Rose-Hulman Institute of Technology
Genome Database System
Milestone 1

Julia Chapple, David Galvez, Adam Westerman	9/20/2012	

Table of Contents

	Executive Summary
	1

	Introduction
	1

	Client Background
	1

	Current System
	1

	Stakeholder Profiles
	2

	User Environment
	2

	Key User Needs
	3

	Alternatives
	3

	Product Perspective
	3

	Elevator Statement
	4

	Summary of Capabilities
	4

	Assumptions and Dependencies
	4

	Estimate of the Cost
	5

	Features
	5

	Constraints
	6

	Glossary
	7

	References
	7

[bookmark: _GoBack]

1

Executive Summary

A genetic data storing and access program is being developed for Robert Williamson of the University of Toronto in Ontario, Canada. The program will be a command-line program used to take large VCF files containing genetic sequence data and load them into a database residing on a Linux server. The client (along with his co-workers) will then be able to view selected information from the database and perform useful operations on the data. The command-line interface will be made as intuitive as possible so that non-technical users can easily navigate it, but still powerful enough to perform all the functions listed in detail in our features section.

Introduction

Inside this document you will find all the information that we (Team Gene-E) have compiled that is relevant to our CSSE 371 project. It includes information about the client and his current system and explains why he needs a new one. The document then goes on to describe the new system that will be implemented in detail, including product features and their status of approval, and priority of implementation.

Client Background

Our client’s name is Robert Williamson. He is a graduate student studying selection on noncoding DNA using population genomics data at the University of Toronto in Ontario, Canada. At the current time he does research in the field of population genetics, teaches undergraduate students, and attends graduate classes.

Current System

The current system in place involves a very tedious method to extract relevant data from the VCF files. The files are generated by biologists in sequencing labs in FASTQ formatted files, and summarized in the VCF format. These VCF files are being generated by one of two programs, Samtools or GATK. They can contain many millions of lines of data, and are usually greater than 6GB. The files are then stored on a centralized Linux server. Space on the server is at a premium. The main problem with such large files is that only a small amount of this information is relevant to Williamson. Williamson usually writes a custom script in Perl or Python to parse the files and pull the data he needs from them. This is done on average three times a day. In addition to the custom scripts he writes, the group Williamson works with also has access to a VCF parser in Python to extract information from the VCF files. The people that Williamson works with are also dealing with the same data. Other people are also manipulating the data and then restoring the data files on the server for their own personal use, leading to more repetitive data storage and reducing the amount of accessible space on the already size-limited server.

Stakeholder Profiles

The client of this project is Robert Williamson, he and his co-workers make up the stakeholders of this project. Williamson has a degree in both biology and computer science and therefore is very capable with the software used at his work location to analyze genome sequences. His daily work is essentially taking pieces of genome from the server he works with, analyzing various parts in a wide variety of ways, and uploading whatever relevant information is found back into the server.

His coworkers would need a simpler system as not all of them are as proficient with software as he is. His co-workers are still very knowledgeable at biology and specifically working with genomes. However, due to a lack of knowledge on how to properly handle servers, several of the coworkers are extremely inefficient with the data, usually downloading it directly onto their computers, processing it, and uploading a new, slightly different file, resulting in the server often being tight on memory space.

In addition to this, there is no easy or fast method of accessing and retrieving information that they need from the server, forcing each of them to search it manually and find the data needed, which can take up substantial amounts of time.

The server administrator handles much of the server cleaning out and maintenance problems for the software. This means the software can afford to be tinkered with and even break so long as proper documentation is sent.

For Williamson, success of this project means having an easier and more space efficient way access data through a client program that will save both him and his coworkers’ time. This program should be able to parse and pull only the requested data as well as being able to reinsert the new data back into the server without causing data loss or excessive memory space loss. Finally, the program, regardless of what form it takes, should be accessible to even people who have a very basic understanding of computers and software. Having a command line terminal and set of commands is acceptable so long as the commands are convenient and easy to learn.

User Environment

Currently, there are twelve team members working in the genome research as well as one overseer. Task cycles for the team are not well defined beyond work hours and even those are flexible. Although there are few strict deadlines in the lab time is still very valuable. Analyzing each particular sequence of data can take a few hours at a time due to the inefficiency of the system.

The research lab is held inside a building and generally within a very safe environment. Additionally, it is not online and there are other security measures in place, so there is no need for making the database resistant to hacking.

The server runs Linux and will stay that way. There are no particular programs or languages in use to search the information held on the server, meaning that this project is meant to create a single working program for all them.

Key User Needs

Retrieving and Parsing Data

In order to increase efficiency, there needs to be a database to submit data to. By creating a program that can parse and store data onto this database, the server will be far less disorganized as well as easier to search and retrieve information from. This will cut down significantly on the manual work for searching and make everything much easier to read.

Submitting Changes to the Server

Using the new database, users shall also be able to edit the database with the same program. This program will submit changes in a space saving fashion, making edits directly to the data and keeping restore files to back up to for a limited amount of time. This will both take care of the duplicate file problem as well as the need to constantly flush the server of excess files.

A Simple User Interface

Most users at the lab that the database will be developed for lack any formal training in programming. As such, it is necessary to make the user interface as simple as possible. The new system can either be a command line terminal or have a more robust user interface, but it should be simple enough to learn for even a layman and likely only applicable to the database they are using. However, the program should also leave enough complex commands that the researchers who are more able with computers to have greater flexibility.

