Supplementary Specifications Template
Note: This template suggests a much longer document than what we are looking for, but you can see good ideas for the contents from it.

This document has two parts:

· The Supplementary Specification Template from Leffingwell & Widrig, adjusted to show the nonfunctional requirements as identified by Bass et al.

· Two Notes – The first of these is about links from here two other documents. The second is a lengthy “help sheet” for writing scenarios about the nonfunctional requirements.

---The Template---

Supplementary Specifications for <requirements, system or project name>

Title, authors, etc. go first.
1.
Introduction

1.1
Purpose

State the purpose of the document (to collect all functional requirements not expressed in the use-case model, as well as nonfunctional requirements and design constraints.

1.2
Scope

1.3
Definitions, Acronyms, and Abbreviations

1.4
References

1.5
Overview
(an additional section included by some users of this format)

2.
Functionality
or Functional Requirements
Describe the functional requirements of the system for those requirements that are expressed in the natural language style or are otherwise not included in the use-case model. See p. 258.
2.1
<Functional Requirement One, etc., if a listing of these is done…>

3.
Usability
Describe the principal scenarios that affect usability. See pp. 259-260, and use the Scenario format shown in Note 2, below, with related details for Usability. See also the Yale Style Guide, http://www.webstyleguide.com/, or User and Task Analysis for Interface Design by JoAnn T. Hackos and Janice C. Redish, Wiley Computer Publishing, 1998, ISBN 0-471-17831-4.
3.1
<Usability Requirement One…>

4.
Availability
Describe the principal scenarios for dependability such as “reliability” and/or “availability.” (These are different! See pp. 261-2, web links such as: http://www.weibull.com/SystemRelWeb/availability.htm, or the book Software Reliability Engineering, by John D. Musa, cited in your syllabus.) Use the Scenario format shown in Note 2, below, with related details for Availability.
4.1
<Availability Requirement One…>

5.
Performance
5.1
<Performance Requirement One…>

Describe the principal required performance and capacity scenarios of the system, expressed quantitatively where possible and related to use cases where applicable. E.g., It’s unlikely they all have to run equally fast. Related terms and requirements are capacity, throughput, and response time. See p. 262 in your book, or Performance Solutions: A Practical Guide to Creating Responsive, Scalable Software, by Connie U. Smith, Lloyd Williams, cited in your syllabus. Use the Scenario format shown in Note 2, below, with related details for Performance.
6.
Modifiability
This is close to Leffingwell & Widrig’s “Supportability” requirement. State the requirements that enhance system modifiability, supportability or maintainability. See pp. 262-3 in your book. Use the Scenario format shown in Note 2, below, with related details for Modifiability.
6.1
<Modifiability Requirement One…>

7.
Security

Describe the principal security scenarios for the system, using the Scenario format shown in Note 2, below, with related details for Security. System security is a big area – look for suggested topics also from other resources. One example, Security Architecture: Design, Deployment & Operations, by Christopher M. King, et al, Osborne/McGraw-Hill, 2001, ISBN 0-07-213385-6.
7.1
<Security Requirement One…>

8.
Testability

Describe the principal testability scenarios for the system, using the Scenario format shown in Note 2, below, with related details for Testability.

8.1
<Testability Requirement One…>

9.
Design Constraints
State the design or development constraints imposed on the system or development process. See pp. 263-266 in your book.
9.1
<Design Constraint One…>
10.
Documentation, Online Documentation and Help System Requirements

State the requirements for user and/or administrator documentation.
11.
Purchased Components
List the purchased components used with the system (including the planned version numbers and availability / support termination dates!), licensing or usage restrictions (some have a runtime license fee, some don’t), and compatibility/interoperability requirements (“to run this, users must have…” etc.)
12.
Interfaces
Define the interfaces that must be supported by the application.

12.1
User Interfaces

12.2
Hardware Interfaces

12.3
Software Interfaces

12.4
Communications Interfaces

13.
Licensing Requirements
Describe the licensing and usage enforcement requirements or other restrictions for usage, security, and accessibility (for the system you will be building).
14.
Legal, Copyright, and Other Notices
State any required legal disclaimers, warranties, copyright notices, patent notices, trademarks, or logo compliance issues.
15.
Applicable Standards
Reference any applicable standards and the specific sections of any such standards that apply.
16.
Internationalization and Localization

State any requirements for support and application of different user languages and dialects.

15.
Physical Deliverables

Define any specific deliverable artifacts required by the user or customer.

16. Installation and Deployment

Describe any specific configuration or target system preparation required to support installation and deployment of the system.

--The Notes---
Note 1: You’re not done yet! As the book says (pp. 266-7), a well-defined set of requirements should include links or cross-references from the use cases to non-functional requirements and other pieces of this Supplementary Specification. And these ties should be well-defined, so they don’t grow “tired” as changes are made to either document, or new versions of the documents are issued!
Note 2: “Scenario” format for the non-functional requirements, in general:
Source of stimulus: This is some entity (a human, a computer system, or any other actuator) that generated the stimulus.

Stimulus: The stimulus is a condition that needs to be considered when it arrives at a system.

Environment: The stimulus occurs within certain conditions. The system may be in an overload condition or may be running when the stimulus occurs, or some other condition may be true.

Artifact: Some artifact is stimulated. This may be the whole system or some pieces of it.

Response: The response is the activity undertaken after the arrival of the stimulus.

Response measure: When the response occurs, it should be measurable in some fashion so that the requirement can be tested.

