

Praise for OpenGL® ES™ 3.0 Programming Guide,
Second Edition

“As a graphics technologist and intense OpenGL ES developer, I
can honestly say that if you buy only one book on OpenGL ES 3.0
programming, then this should be the book. Dan and Budirijanto have
written a book clearly by programmers for programmers. It is simply
required reading for anyone interested in OpenGL ES 3.0. It is informative,
well organized, and comprehensive, but best of all practical. You will find
yourself reaching for this book over and over again instead of the actual
OpenGL ES specification during your programming sessions. I give it my
highest recommendation.”

—Rick Tewell, Graphics Technology Architect, Freescale

“This book provides outstanding coverage of the latest version of OpenGL
ES, with clear, comprehensive explanations and extensive examples. It
belongs on the desk of anyone developing mobile applications.”

—Dave Astle, Graphics Tools Lead, Qualcomm Technologies, Inc.,
and Founder, GameDev.net

“The second edition of OpenGL® ES™ 3.0 Programming Guide provides a
solid introduction to OpenGL ES 3.0 specifications, along with a wealth
of practical information and examples to help any level of developer
begin programming immediately. We’d recommend this guide as a primer
on OpenGL ES 3.0 to any of the thousands of developers creating apps
for the many mobile and embedded products using our PowerVR Rogue
graphics.”

—Kristof Beets, Business Development, Imagination Technologies

“This is a solid OpenGL ES 3.0 reference book. It covers all aspects of the
API and will help any developer get familiar with and understand the API,
including specifically the new ES 3.0 functionality.”

—Jed Fisher, Managing Partner, 4D Pipeline

“This is a clear and thorough reference for OpenGL ES 3.0, and an
excellent presentation of the concepts present in all modern OpenGL
programming. This is the guide I’d want by my side when diving into
embedded OpenGL.”

—Todd Furlong, President & Principal Engineer, Inv3rsion LLC

This page intentionally left blank

OpenGL® ES™ 3.0
Programming Guide

Second Edition

The OpenGL graphics system is a software interface to graphics hardware.

(“GL” stands for “Graphics Library”.) It allows you to create interactive programs

that produce color images of moving, three-dimensional objects. With OpenGL,

you can control computer-graphics technology to produce realistic pictures, or

ones that depart from reality in imaginative ways.

The OpenGL Series from Addison-Wesley Professional comprises tutorial and

reference books that help programmers gain a practical understanding of OpenGL

standards, along with the insight needed to unlock OpenGL’s full potential.

Visit informit.com/opengl for a complete list of available products.

Make sure to connect with us!
informit.com/socialconnect

OpenGL Series
from Addison-Wesley

Dan Ginsburg
Budirijanto Purnomo

With Earlier Contributions From
Dave Shreiner
Aaftab Munshi

OpenGL® ES™ 3.0
Programming Guide

Second Edition

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and the publisher was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

Front cover image is from Snapdragon Game Studio’s Fortress: Fire OpenGL® ES™

3.0 demo, courtesy of Qualcomm Technologies Inc.

OpenGL® is a registered trademark and the OpenGL® ES™ logo is a trademark of
Silicon Graphics Inc. used by permission by Khronos.

The OpenGL® ES™ shading language built-in functions described in Appendix B are
copyrighted by Khronos and are reprinted with permission from the OpenGL® ES™
3.00.4 Shading Language Specification.

The OpenGL® ES™ 3.0 Reference Card is copyrighted by Khronos and reprinted with
permission.

The authors and publisher have taken care in the preparation of this book, but make
no expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs; and
content particular to your business, training goals, marketing focus, or branding
interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Cataloging-in-Publication Data
Ginsburg, Dan.
  OpenGL ES 3.0 programming guide / Dan Ginsburg, Budirijanto Purnomo ; with
earlier contributions from Dave Shreiner, Aaftab Munshi.—Second edition.
   pages  cm
  Revised edition of: The OpenGL ES 2.0 programming guide / Aaftab Munshi,
Dan Ginsburg, Dave Shreiner. 2009.
  Includes bibliographical references and index.
  ISBN 978-0-321-93388-1 (paperback : alk. paper)
1. OpenGL. 2. Computer graphics—Specifications. 3. Application program

interfaces (Computer software) 4. Computer programming. I. Purnomo, Budirijanto.
II. Shreiner, Dave. III. Munshi, Aaftab. IV. Title.
  T385.G5426 2014
  006.6’6—dc23 					    2013049233

Copyright © 2014 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is
protected by copyright, and permission must be obtained from the publisher prior
to any prohibited reproduction, storage in a retrieval system, or transmission in any
form or by any means, electronic, mechanical, photocopying, recording, or likewise.
To obtain permission to use material from this work, please submit a written request
to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle
River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-93388-1
ISBN-10: 0-321-93388-5

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville,
Indiana.

First printing, March 2014

Editor-in-Chief
Mark L. Taub

Executive Editor
Laura Lewin

Development Editor
Sheri Cain

Managing Editor
John Fuller

Project Editor
Elizabeth Ryan

Copy Editor
Jill Hobbs

Indexer
Infodex Indexing Services,
Inc.

Proofreader
Linda Begley

Technical Reviewers
Emmanuel Agu
Peter Lohrmann
Maurice Ribble

Editorial Assistant
Olivia Basegio

Cover Designer
Chuti Prasertsith

Compositor
diacriTech

vii

Contents

List of Figures��xvii

List of Examples��xxi

List of Tables���xxv

Foreword��xxix

Preface���xxxi

Intended Audience...xxxi
Organization of This Book...xxxii
Example Code and Shaders..xxxvi
Errata...xxxvi

Acknowledgments���xxxvii

About the Authors���xxxix

1.	 Introduction to OpenGL ES 3.0...1

OpenGL ES 3.0...3
Vertex Shader...4
Primitive Assembly..7
Rasterization..7
Fragment Shader..8
Per-Fragment Operations..9

What’s New in OpenGL ES 3.0..11
Texturing...11
Shaders...13

viii	 Contents

Geometry...15
Buffer Objects..16
Framebuffer...17

OpenGL ES 3.0 and Backward Compatibility.......................................17
EGL..19

Programming with OpenGL ES 3.0...20
Libraries and Include Files...20

EGL Command Syntax..20
OpenGL ES Command Syntax..21
Error Handling...22
Basic State Management..23
Further Reading...25

2.	 Hello Triangle: An OpenGL ES 3.0 Example���27

Code Framework..28
Where to Download the Examples..28
Hello Triangle Example...29
Using the OpenGL ES 3.0 Framework...34
Creating a Simple Vertex and Fragment Shader....................................35
Compiling and Loading the Shaders...36
Creating a Program Object and Linking the Shaders............................38
Setting the Viewport and Clearing the Color Buffer.............................39
Loading the Geometry and Drawing a Primitive..................................40
Displaying the Back Buffer..41
Summary..42

3.	 An Introduction to EGL��43

Communicating with the Windowing System.....................................44
Checking for Errors..45
Initializing EGL..46
Determining the Available Surface Configurations..............................46
Querying EGLConfig Attributes..48
Letting EGL Choose the Configuration...51
Creating an On-Screen Rendering Area: The EGL Window..................53
Creating an Off-Screen Rendering Area: EGL Pbuffers..........................56
Creating a Rendering Context...60

Contents	 ix

Making an EGLContext Current...62
Putting All Our EGL Knowledge Together..63
Synchronizing Rendering..66
Summary..67

4.	 Shaders and Programs��69

Shaders and Programs..69
Creating and Compiling a Shader...70
Creating and Linking a Program...74

Uniforms and Attributes..80
Getting and Setting Uniforms...81
Uniform Buffer Objects...87
Getting and Setting Attributes..92

Shader Compiler..93
Program Binaries..94
Summary..95

5.	 OpenGL ES Shading Language��97

OpenGL ES Shading Language Basics..98
Shader Version Specification...98
Variables and Variable Types...99
Variable Constructors..100
Vector and Matrix Components..101
Constants...102
Structures...103
Arrays...104
Operators...104
Functions...106
Built-In Functions..107
Control Flow Statements...107
Uniforms..108
Uniform Blocks..109
Vertex and Fragment Shader Inputs/Outputs.....................................111
Interpolation Qualifiers...114
Preprocessor and Directives...115
Uniform and Interpolator Packing..117

x	 Contents

Precision Qualifiers..119
Invariance..121
Summary..123

6.	 Vertex Attributes, Vertex Arrays, and Buffer Objects���������������������������125

Specifying Vertex Attribute Data...126
Constant Vertex Attribute...126
Vertex Arrays...126

Declaring Vertex Attribute Variables in a Vertex Shader.....................135
Binding Vertex Attributes to Attribute Variables

in a Vertex Shader..137
Vertex Buffer Objects...140
Vertex Array Objects..150
Mapping Buffer Objects...154

Flushing a Mapped Buffer...158
Copying Buffer Objects...159
Summary..160

7.	 Primitive Assembly and Rasterization��161

Primitives...161
Triangles..162
Lines..163
Point Sprites...164

Drawing Primitives..165
Primitive Restart..168
Provoking Vertex...169
Geometry Instancing...169
Performance Tips...172

Primitive Assembly..174
Coordinate Systems...175
Perspective Division..178
Viewport Transformation..178

Rasterization..179
Culling...180
Polygon Offset...181

Occlusion Queries..183
Summary..185

Contents	 xi

8.	 Vertex Shaders���187

Vertex Shader Overview..188
Vertex Shader Built-In Variables..189
Precision Qualifiers..192
Number of Uniforms Limitations in a Vertex Shader...................193

Vertex Shader Examples..196
Matrix Transformations...196
Lighting in a Vertex Shader...199

Generating Texture Coordinates...205
Vertex Skinning...207
Transform Feedback...211
Vertex Textures..214
OpenGL ES 1.1 Vertex Pipeline as an ES 3.0 Vertex Shader................215
Summary..223

9.	 Texturing��225

Texturing Basics...226
2D Textures..226
Cubemap Textures...228
3D Textures..229
2D Texture Arrays..230
Texture Objects and Loading Textures..230
Texture Filtering and Mipmapping...237
Automatic Mipmap Generation..242
Texture Coordinate Wrapping...243
Texture Swizzles...244
Texture Level of Detail..245
Depth Texture Compare (Percentage Closest Filtering)................245
Texture Formats...246
Using Textures in a Shader..255
Example of Using a Cubemap Texture..258
Loading 3D Textures and 2D Texture Arrays................................260

Compressed Textures...262
Texture Subimage Specification...266
Copying Texture Data from the Color Buffer......................................269

xii	 Contents

Sampler Objects...273
Immutable Textures...276
Pixel Unpack Buffer Objects..277
Summary..278

10.	 Fragment Shaders��279

Fixed-Function Fragment Shaders...280
Fragment Shader Overview...282

Built-In Special Variables...283
Built-In Constants...284
Precision Qualifiers..285

Implementing Fixed-Function Techniques Using Shaders.................286
Multitexturing...286
Fog...288
Alpha Test (Using Discard)..291
User Clip Planes...293

Summary..295

11.	 Fragment Operations��297

Buffers..298
Requesting Additional Buffers...299
Clearing Buffers...299
Using Masks to Control Writing to Framebuffers.........................301

Fragment Tests and Operations...303
Using the Scissor Test..304
Stencil Buffer Testing...305

Blending...311
Dithering..314
Multisampled Anti-Aliasing...314

Centroid Sampling..316
Reading and Writing Pixels to the Framebuffer..................................316

Pixel Pack Buffer Objects...320
Multiple Render Targets...320
Summary..324

Contents	 xiii

12.	 Framebuffer Objects���325

Why Framebuffer Objects?..325
Framebuffer and Renderbuffer Objects...327

Choosing a Renderbuffer Versus a Texture as
a Framebuffer Attachment...328

Framebuffer Objects Versus EGL Surfaces.....................................329
Creating Framebuffer and Renderbuffer Objects................................329
Using Renderbuffer Objects...330

Multisample Renderbuffers...333
Renderbuffer Formats..333

Using Framebuffer Objects..335
Attaching a Renderbuffer as a Framebuffer Attachment..............337
Attaching a 2D Texture as a Framebuffer Attachment..................338
Attaching an Image of a 3D Texture as a Framebuffer

Attachment..339
Checking for Framebuffer Completeness......................................341

Framebuffer Blits..342
Framebuffer Invalidation...344
Deleting Framebuffer and Renderbuffer Objects................................346

Deleting Renderbuffer Objects That Are Used
as Framebuffer Attachments..347

Reading Pixels and Framebuffer Objects.......................................347
Examples..348
Performance Tips and Tricks..354
Summary..355

13.	 Sync Objects and Fences���357

Flush and Finish..357
Why Use a Sync Object?..358
Creating and Deleting a Sync Object..358
Waiting for and Signaling a Sync Object..359
Example...360
Summary..361

xiv	 Contents

14.	 Advanced Programming with OpenGL ES 3.0��������������������������������363

Per-Fragment Lighting...363
Lighting with a Normal Map..364
Lighting Shaders..366
Lighting Equations..369

Environment Mapping..370
Particle System with Point Sprites...374
Particle System Setup...374
Particle System Vertex Shader...375
Particle System Fragment Shader..377

Particle System Using Transform Feedback...380
Particle System Rendering Algorithm...381
Particle Emission with Transform Feedback.................................381
Rendering the Particles..385

