI layer

Benefits of Model-View Separation

  Provides cohesive model definitions

  Enables separate development

  Localizes changes to interface
requirements

  Can add new views

  Allows simultaneous views

  Allows execution of model without UI

From SSDs to Layers

 System operations on the SSDs will
become the messages sent from the UI
layer to the domain layer

20

SSDs in Layers

What’s Next?

Techniques for
Object Design!

Common Object Design Techniques

  Just code it: design while coding,
heavy emphasis on refactoring and
powerful IDEs

  Draw, then code: sketch some UML,
then code it

  Just draw it: generate code from
diagrams

Static vs. Dynamic Modeling

  Static models
●  Class diagrams

  Dynamic models
●  Sequence diagrams

●  Communication diagrams

CRC Cards: A Text-based Technique

  Class

  Responsibilities

  Collaborators

25

Prefer Design Skill over UML skill

  UML is only a tool for object design

  The real skill is the design,
…NOT the diagramming

  Fundamental object design requires
knowledge of:
●  Principles of responsibility assignment

●  Design patterns

26

Homework and Milestone Reminders

  Read Chapter 15 on Interaction Diagrams

  Homework 3 – Dog-eDoctor SSDs and
Operations Contracts
●  Due by 5:00pm on Tuesday, December 15th, 2009

  Milestone 3 – Iteration 1: Junior Project
●  Finish Analysis Model (SSDs, OCs)

●  Logical Architecture - Package Diagrams, and

●  1st (initial) Version of System

●  Due by 11:59pm on Friday, January 8th, 2009