And -- Possible values of these portions of the scenario, for different Quality Attributes (from Bass, et al
):

3. Usability --

Source: End user
Stimulus: Wants to learn system features, use system efficiently, minimize impact of errors, adapt system, feel comfortable
Artifact: System
Environment: At runtime or configure time
Response: System provides one or more of the following responses:

 To support “learn system features”:

 Help system is sensitive to context, interface is familiar to user; interface is usable in an unfamiliar context

 To support “use system efficiently”:

 Aggregation of data and/or commands; support for efficient navigation within a screen; distinct views with consistent operations; comprehensive searching; multiple simultaneous activities

 To “minimize impact of errors”:

 Undo, cancel, recover from system failure, recognize and correct user error, retrieve forgotten password, verify system resources

 To “adapt system”:

 Customizability; internationalization

 To “feel comfortable”:

 Display system state; work at the user’s pace
Response Measure: Task time, number of errors, number of problems solved, user satisfaction, gain of user knowledge, ratio of successful operations to total operations, amount of time/data lost.
(Here’s a sample usability scenario from Bass et al:

Source: Users

Stimulus: Minimize impact of errors

Artifact: System

Environment: At runtime

Response: Wishes to cancel current operations
Response Measure: Cancellation takes less than one second
4. Availability --

Source: Internal to the system; external to the system
Stimulus: Fault: omission, crash, timing, response
Artifact: System’s processors, communication channels, persistent storage, processes
Environment: Normal operation; degraded mode (i.e., fewer features, a fall back solution)
Response: System should detect event and do one or more of the following:
 Record it

 Notify appropriate parties, including the user and other systems

 Disable sources of events that cause fault or failure according to defined rules

 Be unavailable for a prespecified interval, where interval depends on criticality of system
Response Measure:

 Time interval when the system must be available
 Availability time

 Time interval in which system can be in degraded mode

 Repair time
(Here’s a sample availability scenario from Bass et al:

Source: External to the system

Stimulus: Unanticipated message

Artifact: Process

Environment: Normal operation

Response: Inform operator continue to operate

Response Measure: No downtime

5. Performance --

Source: One of a number of independent sources, possibly from within system
Stimulus: Periodic events arrive; sporadic events arrive; stochastic events arrive
Artifact: System
Environment: Normal mode; overload mode
Response: Processes stimuli; changes level of service
Response Measure: Latency, deadline, throughput, jitter, miss rate, data loss
(Here’s a sample performance scenario from Bass et al:

Source: Users

Stimulus: Initiate transactions

Artifact: System

Environment: Under normal operations
Response: Transactions are processed
Response Measure: With average latency of two seconds
6. Modifiability --

Source: End user, developer, system administrator
Stimulus: Wishes to add/delete/modify/vary functionality, quality attribute, capacity
Artifact: System user interface, platform, environment, system that interoperates with target system
Environment: At runtime, compile time, build time, design time
Response: Locates places in architecture to be modified; makes modification without affecting other functionality; tests modification; deploys modification
Response Measure: Cost in terms of number of elements affected, effort, money; extent to which this affects other functions or quality attributes
(Here’s a sample modifiability scenario from Bass et al:

Source: Developer

Stimulus: Wishes to change the UI

Artifact: Code

Environment: At design time

Response: Modification is made with no side effects

Response Measure: In 3 hours

7. Security --

Source: Individual or system that is

Correctly identified, identified incorrectly, of unknown identity

 Who is

Internal/external, authorized/not authorized

 With access to

Limited resources, vast resource

Stimulus: Tries to

Display data, change/delete data, access system services, reduce availability to system services
Artifact: System services, data within system
Environment: Either online or offline, connected or disconnected, firewalled or open
Response: Authenticates user; hides identity of the user; blocks access to data and/or services; allows access to data and/or services; records access/modifications or attempts to access/modify data/services by identity; stores data in an unreadable format; recognizes an unexplainable high demand for services, and informs a user or another system, and restricts availability of services
Response Measure: Time/effort/resources required to circumvent security measures with probability of success; probability of detecting attack; probability of identifying individual responsible for attack or access/modification of data and/or services; percentage of services still available under denial-of-service attack; restore data/services; extent to which data/services damaged and/or legitimate access denied
(Here’s a sample security scenario from Bass et al:

Source: Correctly identified individual

Stimulus: Tries to modify information

Artifact: Data within the system

Environment: Under normal operations

Response: System maintains audit trail

Response Measure: Correct data is restored within a day

8. Testability --

Source: Unit developer

Increment integrator

System verifier

Client acceptance tester

System user
Stimulus: Analysis, architecture, design, class, subsystem integration completed; system delivered
Artifact: Piece of design, piece of code, complete application
Environment: At design time, at development time, at compile time, at deployment time
Response: Provides access to state values; provides computed values; prepares test environment
Response Measure: Percent executable statements executed

Probability of failure if fault exists

Time to perform tests

Length of longest dependency chain in a test

Length of time to prepare test environment
(Here’s a sample testability scenario from Bass et al:

Source: Unit tester

Stimulus: Performs unit test

Artifact: Component of the system

Environment: At the completion of the component

Response: Component has interface for controlling behavior, and output of the component is observable

Response Measure: Path coverage of 85% is achieved within 3 hours

� From Leffingwell & Widrig, Second Edition, except for the list of nonfunctional requirements and their scenarios, which are from Bass, et al.

� Software Architecture in Practice, Second Edition, by Len Bass, Paul Clements and Rick Kazman. Addison-Wesley, 2003, ISBN 0-321-15495-9, pp. 71+.