Image Postprocessing...387
Render-to-Texture Setup..387
Blur Fragment Shader..388

Projective Texturing...390
Projective Texturing Basics..391
Matrices for Projective Texturing..392
Projective Spotlight Shaders..394

Noise Using a 3D Texture..397
Generating Noise...397
Using Noise..402

Procedural Texturing...404
A Procedural Texture Example..405
Anti-Aliasing of Procedural Textures...407
Further Reading on Procedural Textures.......................................410

Rendering Terrain with Vertex Texture Fetch.....................................410
Generating a Square Terrain Grid...411
Computing Vertex Normal and Fetching Height Value

in Vertex Shader...412
Further Reading on Large Terrain Rendering................................413

Shadows Using a Depth Texture..414
Rendering from the Light Position Into a Depth Texture............415
Rendering from the Eye Position with the Depth Texture...........418

Summary..420

Contents	 xv

15.	 State Queries���421

OpenGL ES 3.0 Implementation String Queries.................................421
Querying Implementation-Dependent Limits....................................423
Querying OpenGL ES State..429
Hints..435
Entity Name Queries..436
Nonprogrammable Operations Control and Queries.........................436
Shader and Program State Queries..438
Vertex Attribute Queries..440
Texture State Queries...441
Sampler Queries...442
Asynchronous Object Queries...442
Sync Object Queries...443
Vertex Buffer Queries...444
Renderbuffer and Framebuffer State Queries......................................445
Summary..446

16.	 OpenGL ES Platforms��447

Building for Microsoft Windows with Visual Studio..........................447
Building for Ubuntu Linux..449
Building for Android 4.3+ NDK (C++)...450

Prerequisites...451
Building the Example Code with Android NDK...........................452

Building for Android 4.3+ SDK (Java)...452
Building for iOS 7..453

Prerequisites...453
Building the Example Code with Xcode 5....................................453

Summary..455

A.	 GL_HALF_FLOAT���457

16-Bit Floating-Point Number...458
Converting a Float to a Half-Float...459

B.	 Built-In Functions���463

Angle and Trigonometry Functions..465
Exponential Functions..466
Common Functions...467

xvi	 Contents

Floating-Point Pack and Unpack Functions..471
Geometric Functions...472
Matrix Functions...474
Vector Relational Functions..475
Texture Lookup Functions...476
Fragment Processing Functions...483

C.	 ES Framework API��485

Framework Core Functions...485
Transformation Functions...490

Index��495

xvii

List of Figures

Figure 1-1	 OpenGL ES 3.0 Graphics Pipeline..4

Figure 1-2	 OpenGL ES 3.0 Vertex Shader...5

Figure 1-3	 OpenGL ES 3.0 Rasterization Stage...7

Figure 1-4	 OpenGL ES 3.0 Fragment Shader..8

Figure 1-5	 OpenGL ES 3.0 Per-Fragment Operations............................10

Figure 2-1	 Hello Triangle Example...33

Figure 5-1	 Z Fighting Artifacts Due to Not Using Invariance..............121

Figure 5-2	 Z Fighting Avoided Using Invariance.................................122

Figure 6-1 �Triangle with a Constant Color Vertex and
Per-Vertex Position Attributes...125

Figure 6-2 �Position, Normal, and Two Texture Coordinates
Stored as an Array...128

Figure 6-3	 Selecting Constant or Vertex Array Vertex Attribute.........133

Figure 6-4 �Specifying and Binding Vertex Attributes for
Drawing One or More Primitives..138

Figure 7-1	 Triangle Primitive Types...162

Figure 7-2	 Line Primitive Types...163

Figure 7-3	 gl_PointCoord Values...165

Figure 7-4	 Cube..167

Figure 7-5	 Connecting Triangle Strips...173

Figure 7-6	 OpenGL ES Primitive Assembly Stage................................175

Figure 7-7	 Coordinate Systems..175

Figure 7-8	 Viewing Volume..176

Figure 7-9	 OpenGL ES Rasterization Stage...179

Figure 7-10	 Clockwise and Counterclockwise Triangles........................180

Figure 7-11	 Polygon Offset...182

xviii	 List of Figures

Figure 8-1	 OpenGL ES 3.0 Programmable Pipeline.............................188

Figure 8-2	 OpenGL ES 3.0 Vertex Shader...189

Figure 8-3	 �Geometric Factors in Computing Lighting
Equation for a Directional Light...199

Figure 8-4	 �Geometric Factors in Computing Lighting
Equation for a Spotlight..202

Figure 9-1	 2D Texture Coordinates..227

Figure 9-2	 3D Texture Coordinate for Cubemap.................................228

Figure 9-3	 3D Texture...229

Figure 9-4	 MipMap2D: Nearest Versus Trilinear Filtering...................241

Figure 9-5	 �GL_REPEAT, GL_CLAMP_TO_EDGE, and
GL_MIRRORED_REPEAT Modes...243

Figure 10-1	 OpenGL ES 3.0 Programmable Pipeline.............................280

Figure 10-2	 OpenGL ES 3.0 Fragment Shader..283

Figure 10-3	 Multitextured Quad..287

Figure 10-4	 Linear Fog on Torus in PVRShaman...................................289

Figure 10-5	 Alpha Test Using Discard..292

Figure 10-6	 User Clip Plane Example...294

Figure 11-1	 The Post-Shader Fragment Pipeline....................................297

Figure 12-1	 �Framebuffer Objects, Renderbuffer Objects,
and Textures..328

Figure 12-2	 Render to Color Texture..350

Figure 12-3	 Render to Depth Texture...353

Figure 14-1	 Per-Fragment Lighting Example...364

Figure 14-2	 Environment Mapping Example..370

Figure 14-3	 Particle System Sample...374

Figure 14-4	 Particle System with Transform Feedback..........................380

Figure 14-5	 Image Postprocessing Example...387

Figure 14-6	 Light Bloom Effect..389

Figure 14-7	 Light Bloom Stages...390

Figure 14-8	 Projective Spotlight Example..391

Figure 14-9	 2D Texture Projected onto Object......................................392

Figure 14-10	 Fog Distorted by 3D Noise Texture.....................................397

Figure 14-11	 2D Slice of Gradient Noise..402

Figure 14-12	 Checkerboard Procedural Texture.......................................407

List of Figures	 xix

Figure 14-13	 Anti-Aliased Checkerboard Procedural Texture..................409

Figure 14-14	 Terrain Rendered with Vertex Texture Fetch......................411

Figure 14-15	 �Shadow Rendering with a Depth Texture
and 6 × 6 PCF..414

Figure 16-1	 Building Samples with CMake GUI on Windows..............448

Figure 16-2	 �VertexArrayObjects Sample in Xcode Running
on iOS 7 Simulator..454

Figure A-1	 A 16-Bit Floating-Point Number...458

This page intentionally left blank

xxi

List of Examples

Example 1-1	 A Vertex Shader Example..6

Example 1-2	 A Fragment Shader Example...9

Example 2-1	 Hello_Triangle.c Example...29

Example 3-1	 Initializing EGL...44

Example 3-2	 Specifying EGL Attributes...51

Example 3-3	 Querying EGL Surface Configurations.................................52

Example 3-4	 Creating an EGL Window Surface..55

Example 3-5	 Creating an EGL Pixel Buffer..59

Example 3-6	 Creating an EGL Context...62

Example 3-7	 A Complete Routine for Creating an EGL Window.............64

Example 3-8	 Creating a Window Using the esUtil Library.....................65

Example 4-1	 Loading a Shader...73

Example 4-2	 Create, Attach Shaders to, and Link a Program....................79

Example 4-3	 Querying for Active Uniforms..86

Example 5-1	 Sample Vertex Shader...112

Example 5-2	 Vertex and Fragment Shaders with Matching
Output/Input Declarations...113

Example 6-1	 Array of Structures..129

Example 6-2	 Structure of Arrays..130

Example 6-3	 Using Constant and Vertex Array Attributes......................133

Example 6-4	 Creating and Binding Vertex Buffer Objects......................141

Example 6-5	 Drawing with and without Vertex Buffer Objects..............146

Example 6-6	 Drawing with a Buffer Object per Attribute.......................149

Example 6-7	 Drawing with a Vertex Array Object...................................152

Example 6-8	 Mapping a Buffer Object for Writing..................................157

Example 8-1	 Vertex Shader with Matrix Transform for the Position......196

xxii	 List of Examples

Example 8-2	 Directional Light...200

Example 8-3	 Spotlight..203

Example 8-4	 Sphere Map Texture Coordinate Generation......................206

Example 8-5	 Cubemap Texture Coordinate Generation.........................206

Example 8-6	 Vertex Skinning Shader with No Check of
Whether Matrix Weight = 0..208

Example 8-7	 Vertex Skinning Shader with Checks of Whether
Matrix Weight = 0...210

Example 8-8	 Displacement Mapping Vertex Shader...............................214

Example 8-9	 OpenGL ES 1.1 Fixed-Function Vertex Pipeline.................216

Example 9-1	 Generating a Texture Object, Binding It, and
Loading Image Data..234

Example 9-2	 Loading a 2D Mipmap Chain...238

Example 9-3	 Vertex and Fragment Shaders for Performing
2D Texturing...255

Example 9-4	 Loading a Cubemap Texture...258

Example 9-5	 Vertex and Fragment Shader Pair for
Cubemap Texturing..259

Example 10-1	 Multitexture Fragment Shader..287

Example 10-2	 Vertex Shader for Computing Distance to Eye...................289

Example 10-3	 Fragment Shader for Rendering Linear Fog........................290

Example 10-4	 Fragment Shader for Alpha Test Using Discard..................292

Example 10-5	 User Clip Plane Vertex Shader..294

Example 10-6	 User Clip Plane Fragment Shader.......................................295

Example 11-1	 Setting up Multiple Render Targets....................................322

Example 11-2	 Fragment Shader with Multiple Render Targets.................324

Example 12-1	 Copying Pixels Using Framebuffer Blits.............................343

Example 12-2	 Render to Texture..348

Example 12-3	 Render to Depth Texture...351

Example 13-1	 Inserting a Fence Command and Waiting for
Its Result in Transform Feedback Example.........................361

Example 14-1	 Per-Fragment Lighting Vertex Shader.................................366

Example 14-2	 Per-Fragment Lighting Fragment Shader............................367

Example 14-3	 Environment Mapping Vertex Shader................................371

Example 14-4	 Environment Mapping Fragment Shader...........................372

Example 14-5	 Particle System Vertex Shader...375

List of Examples	 xxiii

Example 14-6	 Update Function for Particle System Sample.....................376

Example 14-7	 Particle System Fragment Shader..377

Example 14-8	 Draw Function for Particle System Sample........................378

Example 14-9	 Particle Emission Vertex Shader...382

Example 14-10 	Emit Particles with Transform Feedback.............................384

Example 14-11	 Particle Rendering Vertex Shader..386

Example 14-12	 Blur Fragment Shader...388

Example 14-13	 Projective Texturing Vertex Shader.....................................394

Example 14-14	 Projective Texturing Fragment Shader................................396

Example 14-15	 Generating Gradient Vectors..398

Example 14-16	 3D Noise..400

Example 14-17	 Noise-Distorted Fog Fragment Shader................................402

Example 14-18	 Checker Vertex Shader..405

Example 14-19	 Checker Fragment Shader with Conditional Checks.........406

Example 14-20	 Checker Fragment Shader without
Conditional Checks..406

Example 14-21	 Anti-Aliased Checker Fragment Shader..............................407

Example 14-22	 Terrain Rendering Flat Grid Generation.............................411

Example 14-23	 Terrain Rendering Vertex Shader..412

Example 14-24	 Set up a MVP Matrix from the Light Position....................415

Example 14-25	 Create a Depth Texture and Attach
It to a Framebuffer Object...416

Example 14-26	 Rendering to Depth Texture Shaders..................................417

Example 14-27	 Rendering from the Eye Position Shaders..........................418

This page intentionally left blank

xxv

List of Tables

Table 1-1	 EGL Data Types...21

Table 1-2	 OpenGL ES Command Suffixes and
Argument Data Types..22

Table 1-3	 OpenGL ES Basic Error Codes...23

Table 3-1	 EGLConfig Attributes..49

Table 3-2	 Attributes for Window Creation Using
eglCreateWindowSurface...54

Table 3-3	 Possible Errors When eglCreateWindowSurface Fails........55

Table 3-4	 EGL Pixel Buffer Attributes..57

Table 3-5	 Possible Errors When eglCreatePbufferSurface Fails......58

Table 3-6	 Attributes for Context Creation Using
eglCreateContext...61

Table 5-1	 Data Types in the OpenGL ES Shading Language.................99

Table 5-2	 OpenGL ES Shading Language Operators...........................104

Table 5-3	 OpenGL ES Shading Language Qualifiers...........................106

Table 5-4	 Uniform Block Layout Qualifiers..111

Table 5-5	 Extension Behaviors..116

Table 5-6	 Uniform Storage without Packing.......................................118

Table 5-7	 Uniform Storage with Packing..119

Table 6-1	 Data Conversions..132

Table 6-2	 Buffer Usage...143

Table 7-1	 Provoking Vertex Selection for the ith Primitive
Instance Where Vertices Are Numbered from 1 to n,
and n Is the Number of Vertices Drawn..............................169