Alternatives

Other possible solutions include continuing with the current system, hiring someone else to build a database, or revamping the general parser already at the lab to have more functionality. Since this project has been started specifically to fix the current system, it is not at all competitive with what the project should yield. Similarly, hiring a second team will only waste the lab’s resources since this project is already started. Lastly, the parser presently being used will likely be difficult to edit in a timely fashion that would not result in excessive errors compared to a new parser made specifically for handling a database.

Product Perspective

The genome database system needs to integrate with Williamson’s lab’s current system of managing VCF files. Furthermore, the system must be very easy to use. The users need to be comfortable enough with the program that they will always use it rather than waste space and time with the current system. The database system needs to run on the lab’s current Linux server. It will be accessed by users via the command line. The system will output either to the command line or to an output file on the server. The system will need to accept input VCF files created by Samtools or GATK or similar applications.

Elevator Statement

The current system of extracting data from VCF files using custom programs is extremely wasteful. Not only does it waste graduate students’ time, it also wastes space on the server because large VCF files are often stored multiple times. Our system will eliminate this waste by storing VCF data in a database and creating a program that is able to extract any relevant information from the VCF. The program will be able to run complex queries on the database and extract highly detailed information for a single VCF file, or a group of VCF files.

Summary of Capabilities

	Customer Benefit
	Supporting Features

	Efficient data storage
	An optimize database to store VCF data and related data

	Automatic access to VCF data
	A program to query the database

	Easily extract highly specific data
	Detailed options for queries
An option to type SQL queries directly

	Intuitive data aggregations
	Support for common data aggregation operations and outputs geneticists are familiar with

	Easy to use
	Simple, well-documented command line arguments modeled after Linux bash

Assumptions and Dependencies
· The server is running Linux (version information is forthcoming)
· VCF files follow the standard format as shown by Samtools and GATK
· Annotation files for VCFs follow the GFF3 format

Estimate of the Cost

Monetary cost: $0
Our solution will be designed to work with the current server and will not require it to be substantially improved. Since we are providing our work for free, there is essentially no cost to the lab for the new system.
Time Cost: 30 weeks of work
Labour Costs: Three developers, one project manager, one project supervisor

Features

	ID
	Feature
	Status
	Priority
	Effort
	Risk
	Stability
	Release

	
	General Features
	
	
	
	
	
	

	1
	Genome database that runs on the Linux server
	Approved
	High
	High
	Low
	High
	V1

	2
	Easy to maintain and update
	Approved
	High
	Medium
	Medium
	High
	V1

	3
	Extensively documented
	Approved
	High
	Medium
	Low
	High
	V1

	4
	Upload large VCF files
	Approved
	High
	Medium
	Low
	High
	V1

	5
	Upload annotations
	Approved
	High
	Low
	Low
	High
	V1

	6
	Parse and store uploaded data
	Approved
	High
	High
	Low
	High
	V1

	
	Database Operations
	
	
	
	
	
	

	7
	Filters results based on quality
	Approved
	High
	Low
	Low
	High
	V1

	8
	Produces allele frequency spectra
	Approved
	High
	Medium
	Low
	High
	V1

	11
	Delete VCF records from the database
	Approved
	High
	Medium
	High
	Medium
	V2

	12
	Query aggregated VCFs
	Approved
	High
	Medium
	Low
	Medium
	V2

	13
	Determine allele frequency of a site
	Approved
	High
	Low
	Low
	High
	V1

	14
	Determine site divergence
	Approved
	High
	Medium
	Low
	High
	V1

	15
	Track VCF timestamps
	Proposed
	Low
	Low
	Low
	High
	V1

	16
	Flexible design that can be expanded upon
	Proposed
	Medium
	High
	Medium
	Medium
	V1

	17
	Uploaded VCFs are given a user friendly name
	Approved
	High
	Low
	Low
	High
	V1

	18
	Accepts and uses annotations for genomes
	Approved
	High
	Medium
	Low
	High
	V1

	19
	Gives error messages about missing sites
	Approved
	Low
	High
	Medium
	Medium
	V1

	
	Command Line Functionality
	
	
	
	
	
	

	20
	All common database operations can be done with a simple set of commands
	Proposed
	High
	Medium
	Low
	Medium
	V1

	21
	Arguments styled after English
	Proposed
	Medium
	Medium
	Low
	Medium
	V1

	22
	Autocomplete arguments
	Proposed
	Medium
	Medium
	Medium
	Low
	V2

	23
	Easy to understand documentation for commands
	Approved
	High
	Low
	Low
	High
	V1

	
	Advanced Command Line
	
	
	
	
	
	

	24
	Supports user manually inputting SQL code
	Approved
	High
	Medium
	Medium
	High
	V1

	25
	Can output detailed result in a VCF file
	Approved
	Low
	High
	Medium
	Low
	V2

	26
	Commands can be given from a script
	Approved
	Medium
	Medium
	Low
	Medium
	V1

Constraints

	Source
	Constraint
	Rationale

	Equipment Budget
	Runs on Linux
	There is already a working server running Linux

	System
	Uses an easy to read and simple programming language
	Many users will not be experienced with programming

	Technology Mandate
	Outputs should mimic established DCF parser outputs
	Users are already familiar with this style of output

Glossary

VCF Files
Variant Call Format. A file format used for storing genetic data. Contains some meta-data, a header, and then data lines.

Samtools
A set of utilities used for processing DNA sequence read alignments.

GATK
A software package used to analyze next-generation resequencing data.

References

Skype meeting with Robert Williamson on 9/8/2012
http://en.wikipedia.org/wiki/FASTQ_format
http://labs.eeb.utoronto.ca/wright/Stephen_I._Wright/Welcome.html
http://www.1000genomes.org
https://github.com/jamescasbon/PyVCF
1