Table 8-1	 Transform Feedback Primitive Mode
and Allowed Draw Mode...213

Table 9-1	 Texture Base Formats...227

xxvi	 List of Tables

Table 9-2	 Pixel Storage Options..236

Table 9-3	 Texture Wrap Modes..243

Table 9-4	 Valid Unsized Internal Format Combinations
for glTexImage2D..247

Table 9-5	 Normalized Sized Internal Format Combinations
for glTexImage2D..248

Table 9-6	 Valid Sized Floating-Point Internal Format
Combinations for glTexImage2D.......................................249

Table 9-7	 Valid Sized Internal Integer Texture Format
Combinations for glTexImage2D.......................................251

Table 9-8	 Valid Shared Exponent Sized Internal Format
Combinations for glTexImage2D.......................................253

Table 9-9	 Valid sRGB Sized Internal Format Combinations
for glTexImage2D...254

Table 9-10	 Valid Depth Sized Internal Format Combinations
for glTexImage2D...255

Table 9-11	 Mapping of Texture Formats to Colors...............................257

Table 9-12	 Standard Texture Compression Formats.............................264

Table 9-13	 Valid Format Conversions for glCopyTex*Image*............273

Table 10-1	 OpenGL ES 1.1 RGB Combine Functions...........................281

Table 11-1	 Fragment Test Enable Tokens..304

Table 11-2	 Stencil Operations...306

Table 11-3	 Blending Functions...312

Table 12-1	 Renderbuffer Formats for Color-Renderable Buffer............333

Table 12-2	 Renderbuffer Formats for Depth-Renderable
and Stencil-Renderable Buffer..335

Table 15-1	 Implementation-Dependent State Queries.........................423

Table 15-2	 Application-Modifiable OpenGL ES State Queries.............429

Table 15-3	 OpenGL ES 3.0 Capabilities Controlled by
glEnable and glDisable...437

Table B-1	 Angle and Trigonometry Functions....................................465

Table B-2	 Exponential Functions..466

Table B-3	 Common Functions..467

Table B-4	 Floating-Point Pack and Unpack Functions.......................471

List of Tables	 xxvii

Table B-5	 Geometric Functions..473

Table B-6	 Matrix Functions...474

Table B-7	 Vector Relational Functions..475

Table B-8	 Supported Combinations of Sampler and Internal
Texture Formats..476

Table B-9	 Texture Lookup Functions..478

Table B-10	 Fragment Processing Functions..484

This page intentionally left blank

xxix

Foreword

Five years have passed since the OpenGL ES 2.0 version of this reference
book helped alert developers everywhere that programmable 3D graphics
on mobile and embedded systems had not just arrived, but was here
to stay.

Five years later, more than 1 billion people around the world use
OpenGL ES every day to interact with their computing devices, for both
information and entertainment. Nearly every pixel on nearly every
smartphone screen has been generated, manipulated, or composited by
this ubiquitous graphics API.

Now, OpenGL ES 3.0 has been developed by Khronos Group and is shipping
on the latest mobile devices, continuing the steady flow of advanced
graphics features into the hands of consumers everywhere—features that
were first developed and proven on high-end systems shipping with desktop
OpenGL.

In fact, OpenGL is now easily the most widely deployed family of 3D APIs,
with desktop OpenGL and OpenGL ES being joined by WebGL to bring
the power of OpenGL ES to web content everywhere. OpenGL ES 3.0 will
be instrumental in powering the evolution of WebGL, enabling HTML5
developers to tap directly into the power of the latest GPUs from the first
truly portable 3D applications.

OpenGL ES 3.0 not only places more graphics capabilities into the hands
of developers across a huge range of devices and platforms, but also
enables faster, more power-efficient 3D applications that are easier to
write, port, and maintain—and this book will show you how.

xxx	 Foreword

There has never been a more fascinating and rewarding time to be a 3D
developer. My thanks and congratulations go to the authors for continuing
to be a vital part of the evolving story of OpenGL ES, and for working hard
to produce this book that helps ensure developers everywhere can better
understand and leverage the full power of OpenGL ES 3.0.

—Neil Trevett
President, Khronos Group
Vice President Mobile Ecosystem, NVIDIA

xxxi

Preface

OpenGL ES 3.0 is a software interface for rendering sophisticated 3D
graphics on handheld and embedded devices. OpenGL ES is the primary
graphics library for handheld and embedded devices with programmable
3D hardware including cell phones, personal digital assistants (PDAs),
consoles, appliances, vehicles, and avionics. This book details the entire
OpenGL ES 3.0 application programming interface (API) and pipeline,
including detailed examples, to provide a guide for developing a wide
range of high-performance 3D applications for handheld devices.

Intended Audience

This book is intended for programmers who are interested in learning
OpenGL ES 3.0. We expect the reader to have a solid grounding in
computer graphics. In the text we explain many of the relevant graphics
concepts as they relate to various parts of OpenGL ES 3.0, but we expect
the reader to understand basic 3D concepts. The code examples in the book
are all written in C. We assume that the reader is familiar with C or C++
and cover language topics only where they are relevant to OpenGL ES 3.0.

The reader will learn about setting up and programming every aspect
of the graphics pipeline. The book details how to write vertex and
fragment shaders and how to implement advanced rendering techniques
such as per-pixel lighting and particle systems. In addition, it provides
performance tips and tricks for efficient use of the API and hardware.
After finishing the book, the reader will be ready to write OpenGL ES 3.0
applications that fully harness the programmable power of embedded
graphics hardware.

xxxii	 Preface

Organization of This Book

This book is organized to cover the API in a sequential fashion, building
up your knowledge of OpenGL ES 3.0 as we go.

Chapter 1—Introduction to OpenGL ES 3.0

Chapter 1 introduces OpenGL ES and provides an overview of the
OpenGL ES 3.0 graphics pipeline. We discuss the philosophies and
constraints that went into the design of OpenGL ES 3.0. Finally, the
chapter covers some general conventions and types used in OpenGL
ES 3.0.

Chapter 2—Hello Triangle: An OpenGL ES 3.0 Example

Chapter 2 walks through a simple OpenGL ES 3.0 example program
that draws a triangle. Our purpose here is to show what an OpenGL ES
3.0 program looks like, introduce the reader to some API concepts, and
describe how to build and run an example OpenGL ES 3.0 program.

Chapter 3—An Introduction to EGL

Chapter 3 presents EGL, the API for creating surfaces and rendering
contexts for OpenGL ES 3.0. We describe how to communicate with
the native windowing system, choose a configuration, and create EGL
rendering contexts and surfaces. We teach you enough EGL so that you
can do everything you will need to do to get up and rendering with
OpenGL ES 3.0.

Chapter 4—Shaders and Programs

Shader objects and program objects form the most fundamental objects in
OpenGL ES 3.0. In Chapter 4, we describe how to create a shader object,
compile a shader, and check for compile errors. The chapter also explains
how to create a program object, attach shader objects to it, and link a
final program object. We discuss how to query the program object for
information and how to load uniforms. In addition, you will learn about
the difference between source shaders and program binaries and how to
use each.

Preface	 xxxiii

Chapter 5—OpenGL ES Shading Language

Chapter 5 covers the shading language basics needed for writing shaders.
These shading language basics include variables and types, constructors,
structures, arrays, uniforms, uniform blocks, and input/output variables.
This chapter also describes some more nuanced parts of the shading
language, such as precision qualifiers and invariance.

Chapter 6—Vertex Attributes, Vertex Arrays,
and Buffer Objects

Starting with Chapter 6 (and ending with Chapter 11), we begin our walk
through the pipeline to teach you how to set up and program each part
of the graphics pipeline. This journey begins with a description of how
geometry is input into the graphics pipeline, and includes discussion of
vertex attributes, vertex arrays, and buffer objects.

Chapter 7—Primitive Assembly and Rasterization

After discussing how geometry is input into the pipeline in the previous
chapter, in Chapter 7 we consider how that geometry is assembled into
primitives. All of the primitive types available in OpenGL ES 3.0, including
point sprites, lines, triangles, triangle strips, and triangle fans, are covered.
In addition, we describe how coordinate transformations are performed on
vertices and introduce the rasterization stage of the OpenGL ES 3.0 pipeline.

Chapter 8—Vertex Shaders

The next portion of the pipeline that is covered is the vertex shader.
Chapter 8 provides an overview of how vertex shaders fit into the pipeline
and the special variables available to vertex shaders in the OpenGL
ES Shading Language. Several examples of vertex shaders, including
computation of per-vertex lighting and skinning, are covered. We also
give examples of how the OpenGL ES 1.0 (and 1.1) fixed-function pipeline
can be implemented using vertex shaders.

Chapter 9—Texturing

Chapter 9 begins the introduction to fragment shaders by describing all
of the texturing functionality available in OpenGL ES 3.0. This chapter
provides details on how to create textures, how to load them with data,

xxxiv	 Preface

and how to render with them. It describes texture wrap modes, texture
filtering, texture formats, compressed textures, sampler objects, immutable
textures, pixel unpack buffer objects, and mipmapping. This chapter
covers all of the texture types supported in OpenGL ES 3.0: 2D textures,
cubemaps, 2D texture arrays, and 3D textures.

Chapter 10—Fragment Shaders

Chapter 9 focused on how to use textures in a fragment shader;
Chapter 10 covers the rest of what you need to know to write fragment
shaders. We give an overview of fragment shaders and all of the special
built-in variables available to them. We also demonstrate how to
implement all of the fixed-function techniques that were available in
OpenGL ES 1.1 using fragment shaders. Examples of multitexturing, fog,
alpha test, and user clip planes are all implemented in fragment shaders.

Chapter 11—Fragment Operations

Chapter 11 discusses the operations that can be applied either to the
entire framebuffer, or to individual fragments after the execution of
the fragment shader in the OpenGL ES 3.0 fragment pipeline. These
operations include the scissor test, stencil test, depth test, multisampling,
blending, and dithering. This chapter covers the final phase in the
OpenGL ES 3.0 graphics pipeline.

Chapter 12—Framebuffer Objects

Chapter 12 discusses the use of framebuffer objects for rendering to
off-screen surfaces. Framebuffer objects have several uses, the most
common of which is for rendering to a texture. This chapter provides
a complete overview of the framebuffer object portion of the API.
Understanding framebuffer objects is critical for implementing many
advanced effects such as reflections, shadow maps, and postprocessing.

Chapter 13—Sync Objects and Fences

Chapter 13 provides an overview of sync objects and fences, which are
efficient primitives for synchronizing within the host application and
GPU execution in OpenGL ES 3.0. We discuss how to use sync objects and
fences and conclude with an example.

Preface	 xxxv

Chapter 14—Advanced Programming with OpenGL ES 3.0

Chapter 14 is the capstone chapter, tying together many of the topics
presented throughout the book. We have selected a sampling of advanced
rendering techniques and show examples that demonstrate how to
implement these features. This chapter includes rendering techniques
such as per-pixel lighting using normal maps, environment mapping,
particle systems, image postprocessing, procedural textures, shadow
mapping, terrain rendering and projective texturing.

Chapter 15—State Queries

A large number of state queries are available in OpenGL ES 3.0. For just
about everything you set, there is a corresponding way to get the current
value. Chapter 15 is provided as a reference for the various state queries
available in OpenGL ES 3.0.

Chapter 16—OpenGL ES Platforms

In the final chapter, we move away from the details of the API to talk
about how to build the OpenGL ES sample code in this book for iOS7,
Android 4.3 NDK, Android 4.3 SDK, Windows, and Linux. This chapter is
intended to serve as a reference to get you up and running with the book
sample code on the OpenGL ES 3.0 platform of your choosing.

Appendix A—GL_HALF_FLOAT_OES

Appendix A details the half-float format and provides a reference for how
to convert from IEEE floating-point values into half-floats (and back).

Appendix B—Built-In Functions

Appendix B provides a reference for all of the built-in functions available
in the OpenGL ES Shading Language.

Appendix C—ES Framework API

Appendix C provides a reference for the utility framework we developed
for the book and describes what each function does.

xxxvi	 Preface

OpenGL ES 3.0 Reference Card

Included as a color insert in the middle of the book is the OpenGL ES 3.0
Reference Card, copyrighted by Khronos and reprinted with permission.
This reference contains a complete list of all of the functions in OpenGL
ES 3.0, along with all of the types, operators, qualifiers,
built-ins, and functions in the OpenGL ES Shading Language.

Example Code and Shaders

This book is filled with example programs and shaders. You can download
the examples from the book’s website at opengles-book.com, which
provides a link to the github.com site hosting the book code. As of this
writing, the example programs have been built and tested on iOS7,
Android 4.3 NDK, Android 4.3 SDK, Windows (OpenGL ES 3.0 Emulation),
and Ubuntu Linux. Several of the advanced shader examples in the
book are implemented in PVRShaman, a shader development tool from
PowerVR available for Windows, Mac OS X, and Linux. The book’s website
(opengles-book.com) provides links through which to download any of
the required tools.

Errata

If you find something in the book that you believe is in error, please send
us a note at errors@opengles-book.com. The list of errata for the book can
be found on the book’s website: opengles-book.com.

xxxvii

Acknowledgments

I want to thank Affie Munshi and Dave Shreiner for their enormous
contributions to the first edition of this book. I am extremely grateful
to have Budi Purnomo join me to update the book for OpenGL ES 3.0.
I would also like to thank the many colleagues with whom I have worked
over the years, who have helped in my education on computer graphics,
OpenGL, and OpenGL ES. There are too many people to list all of them,
but special thanks go to Shawn Leaf, Bill Licea-Kane, Maurice Ribble, Benj
Lipchak, Roger Descheneaux, David Gosselin, Thorsten Scheuermann,
John Isidoro, Chris Oat, Jason Mitchell, Dan Gessel, and Evan Hart.

I would like to extend a special thanks to my wife, Sofia, for her support
while I worked on this book. I would also like to thank my son, Ethan,
who was born during the writing of this book. Your smile and laugh bring
me joy every single day.

— Dan Ginsburg

I would like to express my deepest gratitude to Dan Ginsburg for
providing me with an opportunity to contribute to this book. Thank you
to my manager, Callan McInally, and colleagues at AMD for supporting
this endeavor. I would also like to thank my past professors, Jonathan
Cohen, Subodh Kumar, Ching-Kuang Shene, and John Lowther, for
introducing me to the world of computer graphics and OpenGL.

I would like to thank my parents and sister for their unconditional
love. Special thanks to my wonderful wife, Liana Hadi, whose love and
support allowed me to complete this project. Thank you to my daughters,
Michelle Lo and Scarlett Lo. They are the sunshine in my life.

— Budi Purnomo

xxxviii	 Acknowledgments

We all want to thank Neil Trevett for writing the Foreword and getting
approval from the Khronos Board of Promoters to allow us to use text
from the OpenGL ES Shading Language specification in Appendix B,
as well as the OpenGL ES 3.0 Reference Card. A special thank you and
debt of gratitude go to the reviewers for their enormously valuable
feedback—Maurice Ribble, Peter Lohrmann, and Emmanuel Agu. We
also wish to acknowledge the technical reviewers from the first edition
of the book—Brian Collins, Chris Grimm, Jeremy Sandmel, Tom Olson,
and Adam Smith.

We owe a huge amount of gratitude to our editor, Laura Lewin, at
Addison-Wesley, who was enormously helpful in every aspect of
creating this book. There were many others at Addison-Wesley who were
invaluable in putting together this book and whom we would like to
thank, including Debra Williams Cauley, Olivia Basegio, Sheri Cain, and
Curt Johnson.

We want to thank our readers from the first edition who have helped
us immensely by reporting errata and improving the sample code. We
would especially like to thank our reader Javed Rabbani Shah, who ported
the OpenGL ES 3.0 sample code to the Android 4.3 SDK in Java. He also
helped us with the Android NDK port and resolving many device-specific
issues. We thank Jarkko Vatjus-Anttila for providing the Linux X11 port,
and Eduardo Pelegri-Llopart and Darryl Gough for porting the first-edition
code to the BlackBerry Native SDK.

A big thank you to the OpenGL ARB, the OpenGL ES working group, and
everyone who contributed to the development of OpenGL ES.

xxxix

About the Authors

Dan Ginsburg

Dan is the founder of Upsample Software, LLC, a software company
offering consulting services in 3D graphics and GPU computing. Dan has
coauthored several other books, including the OpenCL Programming Guide
and OpenGL Shading Language, Third Edition. In previous roles Dan has
worked on developing OpenGL drivers, desktop and handheld 3D demos,
GPU developer tools, 3D medical visualization, and games. He holds a B.S.
in computer science from Worcester Polytechnic Institute and an M.B.A.
from Bentley University.

Budirijanto Purnomo

Budi is a senior software architect at Advanced Micro Devices, Inc., where
he leads the software enablement efforts of GPU debugging and profiling
technology across multiple AMD software stacks. He collaborates with
many software and hardware architects within AMD to define future
hardware architectures for debugging and profiling GPU applications. He
has published many computer graphics technical articles at international
conferences. He received his B.S. and M.S. in computer science from
Michigan Technological University, and his M.S.E. and Ph.D. in computer
science from Johns Hopkins University.

Aaftab Munshi

Affie has been architecting GPUs for more than a decade. At ATI (now
AMD), he was a senior architect in the Handheld Group. He is the spec
editor for the OpenGL ES 1.1, OpenGL ES 2.0, and OpenCL specifications.
He currently works at Apple.

xl	 About the Authors

Dave Shreiner

Dave has been working with OpenGL for almost two decades, and more
recently with OpenGL ES. He authored the first commercial training
course on OpenGL while working at Silicon Graphics Computer Systems
(SGI), and has worked as an author on the OpenGL Programming Guide.
He has presented introductory and advanced courses on OpenGL
programming worldwide at numerous conferences, including SIGGRAPH.

Dave is now a media systems architect at ARM, Inc. He holds a B.S. in
mathematics from the University of Delaware.

1

Chapter 1

Introduction to OpenGL ES 3.0

OpenGL for Embedded Systems (OpenGL ES) is an application
programming interface (API) for advanced 3D graphics targeted at
handheld and embedded devices. OpenGL ES is the dominant graphics
API in today’s smartphones and has even extended its reach onto the
desktop. The list of platforms supporting OpenGL ES includes iOS,
Android, BlackBerry, bada, Linux, and Windows. OpenGL ES also
underpins WebGL, a web standard for browser-based 3D graphics.

Since the release of the iPhone 3GS in June 2009 and Android 2.0 in
March 2010, OpenGL ES 2.0 has been supported on iOS and Android
devices. The first edition of this book covered OpenGL ES 2.0 in detail.
The current edition focuses on OpenGL ES 3.0, the next revision of
OpenGL ES. It is almost inevitable that every handheld platform that
continues to evolve will support OpenGL ES 3.0. Indeed, OpenGL ES 3.0
is already supported on devices using Android 4.3+ and on the iPhone 5s
with iOS7. OpenGL ES 3.0 is backward compatible with OpenGL ES 2.0,
meaning that applications written for OpenGL ES 2.0 will continue to
work with OpenGL ES 3.0.

OpenGL ES is one of a set of APIs created by the Khronos Group. The
Khronos Group, founded in January 2000, is a member-funded industry
consortium that is focused on the creation of open standard and royalty-
free APIs. The Khronos Group also manages OpenGL, a cross-platform
standard 3D API for desktop systems running Linux, various flavors of
UNIX, Mac OS X, and Microsoft Windows. It is a widely accepted standard
3D API that has seen significant real-world usage.

Due to the widespread adoption of OpenGL as a 3D API, it made sense to
start with the desktop OpenGL API in developing an open standard 3D

2	 Chapter 1: Introduction to OpenGL ES 3.0

API for handheld and embedded devices and then modify it to meet the
needs and constraints of the handheld and embedded device space. In the
earlier versions of OpenGL ES (1.0, 1.1, and 2.0), the device constraints
that were considered in the design included limited processing capabilities
and memory availability, low memory bandwidth, and sensitivity to
power consumption. The working group used the following criteria in the
definition of the OpenGL ES specification(s):

•• The OpenGL API is very large and complex, and the goal of
the OpenGL ES working group was to create an API suitable for
constrained devices. To achieve this goal, the working group removed
any redundancy from the OpenGL API. In any case where the same
operation could be performed in more than one way, the most useful
method was taken and the redundant techniques were removed.
A good example of this is seen with specifying geometry, where in
OpenGL an application can use immediate mode, display lists, or
vertex arrays. In OpenGL ES, only vertex arrays exist; immediate mode
and display lists were removed.

•• Removing redundancy was an important goal, but maintaining
compatibility with OpenGL was also important. As much as possible,
OpenGL ES was designed so that applications written to the embedded
subset of functionality in OpenGL would also run on OpenGL ES.
This was an important goal because it allows developers to leverage
both APIs and to develop applications and tools that use the common
subset of functionality.

•• New features were introduced to address specific constraints of
handheld and embedded devices. For example, to reduce the power
consumption and increase the performance of shaders, precision
qualifiers were introduced to the shading language.

•• The designers of OpenGL ES aimed to ensure a minimum set of
features for image quality. In early handheld devices, the screen sizes
were limited, making it essential that the quality of the pixels drawn
on the screen was as good as possible.

•• The OpenGL ES working group wanted to ensure that any OpenGL
ES implementation would meet certain acceptable and agreed-on
standards for image quality, correctness, and robustness. This was
achieved by developing appropriate conformance tests that an
OpenGL ES implementation must pass to be considered compliant.

Khronos has released four OpenGL ES specifications so far: OpenGL ES 1.0
and ES 1.1 (referred to jointly as OpenGL ES 1.x in this book), OpenGL
ES 2.0, and OpenGL ES 3.0. The OpenGL ES 1.0 and 1.1 specifications

OpenGL ES 3.0	 3

implement a fixed function pipeline and are derived from the OpenGL 1.3
and 1.5 specifications, respectively.

The OpenGL ES 2.0 specification implements a programmable graphics
pipeline and is derived from the OpenGL 2.0 specification. Being derived
from a revision of the OpenGL specification means that the corresponding
OpenGL specification was used as the baseline for determining the feature
set included in the particular revision of OpenGL ES.

OpenGL ES 3.0 is the next step in the evolution of handheld graphics and
is derived from the OpenGL 3.3 specification. While OpenGL ES 2.0 was
successful in bringing capabilities similar to DirectX9 and the Microsoft
Xbox 360 to handheld devices, graphics capabilities have continued to
evolve on desktop GPUs. Significant features that enable techniques such
as shadow mapping, volume rendering, GPU-based particle animation,
geometry instancing, texture compression, and gamma correction were
missing from OpenGL ES 2.0. OpenGL ES 3.0 brings these features to
handheld devices, while continuing the philosophy of adapting to the
constraints of embedded systems.

Of course, some of the constraints that were taken into consideration
while designing previous versions of OpenGL ES are no longer relevant
today. For example, handheld devices now feature large screen sizes (some
offer a higher resolution than most desktop PC monitors). Additionally,
many handheld devices now feature high-performance multicore CPUs
and large amounts of memory. The focus for the Khronos Group in
developing OpenGL ES 3.0 shifted toward appropriate market timing of
features relevant to handheld applications rather than addressing the
limited capabilities of devices.

The following sections introduce the OpenGL ES 3.0 pipeline.

OpenGL ES 3.0

As noted earlier, OpenGL ES 3.0 is the API covered in this book. Our
goal is to cover the OpenGL ES 3.0 specification in thorough detail, give
specific examples of how to use the features in OpenGL ES 3.0, and discuss
various performance optimization techniques. After reading this book, you
should have an excellent grasp of the OpenGL ES 3.0 API, be able to easily
write compelling OpenGL ES 3.0 applications, and not have to worry
about reading multiple specifications to understand how a feature works.

OpenGL ES 3.0 implements a graphics pipeline with programmable
shading and consists of two specifications: the OpenGL ES 3.0

4	 Chapter 1: Introduction to OpenGL ES 3.0

API specification and the OpenGL ES Shading Language 3.0
Specification (OpenGL ES SL). Figure 1-1 shows the OpenGL ES 3.0
graphics pipeline. The shaded boxes in this figure indicate the
programmable stages of the pipeline in OpenGL ES 3.0. An overview of
each stage in the OpenGL ES 3.0 graphics pipeline is presented next.

Vertex Buffer/
Arrays Objects

Vertex Shader

Textures

Fragment
Shader

Primitive
Assembly

Transform
Feedback

Rasterization

Per-Fragment
Operations

Framebuffer

API

Figure 1-1	 OpenGL ES 3.0 Graphics Pipeline

Vertex Shader

This section gives a high-level overview of vertex shaders. Vertex and
fragment shaders are covered in depth in later chapters. The vertex shader
implements a general-purpose programmable method for operating on
vertices.

The inputs to the vertex shader consist of the following:

•• Shader program—Vertex shader program source code or executable
that describes the operations that will be performed on the vertex.

•• Vertex shader inputs (or attributes)—Per-vertex data supplied using
vertex arrays.

•• Uniforms—Constant data used by the vertex (or fragment) shader.

•• Samplers—Specific types of uniforms that represent textures used by
the vertex shader.

OpenGL ES 3.0	 5

The outputs of the vertex shader were called varying variables in OpenGL
ES 2.0, but were renamed vertex shader output variables in OpenGL ES
3.0. In the primitive rasterization stage, the vertex shader output values
are calculated for each generated fragment and are passed in as inputs to
the fragment shader. The mechanism used to generate a value for each
fragment from the vertex shader outputs that is assigned to each vertex
of the primitive is called interpolation. Additionally, OpenGL ES 3.0 adds
a new feature called transform feedback, which allows the vertex shader
outputs to be selectively written to an output buffer (in addition to, or
instead of, being passed to the fragment shader). For example, as covered
in the transform feedback example in Chapter 14, a particle system can be
implemented in the vertex shader in which particles are output to a buffer
object using transform feedback. The inputs and outputs of the vertex
shader are shown in Figure 1-2.

Vertex shaders can be used for traditional vertex-based operations such as
transforming the position by a matrix, computing the lighting equation
to generate a per-vertex color, and generating or transforming texture

gl_Position

gl_PointSize

Output (Varying) N

...

Vertex Shader

...

Input (Attribute) N

Input (Attribute) 0

Input (Attribute) 1

Input (Attribute) 2

Input (Attribute) 3

Input (Attribute) 4

Uniforms Samplers

Output (Varying) 0

Output (Varying) 1

Output (Varying) 2

Output (Varying) 3

Output (Varying) 4

Figure 1-2	 OpenGL ES 3.0 Vertex Shader

6	 Chapter 1: Introduction to OpenGL ES 3.0

coordinates. Alternatively, because the vertex shader is specified by the
application, vertex shaders can be used to perform custom math that
enables new transforms, lighting, or vertex-based effects not allowed in
more traditional fixed-function pipelines.

Example 1-1 shows a vertex shader written using the OpenGL ES shading
language. We explain vertex shaders in significant detail later in the book.
We present this shader here just to give you an idea of what a vertex
shader looks like. The vertex shader in Example 1-1 takes a position and
its associated color data as input attributes, transforms the position using
a 4 × 4 matrix, and outputs the transformed position and color.

Example 1-1	 A Vertex Shader Example

1. #version 300 es
2. uniform mat4 u_mvpMatrix; // matrix to convert a_position
3. // �from model space to normalized
4. // device space
5.
6. // attributes input to the vertex shader
7. in vec4 a_position; // position value
8. in vec4 a_color; // input vertex color
9.
10. // output of the vertex shader - input to fragment
11. // shader
12. out vec4 v_color; // output vertex color
13. void main()
14. {
15. v_color = a_color;
16. gl_Position = u_mvpMatrix * a_position;
17. }

Line 1 provides the version of the Shading Language—information
that must appear on the first line of the shader (#version 300 es
indicates the OpenGL ES Shading Language v3.00). Line 2 describes a
uniform variable u_mvpMatrix that stores the combined model view and
projection matrix. Lines 7 and 8 describe the inputs to the vertex shader
and are referred to as vertex attributes. a_position is the input vertex
position attribute and a_color is the input vertex color attribute. On
line 12, we declare the output v_color to store the output of the vertex
shader that describes the per-vertex color. The built-in variable called
gl_Position is declared automatically, and the shader must write the
transformed position to this variable. A vertex or fragment shader has
a single entry point called the main function. Lines 13–17 describe the

OpenGL ES 3.0	 7

vertex shader main function. In line 15, we read the vertex attribute input
a_color and write it as the vertex output color v_color. In line 16, the
transformed vertex position is output by writing it to gl_Position.

Primitive Assembly

After the vertex shader, the next stage in the OpenGL ES 3.0 graphics
pipeline is primitive assembly. A primitive is a geometric object such
as a triangle, line, or point sprite. Each vertex of a primitive is sent to
a different copy of the vertex shader. During primitive assembly, these
vertices are grouped back into the primitive.

For each primitive, it must be determined whether the primitive lies
within the view frustum (the region of 3D space that is visible on the
screen). If the primitive is not completely inside the view frustum,
it might need to be clipped to the view frustum. If the primitive is
completely outside this region, it is discarded. After clipping, the vertex
position is converted to screen coordinates. A culling operation can also
be performed that discards primitives based on whether they face forward
or backward. After clipping and culling, the primitive is ready to be passed
to the next stage of the pipeline—the rasterization stage.

Rasterization

The next stage, shown in Figure 1-3, is the rasterization phase, where the
appropriate primitive (point sprite, line, or triangle) is drawn. Rasterization
is the process that converts primitives into a set of two-dimensional
fragments, which are then processed by the fragment shader. These two-
dimensional fragments represent pixels that can be drawn on the screen.

From
Primitive
Assembly

Line
Rasterization

Point Sprite
Rasterization

Triangle
Rasterization

Output for each fragment—
screen (xw, yw) coordinate,
attributes such as color,
texture coordinates, etc.

To Fragment Shader Stage

Figure 1-3	 OpenGL ES 3.0 Rasterization Stage

8	 Chapter 1: Introduction to OpenGL ES 3.0

Fragment Shader

The fragment shader implements a general-purpose programmable
method for operating on fragments. As shown in Figure 1-4, this shader is
executed for each generated fragment by the rasterization stage and takes
the following inputs:

•• Shader program—Fragment shader program source code or executable
that describes the operations that will be performed on the fragment.

•• Input variables—Outputs of the vertex shader that are generated by
the rasterization unit for each fragment using interpolation.

•• Uniforms—Constant data used by the fragment (or vertex) shader.

•• Samplers—Specific types of uniforms that represent textures used by
the fragment shader.

The fragment shader can either discard the fragment or generate one or more
color values referred to as outputs. Typically, the fragment shader outputs just

Input (Varying) 0

Input (Varying) 1

Input (Varying) 2

Input (Varying) 3

Input (Varying) 4

Output Color 0

Output Color 1

Output Color N

gl_FragDepthgl_FragCoord

gl_FrontFacing

gl_PointCoord

Input (Varying) N

...

...
Fragment Shader

Uniforms Samplers

Figure 1-4	 OpenGL ES 3.0 Fragment Shader

OpenGL ES 3.0	 9

a single color value, except when rendering to multiple render targets (see
the section Multiple Render Targets in Chapter 11); in the latter case, a color
value is output for each render target. The color, depth, stencil, and screen
coordinate location (x

w
, y

w
) generated by the rasterization stage become

inputs to the per-fragment operations stage of the OpenGL ES 3.0 pipeline.

Example 1-2 describes a simple fragment shader that can be coupled with
the vertex shader described in Example 1-1 to draw a Gouraud-shaded
triangle. Again, we will go into much more detail on fragment shaders
later in the book. We present this example just to give you a basic idea of
what a fragment shader looks like.

Example 1-2	 A Fragment Shader Example

1. #version 300 es
2. precision mediump float;
3.
4. in vec4 v_color; // input vertex color from vertex shader
5.
6. out vec4 fragColor; // output fragment color
7. void main()
8. {
9. fragColor = v_color;
10. }

Just as in the vertex shader, line 1 provides the version of the Shading
Language; this information must appear on the first line of the fragment
shader (#version 300 es indicates the OpenGL ES Shading Language
v3.00). Line 2 sets the default precision qualifier, which is explained in
detail in Chapter 4, “Shaders and Programs.” Line 4 describes the input
to the fragment shader. The vertex shader must write out the same set
of variables that are read in by the fragment shader. Line 6 provides the
declaration for the output variable of the fragment shader, which will be
the color passed on to the next stage. Lines 7–10 describe the fragment
shader main function. The output color is set to the input color v_color.
The inputs to the fragment shader are linearly interpolated across the
primitive before being passed into the fragment shader.

Per-Fragment Operations

After the fragment shader, the next stage is per-fragment operations. A
fragment produced by rasterization with (x

w
, y

w
) screen coordinates can

only modify the pixel at location (x
w
, y

w
) in the framebuffer. Figure 1-5

describes the OpenGL ES 3.0 per-fragment operations stage.

10	 Chapter 1: Introduction to OpenGL ES 3.0

Pixel
Ownership

Test

Scissor
Test

Fragment
Data

Stencil
Test

Depth
Test

Blending Dithering To
Framebuffer

Figure 1-5	 OpenGL ES 3.0 Per-Fragment Operations

During the per-fragment operations stage, the following functions (and
tests) are performed on each fragment, as shown in Figure 1-5:

•• Pixel ownership test—This test determines whether the pixel at
location (x

w
, y

w
) in the framebuffer is currently owned by OpenGL

ES. This test allows the window system to control which pixels in the
framebuffer belong to the current OpenGL ES context. For example,
if a window displaying the OpenGL ES framebuffer window is
obscured by another window, the windowing system may determine
that the obscured pixels are not owned by the OpenGL ES context
and, therefore, the pixels might not be displayed at all. While the
pixel ownership test is part of OpenGL ES, it is not controlled by the
developer, but rather takes place internally inside of OpenGL ES.

•• Scissor test—The scissor test determines whether (x
w
, y

w
) lies within

the scissor rectangle defined as part of the OpenGL ES state. If the
fragment is outside the scissor region, the fragment is discarded.

•• Stencil and depth tests—These tests are performed on the stencil and
depth value of the incoming fragment to determine whether the
fragment should be rejected.

•• Blending—Blending combines the newly generated fragment color value
with the color values stored in the framebuffer at location (x

w
, y

w
).

•• Dithering—Dithering can be used to minimize the artifacts that occur as
a result of using limited precision to store color values in the framebuffer.

At the end of the per-fragment stage, either the fragment is rejected or
a fragment color(s), depth, or stencil value is written to the framebuffer
at location (x

w
, y

w
). Writing of the fragment color(s), depth, and stencil

values depends on whether the appropriate write masks are enabled.
Write masks allow finer control over the color, depth, and stencil values
written into the associated buffers. For example, the write mask for the

What’s New in OpenGL ES 3.0	 11

color buffer could be set such that no red values are written into the color
buffer. In addition, OpenGL ES 3.0 provides an interface to read back the
pixels from the framebuffer.

Note:	 Alpha test and LogicOp are no longer part of the per-fragment
operations stage. These two stages exist in OpenGL 2.0 and
OpenGL ES 1.x. The alpha test stage is no longer needed because
the fragment shader can discard fragments; thus the alpha test
can be performed in the fragment shader. In addition, LogicOp
was removed because it is used only rarely by applications, and
the OpenGL ES working group did not receive requests from
independent software vendors (ISVs) to support this feature in
OpenGL ES 2.0.

What’s New in OpenGL ES 3.0

OpenGL ES 2.0 ushered in the era of programmable shaders for handheld
devices and has been wildly successful in powering games, applications,
and user interfaces across a wide range of devices. OpenGL ES 3.0
extends OpenGL ES 2.0 to support many new rendering techniques,
optimizations, and visual quality enhancements. The following sections
provide a categorized overview of the major new features that have been
added to OpenGL ES 3.0. Each of these features will be described in detail
later in the book.

Texturing

OpenGL ES 3.0 introduces many new features related to texturing:

•• sRGB textures and framebuffers—Allow the application to perform
gamma-correct rendering. Textures can be stored in gamma-corrected
sRGB space, uncorrected to linear space upon being fetched in the
shader, and then converted back to sRGB gamma-corrected space on
output to the framebuffer. This enables potentially higher visual fidelity
by properly computing lighting and other calculations in linear space.

•• 2D texture arrays—A texture target that stores an array of 2D textures.
Such arrays might, for example, be used to perform texture animation.
Prior to 2D texture arrays, such animation was typically done by tiling
the frames of an animation in a single 2D texture and modifying the
texture coordinates to change animation frames. With 2D texture
arrays, each frame of the animation can be specified in a 2D slice of
the array.

12	 Chapter 1: Introduction to OpenGL ES 3.0

•• 3D textures—While some OpenGL ES 2.0 implementations supported
3D textures through an extension, OpenGL ES 3.0 has made this a
mandatory feature. 3D textures are essential in many medical imaging
applications, such as those that perform direct volume rendering of
3D voxel data (e.g., CT, MRI, or PET data).

•• Depth textures and shadow comparison—Enable the depth buffer
to be stored in a texture. The most common use for depth textures
is in rendering shadows, where a depth buffer is rendered from the
viewpoint of the light source and then used for comparison when
rendering the scene to determine whether a fragment is in shadow.
In addition to depth textures, OpenGL ES 3.0 allows the comparison
against the depth texture to be done at the time of fetch, thereby
allowing bilinear filtering to be done on depth textures (also known as
percentage closest filtering [PCF]).

•• Seamless cubemaps—In OpenGL ES 2.0, rendering with cubemaps
could produce artifacts at the boundaries between cubemap faces. In
OpenGL ES 3.0, cubemaps can be sampled such that filtering uses data
from adjacent faces and removes the seaming artifact.

•• Floating-point textures—OpenGL ES 3.0 greatly expands on the
texture formats supported. Floating-point half-float (16-bit) textures
are supported and can be filtered, whereas full-float (32-bit) textures
are supported but not filterable. The ability to access floating-point
texture data has many applications, including high dynamic range
texturing to general-purpose computation.

•• ETC2/EAC texture compression—While several OpenGL ES 2.0
implementations provided support for vendor-specific compressed
texture formats (e.g., ATC by Qualcomm, PVRTC by Imagination
Technologies, and Ericsson Texture Compression by Sony Ericsson),
there was no standard compression format that developers could rely
on. In OpenGL ES 3.0, support for ETC2/EAC is mandatory. The ETC2/
EAC formats provide compression for RGB888, RGBA8888, and one-
and two-channel signed/unsigned texture data. Texture compression
offers several advantages, including better performance (due to better
utilization of the texture cache) as well as a reduction in GPU memory
utilization.

•• Integer textures—OpenGL ES 3.0 introduces the capability to render
to and fetch from textures stored as unnormalized signed or unsigned
8-bit, 16-bit, and 32-bit integer textures.

•• Additional texture formats—In addition to those formats already
mentioned, OpenGL ES 3.0 includes support for 11-11-10 RGB

What’s New in OpenGL ES 3.0	 13

floating-point textures, shared exponent RGB 9-9-9-5 textures,
10-10-10-2 integer textures, and 8-bit-per-component signed
normalized textures.

•• Non-power-of-2 textures (NPOT)—Textures can now be specified with
non-power-of-2 dimensions. This is useful in many situations, such as
when texturing from a video or camera feed that is captured/recorded
at a non-power-of-2 dimension.

•• Texture level of detail (LOD) features—The texture LOD parameter
used to determine which mipmap to fetch from can now be
clamped. Additionally, the base and maximum mipmap level can
be clamped. These two features, in combination, make it possible to
stream mipmaps. As larger mipmap levels become available, the base
level can be increased and the LOD value can be smoothly increased
to provide smooth-looking streaming textures. This is very useful, for
example, when downloading texture mipmap data over a network
connection.

•• Texture swizzles—A new texture object state was introduced to allow
independent control of where each channel (R, G, B, and A) of texture
data is mapped to in the shader.

•• Immutable textures—Provide a mechanism for the application to
specify the format and size of a texture before loading it with data. In
doing so, the texture format becomes immutable and the OpenGL ES
driver can perform all consistency and memory checks up-front. This
can improve performance by allowing the driver to skip consistency
checks at draw time.

•• Increased minimum sizes—All OpenGL ES 3.0 implementations are
required to support much larger texture resources than OpenGL ES
2.0. For example, the minimum supported 2D texture dimension in
OpenGL ES 2.0 was 64 but was increased to 2048 in OpenGL ES 3.0.

Shaders

OpenGL ES 3.0 includes a major update to the OpenGL ES Shading
Language (ESSL; to v3.00) and new API features to support new shader
features:

•• Program binaries—In OpenGL ES 2.0, it was possible to store shaders
in a binary format, but it was still required to link them into program
at runtime. In OpenGL ES 3.0, the entire linked program binary
(containing the vertex and fragment shader) can be stored in an

14	 Chapter 1: Introduction to OpenGL ES 3.0

offline binary format with no link step required at runtime. This can
potentially help reduce the load time of applications. Additionally,
OpenGL ES 3.0 provides an interface to retrieve the program binary
from the driver so no offline tools are required to use program
binaries.

•• Mandatory online compiler—OpenGL ES 2.0 made it optional
whether the driver would support online compilation of shaders. The
intent was to reduce the memory requirements of the driver, but this
achievement came at a major cost to developers in terms of having to
rely on vendor-specific tools to generate shaders. In OpenGL ES 3.0, all
implementations will have an online shader compiler.

•• Non-square matrices—New matrix types other than square matrices
are supported, and associated uniform calls were added to the API to
support loading them. Non-square matrices can reduce the instruction
count required for performing transformations. For example, if
performing an affine transformation, a 4 × 3 matrix can be used in
place of a 4 × 4 where the last row is (0, 0, 0, 1), thus reducing the
instructions required to perform the transformation.

•• Full integer support—Integer (and unsigned integer) scalar and vector
types, along with full integer operations, are supported in ESSL 3.00.
There are various built-in functions such as conversion from int to
float, and from float to int, as well as the ability to read integer values
from textures and output integer values to integer color buffers.

•• Centroid sampling—To avoid rendering artifacts when multisampling,
the output variables from the vertex shader (and inputs to the
fragment shader) can be declared with centroid sampling.

•• Flat/smooth interpolators—In OpenGL ES 2.0, all interpolators were
implicitly linearly interpolated across the primitive. In ESSL 3.00,
interpolators (vertex shader outputs/fragment shader inputs) can be
explicitly declared to have either smooth or flat shading.

•• Uniform blocks—Uniform values can be grouped together into
uniform blocks. Uniform blocks can be loaded more efficiently and
also shared across multiple shader programs.

•• Layout qualifiers—Vertex shader inputs can be declared with layout
qualifiers to explicitly bind the location in the shader source without
requiring making API calls. Layout qualifiers can also be used for
fragment shader outputs to bind the outputs to each target when
rendering to multiple render targets. Further, layout qualifiers can be
used to control the memory layout for uniform blocks.

What’s New in OpenGL ES 3.0	 15

•• Instance and vertex ID—The vertex index is now accessible in the
vertex shader as well as the instance ID if using instance rendering.

•• Fragment depth—The fragment shader can explicitly control the
depth value for the current fragment rather than relying on the
interpolation of its depth value.

•• New built-in functions—ESSL 3.00 introduces many new built-in
functions to support new texture features, fragment derivatives, half-
float data conversion, and matrix and math operations.

•• Relaxed limitations—ESSL 3.0 greatly relaxes the restrictions on
shaders. Shaders are no longer limited in terms of instruction length,
fully support looping and branching on variables, and support
indexing on arrays.

Geometry

OpenGL ES 3.0 introduces several new features related to geometry
specification and control of primitive rendering:

•• Transform feedback—Allows the output of the vertex shader to
be captured in a buffer object. This is useful for a wide range of
techniques that perform animation on the GPU without any CPU
intervention—for example, particle animation or physics simulation
using render-to-vertex-buffer.

•• Boolean occlusion queries—Enable the application to query whether
any pixels of a draw call (or a set of draw calls) passes the depth
test. This feature can be used within a variety of techniques, such as
visibility determination for a lens flare effect as well as optimization
to avoid performing geometry processing on objects whose bounding
volume is obscured.

•• Instanced rendering—Efficiently renders objects that contain similar
geometry but differ by attributes (such as transformation matrix, color,
or size). This feature is useful in rendering large quantities of similar
objects, such as for crowd rendering.

•• Primitive restart—When using triangle strips in OpenGL ES 2.0 for a
new primitive, the application would have to insert indices into the
index buffer to represent a degenerate triangle. In OpenGL ES 3.0, a
special index value can be used that indicates the beginning of a new
primitive. This obviates the need for generating degenerate triangles
when using triangle strips.

16	 Chapter 1: Introduction to OpenGL ES 3.0

•• New vertex formats—New vertex formats, including 10-10-10-2 signed
and unsigned normalized vertex attributes; 8-bit, 16-bit, and 32-bit
integer attributes; and 16-bit half-float, are supported in OpenGL ES 3.0.

Buffer Objects

OpenGL ES 3.0 introduces many new buffer objects to increase the
efficiency and flexibility of specifying data to various parts of the graphics
pipeline:

•• Uniform buffer objects—Provide an efficient method for storing/
binding large blocks of uniforms. Uniform buffer objects can be used
to reduce the performance cost of binding uniform values to shaders,
which is a common bottleneck in OpenGL ES 2.0 applications.

•• Vertex array objects—Provide an efficient method for binding and
switching between vertex array states. Vertex array objects are
essentially container objects for vertex array states. Using them allows
an application to switch the vertex array state in a single API call
rather than making several calls.

•• Sampler objects—Separate the sampler state (texture wrap mode
and filtering) from the texture object. This provides a more efficient
method of sharing the sampler state across textures.

•• Sync objects—Provide a mechanism for the application to check on
whether a set of OpenGL ES operations has finished executing on
the GPU. A related new feature is a fence, which provides a way for
the application to inform the GPU that it should wait until a set of
OpenGL ES operations has finished executing before queuing up more
operations for execution.

•• Pixel buffer objects—Enable the application to perform asynchronous
transfer of data to pixel operations and texture transfer operations.
This optimization is primarily intended to provide faster transfer
of data between the CPU and the GPU, where the application can
continue doing work during the transfer operation.

•• Buffer subrange mapping—Allows the application to map a subregion
of a buffer for access by the CPU. This can provide better performance
than traditional buffer mapping, in which the whole buffer needs to
be available to the client.

•• Buffer object to buffer object copies—Provide a mechanism to
efficiently transfer data from one buffer object to another without
intervention on the CPU.

OpenGL ES 3.0 and Backward Compatibility	 17

Framebuffer

OpenGL ES 3.0 adds many new features related to off-screen rendering to
framebuffer objects:

•• Multiple render targets (MRTs)—Allow the application to render
simultaneously to several color buffers at one time. With MRTs, the
fragment shader outputs several colors, one for each attached color
buffer. MRTs are used in many advanced rendering algorithms, such as
deferred shading.

•• Multisample renderbuffers—Enable the application to render to off-
screen framebuffers with multisample anti-aliasing. The multisample
renderbuffers cannot be directly bound to textures, but they can
be resolved to single-sample textures using the newly introduced
framebuffer blit.

•• Framebuffer invalidation hints—Many implementations of OpenGL
ES 3.0 are based on GPUs that use tile-based rendering (TBR;
explained in the Framebuffer Invalidation section in Chapter 12).
It is often the case that TBR incurs a significant performance cost
when having to unnecessarily restore the contents of the tiles for
further rendering to a framebuffer. Framebuffer invalidation gives
the application a mechanism to inform the driver that the contents
of the framebuffer are no longer needed. This allows the driver
to take optimization steps to skip unnecessary restore operations
on the tiles. Such functionality is very important to achieve
peak performance in many applications, especially those that do
significant amounts of off-screen rendering.

•• New blend equations—The min/max functions are supported in
OpenGL ES 3.0 as a blend equation.

OpenGL ES 3.0 and Backward Compatibility

OpenGL ES 3.0 is backward compatible with OpenGL ES 2.0. This means
that just about any application written to use OpenGL ES 2.0 will run on
implementations of OpenGL ES 3.0. There are some very minor changes
to the later version that will affect a small number of applications in terms
of backward compatibility. Namely, framebuffer objects are no longer
shared between contexts, cubemaps are always filtered using seamless
filtering, and there are minor changes in the way signed fixed-point
numbers are converted to floating-point numbers.

18	 Chapter 1: Introduction to OpenGL ES 3.0

The fact that OpenGL ES 3.0 is backward compatible with OpenGL ES
2.0 differs from what was done for OpenGL ES 2.0 with respect to its
backward compatibility with previous versions of OpenGL ES. OpenGL ES
2.0 is not backward compatible with OpenGL ES 1.x. OpenGL ES 2.0/3.0
do not support the fixed-function pipeline that OpenGL ES 1.x supports.
The OpenGL ES 2.0/3.0 programmable vertex shader replaces the fixed-
function vertex units implemented in OpenGL ES 1.x. The fixed-function
vertex units implement a specific vertex transformation and lighting
equation that can be used to transform the vertex position, transform
or generate texture coordinates, and calculate the vertex color. Similarly,
the programmable fragment shader replaces the fixed-function texture
combine units implemented in OpenGL ES 1.x. The fixed-function texture
combine units implement a texture combine stage for each texture unit.
The texture color is combined with the diffuse color and the output of the
previous texture combine stage with a fixed set of operations such as add,
modulate, subtract, and dot.

The OpenGL ES working group decided against backward compatibility
between OpenGL ES 2.0/3.0 and OpenGL ES 1.x for the following reasons:

•• Supporting the fixed-function pipeline in OpenGL ES 2.0/3.0
implies that the API would support more than one way of
implementing a feature, in violation of one of the criteria used
by the working group in determining which features should be
supported. The programmable pipeline allows applications to
implement the fixed-function pipeline using shaders, so there
is really no compelling reason to be backward compatible with
OpenGL ES 1.x.

•• Feedback from ISVs indicated that most games do not mix
programmable and fixed-function pipelines. That is, games are written
either for a fixed-function pipeline or for a programmable pipeline.
Once you have a programmable pipeline, there is no reason to use
a fixed-function pipeline, as you have much more flexibility in the
effects that can be rendered.

•• The OpenGL ES 2.0/3.0 driver’s memory footprint would be much
larger if it had to support both the fixed-function and programmable
pipelines. For the devices targeted by OpenGL ES, minimizing
memory footprint is an important design criterion. Separating the
fixed-function support into the OpenGL ES 1.x API and placing the
programmable shader support into the OpenGL ES 2.0/3.0 APIs meant
that vendors that do not require OpenGL ES 1.x support no longer
need to include this driver.

EGL	 19

EGL

OpenGL ES commands require a rendering context and a drawing
surface. The rendering context stores the appropriate OpenGL ES state.
The drawing surface is the surface to which primitives will be drawn.
The drawing surface specifies the types of buffers that are required for
rendering, such as a color buffer, depth buffer, and stencil buffer. The
drawing surface also specifies the bit depths of each of the required buffers.

The OpenGL ES API does not mention how a rendering context is created
or how the rendering context gets attached to the native windowing
system. EGL is one interface between the Khronos rendering APIs such
as OpenGL ES and the native window system; there is no hard-and-fast
requirement to provide EGL when implementing OpenGL ES. Developers
should refer to the platform vendor’s documentation to determine which
interface is supported. As of this writing, the only known platform
supporting OpenGL ES that does not support EGL is iOS.

Any OpenGL ES application will need to perform the following tasks using
EGL before any rendering can begin:

•• Query the displays that are available on the device and initialize
them. For example, a flip phone might have two LCD panels, and it is
possible that we might use OpenGL ES to render to surfaces that can
be displayed on either or both panels.

•• Create a rendering surface. Surfaces created in EGL can be categorized
as on-screen surfaces or off-screen surfaces. On-screen surfaces are
attached to the native window system, whereas off-screen surfaces are
pixel buffers that do not get displayed but can be used as rendering
surfaces. These surfaces can be used to render into a texture and can
be shared across multiple Khronos APIs.

•• Create a rendering context. EGL is needed to create an OpenGL ES
rendering context. This context needs to be attached to an appropriate
surface before rendering can actually begin.

The EGL API implements the features just described as well as additional
functionality such as power management, support for multiple rendering
contexts in a process, sharing objects (such as textures or vertex buffers)
across rendering contexts in a process, and a mechanism to get function
pointers to EGL or OpenGL ES extension functions supported by a given
implementation.

The latest version of the EGL specification is EGL version 1.4.

20	 Chapter 1: Introduction to OpenGL ES 3.0

Programming with OpenGL ES 3.0

To write any OpenGL ES 3.0 application, you need to know which header
files must be included and with which libraries your application needs to
link. It is also useful to understand the syntax used by the EGL and GL
command names and command parameters.

Libraries and Include Files

OpenGL ES 3.0 applications need to link with the following libraries: the
OpenGL ES 3.0 library named libGLESv2.lib and the EGL library named
libEGL.lib.

OpenGL ES 3.0 applications also need to include the appropriate ES 3.0
and EGL header files. The following include files must be included by any
OpenGL ES 3.0 application:

#include <EGL/egl.h>
#include <GLES3/gl3.h>

egl.h is the EGL header file and gl3.h is the OpenGL ES 3.0 header file.
Applications can optionally include gl2ext.h, which is the header file that
describes the list of Khronos-approved extensions for OpenGL ES 2.0/3.0.

The header file and library names are platform dependent. The OpenGL
ES working group has tried to define the library and header names and
indicate how they should be organized, but this arrangement might not
be found on all OpenGL ES platforms. Developers should, however, refer
to the platform vendor’s documentation for information on how the
libraries and include files are named and organized. The official OpenGL
ES header files are maintained by Khronos and available from http://
khronos.org/registry/gles/. The sample code for the book also includes a
copy of the header files (working with the sample code is described in the
next chapter).

EGL Command Syntax

All EGL commands begin with the prefix egl and use an initial
capital letter for each word making up the command name (e.g.,
eglCreateWindowSurface). Similarly, EGL data types also begin with the
prefix Egl and use an initial capital letter for each word making up the
type name, except for EGLint and EGLenum.

Table 1-1 briefly describes the EGL data types used.

http://khronos.org/registry/gles/
http://khronos.org/registry/gles/

OpenGL ES Command Syntax	 21

OpenGL ES Command Syntax

All OpenGL ES commands begin with the prefix gl and use an initial capital
letter for each word making up the command name (e.g., glBlendEquation).
Similarly, OpenGL ES data types also begin with the prefix GL.

In addition, some commands might take arguments in different flavors.
The flavors or types vary in terms of the number of arguments taken
(one to four arguments), the data type of the arguments used (byte [b],
unsigned byte [ub], short [s], unsigned short [us], int [i], and float [f]),
and whether the arguments are passed as a vector (v). A few examples of
command flavors allowed in OpenGL ES follow.

The following two commands are equivalent except that one specifies the
uniform value as floats and the other as integers:

glUniform2f(location, l.Of, O.Of);
glUniform2i(location, 1, 0)

The following lines describe commands that are also equivalent, except
that one passes command arguments as a vector and the other does not:

GLfloat	 coord[4] = { l.Of, 0.75f, 0.25f, O.Of };
glUniform4fv(location, coord);
glUniform4f(location, coord[0], coord[l], coord[2], coord[3]);

Table 1-2 describes the command suffixes and argument data types used in
OpenGL ES.

Finally, OpenGL ES defines the type GLvoid. This type is used for OpenGL
ES commands that accept pointers.

In the rest of this book, OpenGL ES commands are referred to by their base
names only, and an asterisk is used to indicate that this base name refers

Table 1-1	 EGL Data Types

Data Type C-Language Type EGL Type

32-bit integer int EGLint

32-bit unsigned integer unsignedint EGLBoolean, EGLenum

Pointer void * EGLConfig,
EGLContext,
EGLDisplay,
EGLSurface,
EGLClientBuffer

22	 Chapter 1: Introduction to OpenGL ES 3.0

to multiple flavors of the command name. For example, glUniform*()
stands for all variations of the command you use to specify uniforms and
glUniform*v() refers to all the vector versions of the command you use
to specify uniforms. If a particular version of a command needs to be
discussed, we use the full command name with the appropriate suffixes.

Error Handling

OpenGL ES commands incorrectly used by applications generate an error
code. This error code is recorded and can be queried using glGetError.
No other errors will be recorded until the application has queried the first
error code using glGetError. Once the error code has been queried, the
current error code is reset to GL_NO_ERROR. The command that generated
the error is ignored and does not affect the OpenGL ES state except for the
GL_OUT_OF_MEMORY error described later in this section.

The glGetError command is described next.

Table 1-2	 OpenGL ES Command Suffixes and Argument Data Types

Suffix Data Type C-Language Type GL Type

b 8-bit signed integer signed char GLbyte

ub 8-bit unsigned integer unsigned char GLubyte,
GLboolean

s 16-bit signed integer short GLshort

us 16-bit unsigned integer unsigned short GLushort

i 32-bit signed integer int GLint

ui 32-bit unsigned integer unsigned int GLuint,
GLbitfield,
GLenum

x 16.16 fixed point int GLfixed

f 32-bit floating point float GLfloat,
GLclampf

i64 64-bit integer khronos_int64_t
(platform dependent)

GLint64

ui64 64-bit unsigned integer khronos_uint64_t
(platform dependent)

GLuint64

Basic State Management	 23

Table 1-3 lists the basic error codes and their description. Other error codes
besides the basic ones listed in this table are described in the chapters that
cover OpenGL ES commands that generate these specific errors.

Basic State Management

Figure 1-1 showed the various pipeline stages in OpenGL ES 3.0. Each
pipeline stage has a state that can be enabled or disabled and appropriate
state values that are maintained per context. Examples of states are
blending enable, blend factors, cull enable, and cull face. The state is
initialized with default values when an OpenGL ES context (EGLContext)
is initialized. The state enables can be set using the glEnable and
glDisable commands.

GLenum glGetError (void)

Returns the current error code and resets the current error code to
GL_NO_ERROR. If GL_NO_ERROR is returned, there has been no detectable
error since the last call to glGetError.

Table 1-3	 OpenGL ES Basic Error Codes

Error Code Description

GL_NO_ERROR No error has been generated since the last
call to glGetError.

GL_INVALID_ENUM A GLenum argument is out of range. The
command that generated the error is ignored.

GL_INVALID_VALUE A numeric argument is out of range. The
command that generated the error is ignored.

GL_INVALID_OPERATION The specific command cannot be performed
in the current OpenGL ES state. The
command that generated the error is ignored.

GL_OUT_OF_MEMORY There is insufficient memory to execute
this command. The state of the OpenGL ES
pipeline is considered to be undefined if this
error is encountered except for the current
error code.

24	 Chapter 1: Introduction to OpenGL ES 3.0

Later chapters will describe the specific state enables for each pipeline
stage shown in Figure 1-1. You can also check whether a state is currently
enabled or disabled by using the gIisEnabled command.

void glEnable(GLenum cap)

void glDisable(GLenum cap)

glEnable and glDisable enable and disable various capabilities. The
initial value for each capability is set to GL_FALSE except for GL_DITHER,
which is set to GL_TRUE. The error code GL_INVALID_ENUM is generated if
cap is not a valid state enum.

cap state to enable or disable, can be:
GL_BLEND

GL_CULL_FACE

GL_DEPTH_TEST

GL_DITHER

GL_POLYGON_OFFSET_FILL

GL_PRIMITIVE_RESTART_FIXED_INDEX

GL_RASTERIZER_DISCARD

GL_SAMPLE_ALPHA_TO_COVERAGE

GL_SAMPLE_COVERAGE

GL_SCISSOR_TEST

GL_STENCIL_TEST

GLboolean gIisEnabled(GLenum cap)

Returns GL_TRUE or GL_FALSE depending on whether the state being
queried is enabled or disabled. Generates the error code GL_INVALID_
ENUM if cap is not a valid state enum.

Specific state values such as blend factor, depth test values, and so on can
also be queried using appropriate glGet*** commands. These commands
are described in detail in Chapter 15, “State Queries.”

Further Reading	 25

Further Reading

The OpenGL ES 1.0, 1.1, 2.0, and 3.0 specifications can be found at
khronos.org/opengles/. In addition, the Khronos website (khronos.
org) has the latest information on all Khronos specifications, developer
message boards, tutorials, and examples.

•• Khronos OpenGL ES 1.1 website: http://khronos.org/opengles/1_X/

•• Khronos OpenGL ES 2.0 website: http://khronos.org/opengles/2_X/

•• Khronos OpenGL ES 3.0 website: http://khronos.org/opengles/3_X/

•• Khronos EGL website: http://khronos.org/egl/

http://khronos.org/opengles/1_X/
http://khronos.org/opengles/2_X/
http://khronos.org/opengles/3_X/
http://khronos.org/egl/

This page intentionally left blank

27

Chapter 2

Hello Triangle: An OpenGL ES 3.0 Example

To introduce the basic concepts of OpenGL ES 3.0, we begin with a simple
example. This chapter shows what is required to create an OpenGL ES 3.0
program that draws a single triangle. The program we will write is just
about the most basic example of an OpenGL ES 3.0 application that draws
geometry. This chapter covers the following concepts:

•• Creating an on-screen render surface with EGL

•• Loading vertex and fragment shaders

•• Creating a program object, attaching vertex and fragment shaders, and
linking a program object

•• Setting the viewport

•• Clearing the color buffer

•• Rendering a simple primitive

•• Making the contents of the color buffer visible in the EGL window
surface

As it turns out, a significant number of steps are required before we can
start drawing a triangle with OpenGL ES 3.0. This chapter goes over the
basics of each of these steps. Later in this book, we fill in the details on
each of these steps and further document the API. Our purpose here is to
get you up and running with your first simple example so that you get an
idea of what goes into creating an application with OpenGL ES 3.0.

28	 Chapter 2: Hello Triangle: An OpenGL ES 3.0 Example

Code Framework

Throughout this book, we build a library of utility functions that form a
framework of useful functions for writing OpenGL ES 3.0 programs. In
developing example programs for the book, we had several goals for this
code framework:

1. It should be simple, small, and easy to understand. We wanted to
focus our examples on the relevant OpenGL ES 3.0 calls, rather than
on a large code framework that we invented. Thus we focused our
framework on simplicity and sought to make the example programs
easy to read and understand. The goal of the framework is to allow
you to focus your attention on the important OpenGL ES 3.0 API
concepts in each example.

2. It should be portable. To the extent possible, we wanted the sample
code to be available on all platforms where OpenGL ES 3.0 is present.

As we go through the examples in the book, we will formally introduce
any new code framework functions that we use. In addition, you can
find full documentation for the code framework in Appendix C. Any
functions called in the example code that have names beginning with es
(e.g., esCreateWindow()) are part of the code framework we wrote for the
sample programs in this book.

Where to Download the Examples

You can find links to download the examples from the book website at
opengles-book.com.

As of this writing, the source code is available for Windows, Linux,
Android 4.3+ NDK, Android 4.3+ SDK (Java), and iOS7. On Windows,
the code is compatible with the Qualcomm OpenGL ES 3.0 Emulator,
ARM OpenGL ES 3.0 Emulator, and PowerVR OpenGL ES 3.0 Emulator.
On Linux, the currently available emulators are the Qualcomm OpenGL
ES 3.0 Emulator and the PowerVR OpenGL ES 3.0 Emulator. The code
should be compatible with any Windows- or Linux-based OpenGL ES 3.0
implementations in addition to those mentioned here. The choice of
development tool is up to the reader. We have used cmake, a cross-
platform build generation tool, on Windows and Linux, which allows
you to use IDEs including Microsoft Visual Studio, Eclipse, Code::Blocks,
and Xcode.

Hello Triangle Example	 29

On Android and iOS, we provide projects compatible with those platforms
(Eclipse ADT and Xcode). As of this writing, many devices support OpenGL
ES 3.0, including iPhone 5s, Google Nexus 4 and 7, Nexus 10, HTC One,
LG G2, Samsung Galaxy S4 (Snapdragon), and Samsung Galaxy Note 3. On
iOS7, you can run the OpenGL ES 3.0 examples on your Mac using the iOS
Simulator. On Android, you will need a device compatible with OpenGL
ES 3.0 to run the samples. Details on building the sample code for each
platform are provided in Chapter 16, “OpenGL ES Platforms.”

Hello Triangle Example

Let’s look at the full source code for our Hello Triangle example program,
which is listed in Example 2-1. Those readers who are familiar with
fixed-function desktop OpenGL will probably think this is a lot of code
just to draw a simple triangle. Those of you who are not familiar with
desktop OpenGL will also probably think this is a lot of code just to draw
a triangle! Remember, OpenGL ES 3.0 is fully shader based, which means
you cannot draw any geometry without having the appropriate shaders
loaded and bound. This means that more setup code is required to render
than in desktop OpenGL using fixed-function processing.

Example 2-1	 Hello_Triangle.c Example

#include "esUtil.h"

typedef struct
{
 // Handle to a program object
 GLuint programObject;

} UserData;

///
// Create a shader object, load the shader source, and
// compile the shader
//
GLuint LoadShader (GLenum type, const char *shaderSrc)
{
 GLuint shader;
 GLint compiled;

 // Create the shader object
 shader = glCreateShader (type);

(continues)

30	 Chapter 2: Hello Triangle: An OpenGL ES 3.0 Example

Example 2-1	 Hello_Triangle.c Example (continued)

 if (shader == 0)
return 0;

 // Load the shader source
 glShaderSource (shader, 1, &shaderSrc, NULL);

 // Compile the shader
 glCompileShader (shader);

 // Check the compile status
 glGetShaderiv (shader, GL_COMPILE_STATUS, &compiled);

 if (!compiled)
 {

GLint infoLen = 0;

glGetShaderiv (shader, GL_INFO_LOG_LENGTH, &infoLen);

if (infoLen > 1)
{

char* infoLog = malloc (sizeof(char) * infoLen);

glGetShaderInfoLog(shader, infoLen, NULL, infoLog);
esLogMessage ("Error compiling shader:\n%s\n", infoLog);

free (infoLog);

}

glDeleteShader (shader);
return 0;

 }

 return shader;

}

///
// Initialize the shader and program object
//
int Init (ESContext *esContext)
{
 UserData *userData = esContext->userData;
 char vShaderStr[] =

"#version 300 es \n"
"layout(location = 0) in vec4 vPosition; \n"
"void main() \n"
"{ \n"

Hello Triangle Example	 31

Example 2-1	 Hello_Triangle.c Example (continued)

" gl_Position = vPosition; \n"
"} \n";

 char fShaderStr[] =
"#version 300 es \n"
"precision mediump float; \n"
"out vec4 fragColor; \n"
"void main() \n"
"{ \n"
"    fragColor = vec4 (1.0, 0.0, 0.0, 1.0);    \n"
"} \n";

 GLuint vertexShader;
 GLuint fragmentShader;
 GLuint programObject;
 GLint linked;

 // Load the vertex/fragment shaders
 vertexShader = LoadShader (GL_VERTEX_SHADER, vShaderStr);
 fragmentShader = LoadShader (GL_FRAGMENT_SHADER, fShaderStr);

 // Create the program object
 programObject = glCreateProgram ();

 if (programObject == 0)
return 0;

 glAttachShader (programObject, vertexShader);
 glAttachShader (programObject, fragmentShader);

 // Link the program
 glLinkProgram (programObject);

 // Check the link status
 glGetProgramiv (programObject, GL_LINK_STATUS, &linked);

 if (!linked)
 {

GLint infoLen = 0;

glGetProgramiv (programObject, GL_INFO_LOG_LENGTH, &infoLen);

if (infoLen > 1)
{

char* infoLog = malloc (sizeof(char) * infoLen);

glGetProgramInfoLog (programObject, infoLen, NULL, infoLog);

(continues)

32	 Chapter 2: Hello Triangle: An OpenGL ES 3.0 Example

Example 2-1	 Hello_Triangle.c Example (continued)

esLogMessage ("Error linking program:\n%s\n", infoLog);

free (infoLog);
}

glDeleteProgram (programObject);
return FALSE;

 }

 // Store the program object
 userData->programObject = programObject;

 glClearColor (0.0f, 0.0f, 0.0f, 0.0f);
 return TRUE;
}

///
// Draw a triangle using the shader pair created in Init()
//
void Draw (ESContext *esContext)
{
 UserData *userData = esContext->userData;
 GLfloat vVertices[] = { 0.0f, 0.5f, 0.0f,

-0.5f, -0.5f, 0.0f,
0.5f, -0.5f, 0.0f };

 // Set the viewport
 glViewport (0, 0, esContext->width, esContext->height);

 // Clear the color buffer
 glClear (GL_COLOR_BUFFER_BIT);

 // Use the program object
 glUseProgram (userData->programObject);

 // Load the vertex data
 glVertexAttribPointer (0, 3, GL_FLOAT, GL_FALSE, 0, vVertices);
 glEnableVertexAttribArray (0);

 glDrawArrays (GL_TRIANGLES, 0, 3);
}

void Shutdown (ESContext *esContext)
{
 UserData *userData = esContext->userData;

 glDeleteProgram(userData->programObject);
}

Hello Triangle Example	 33

The remainder of this chapter describes the code in this example. If you
run the Hello Triangle example, you should see the window shown in
Figure 2-1. Instructions on how to build and run the sample code for
Windows, Linux, Android 4.3+, and iOS are provided in Chapter 16,
“OpenGL ES Platforms.” Please refer to the instructions in that chapter for
your platform to get up and running with the sample code.

Figure 2-1	 Hello Triangle Example

Example 2-1	 Hello_Triangle.c Example (continued)

int esMain(ESContext *esContext)
{
 esContext->userData = malloc (sizeof(UserData));

 esCreateWindow (esContext, "Hello Triangle", 320, 240,
ES_WINDOW_RGB);

 if (!Init (esContext))
 return GL_FALSE;

 esRegisterShutdownFunc(esContext, Shutdown);
 esRegisterDrawFunc (esContext, Draw);

 return GL_TRUE;
}

The standard GL3 (GLES3/gl3.h) and EGL (EGL/egl.h) header files
provided by Khronos are used as an interface to OpenGL ES 3.0 and EGL.
The OpenGL ES 3.0 examples are organized in the following directories:

•• Common/—Contains the OpenGL ES 3.0 Framework project, code, and
the emulator.

•• chapter_x/—Contains the example programs for each chapter.

34	 Chapter 2: Hello Triangle: An OpenGL ES 3.0 Example

Using the OpenGL ES 3.0 Framework

Each application that uses our code framework declares a main entry
point named esMain. In the main function in Hello Triangle, you will
see calls to several ES utility functions. The esMain function takes an
ESContext as an argument.

int esMain(ESContext *esContext)

The ESContext has a member variable named userData that is a void*.
Each of the sample programs will store any of the data that are needed
for the application in userData. The other elements in the ESContext
structure are described in the header file and are intended only to be read
by the user application. Other data in the ESContext structure include
information such as the window width and height, EGL context, and
callback function pointers.

The esMain function is responsible for allocating the userData, creating
the window, and initializing the draw callback function:

esContext->userData = malloc (sizeof(UserData));

esCreateWindow(�esContext, "Hello Triangle", 320, 240,
ES_WINDOW_RGB);

if (!Init(esContext))
  return GL_FALSE;

esRegisterDrawFunc(esContext, Draw);

The call to esCreateWindow creates a window of the specified width and
height (in this case, 320 × 240). The “Hello Triangle” parameter is used to
name the window; on platforms supporting it (Windows and Linux), this
name will be displayed in the top band of the window. The last parameter
is a bit field that specifies options for the window creation. In this case,
we request an RGB framebuffer. Chapter 3, “An Introduction to EGL,”
discusses what esCreateWindow does in more detail. This function uses
EGL to create an on-screen render surface that is attached to a window.
EGL is a platform-independent API for creating rendering surfaces and
contexts. For now, we will simply say that this function creates a rendering
surface and leave the details on how it works for the next chapter.

After calling esCreateWindow, the main function next calls Init to
initialize everything needed to run the program. Finally, it registers a

Creating a Simple Vertex and Fragment Shader	 35

callback function, Draw, that will be called to render the frame. After exiting
esMain, the framework enters into the main loop, which will call the
registered callback functions (Draw, Update) until the window is closed.

Creating a Simple Vertex and Fragment Shader

In OpenGL ES 3.0, no geometry can be drawn unless a valid vertex
and fragment shader have been loaded. In Chapter 1, “Introduction
to OpenGL ES 3.0,” we covered the basics of the OpenGL ES 3.0
programmable pipeline. There, you learned about the concepts of
vertex and fragment shaders. These two shader programs describe the
transformation of vertices and drawing of fragments. To do any rendering
at all, an OpenGL ES 3.0 program must have at least one vertex shader
and one fragment shader.

The biggest task that the Init function in Hello Triangle accomplishes is
the loading of a vertex shader and a fragment shader. The vertex shader
that is given in the program is very simple:

char vShaderStr[] =
 "#version 300 es \n"
 "layout(location = 0) in vec4 vPosition; \n"
 "void main() \n"
 "{ \n"
 " gl_Position = vPosition; \n"
 "} \n";

The first line of the vertex shader declares the shader version that is being
used (#version 300 es indicates OpenGL ES Shading Language v3.00).
The vertex shader declares one input attribute array—a four-component
vector named vPosition. Later on, the Draw function in Hello Triangle
will send in positions for each vertex that will be placed in this variable.
The layout(location = 0) qualifier signifies that the location of this
variable is vertex attribute 0. The shader declares a main function that
marks the beginning of execution of the shader. The body of the shader is
very simple; it copies the vPosition input attribute into a special output
variable named gl_Position. Every vertex shader must output a position
into the gl_Position variable. This variable defines the position that
is passed through to the next stage in the pipeline. The topic of writing
shaders is a large part of what we cover in this book, but for now we just
want to give you a flavor of what a vertex shader looks like. In Chapter 5,
“OpenGL ES Shading Language,” we cover the OpenGL ES shading

36	 Chapter 2: Hello Triangle: An OpenGL ES 3.0 Example

language; in Chapter 8, “Vertex Shaders,” we specifically cover how to
write vertex shaders.

The fragment shader in the example is simple:

char fShaderStr[] =
 "#version 300 es \n"
 "precision mediump float; \n"
 "out vec4 fragColor; \n"
 "void main() \n"
 "{ \n"
 " fragColor = vec4 (1.0, 0.0, 0.0, 1.0); \n"
 "} \n";

Just as in the vertex shader, the first line of the fragment shader declares
the shader version. The next statement in the fragment shader declares
the default precision for float variables in the shader. For more details
on this topic, please see the section on precision qualifiers in Chapter 5,
“OpenGL ES Shading Language.” The fragment shader declares a single
output variable fragColor, which is a vector of four components. The
value written to this variable is what will be written out into the color
buffer. In this case, the shader outputs a red color (1.0, 0.0, 0.0, 1.0) for
all fragments. The details of developing fragment shaders are covered in
Chapter 9, “Texturing,” and Chapter 10, “Fragment Shaders.” Again, here
we are just showing you what a fragment shader looks like.

Typically, a game or application would not place shader source strings
inline in the way we have done in this example. In most real-world
applications, the shader is loaded from some sort of text or data file and
then loaded to the API. However, for simplicity and to make the example
program self-contained, we provide the shader source strings directly in
the program code.

Compiling and Loading the Shaders

Now that we have the shader source code defined, we can go about loading
the shaders to OpenGL ES. The LoadShader function in the Hello Triangle
example is responsible for loading the shader source code, compiling it,
and checking it for errors. It returns a shader object, which is an OpenGL
ES 3.0 object that can later be used for attachment to a program object
(these two objects are detailed in Chapter 4, “Shaders and Programs”).

Let’s look at how the LoadShader function works. First, glCreateShader
creates a new shader object of the type specified.

Compiling and Loading the Shaders	 37

GLuint LoadShader(GLenum type, const char *shaderSrc)
{
 GLuint shader;
 GLint compiled;

 // Create the shader object
 shader = glCreateShader(type);

 if(shader == 0)
return 0;

The shader source code itself is loaded to the shader object
using glShaderSource. The shader is then compiled using the
glCompileShader function.

// Load the shader source
glShaderSource(shader, 1, &shaderSrc, NULL);

// Compile the shader
glCompileShader(shader);

After compiling the shader, the status of the compile is determined and
any errors that were generated are printed out.

// Check the compile status
glGetShaderiv(shader, GL_COMPILE_STATUS, &compiled);

if(!compiled)
{
  GLint infoLen = 0;

   glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &infoLen);

  if(infoLen > 1)
 {

 char* infoLog = malloc(sizeof(char) * infoLen);

 glGetShaderInfoLog(shader, infoLen, NULL, infoLog);
 esLogMessage("Error compiling shader:\n%s\n", infoLog);

 free(infoLog);
  }

  glDeleteShader(shader);
  return 0;
}

 return shader;

}

38	 Chapter 2: Hello Triangle: An OpenGL ES 3.0 Example

If the shader compiles successfully, a new shader object is returned that
will be attached to the program later. The details of these shader object
functions are covered in the first sections of Chapter 4, “Shaders and
Programs.”

Creating a Program Object and Linking
the Shaders

Once the application has created a shader object for the vertex and
fragment shaders, it needs to create a program object. Conceptually, the
program object can be thought of as the final linked program. Once the
various shaders are compiled into a shader object, they must be attached
to a program object and linked together before drawing.

The process of creating program objects and linking is fully described in
Chapter 4, “Shaders and Programs.” For now, we provide a brief overview
of the process. The first step is to create the program object and attach the
vertex shader and fragment shader to it.

// Create the program object
programObject = glCreateProgram();

if(programObject == 0)
 return 0;

glAttachShader(programObject, vertexShader);
glAttachShader(programObject, fragmentShader);

Finally, we are ready to link the program and check for errors:

// Link the program
glLinkProgram(programObject);

// Check the link status
glGetProgramiv(programObject, GL_LINK_STATUS, &1inked);

if(!linked)
{
 GLint infoLen = 0;

 glGetProgramiv(programObject, GL_INFO_LOG_LENGTH,&infoLen);

 if(infoLen > 1)
 {

Setting the Viewport and Clearing the Color Buffer	 39

char* infoLog = malloc(sizeof(char) * infoLen);

glGetProgramInfoLog(programObject, infoLen, NULL,infoLog);
esLogMessage("Error linking program:\n%s\n", infoLog);

free(infoLog) ;
 }

 glDeleteProgram(programObject) ;
 return FALSE;
}

// Store the program object
userData->programObject = programObject;

After all of these steps, we have finally compiled the shaders, checked for
compile errors, created the program object, attached the shaders, linked
the program, and checked for link errors. After successful linking of the
program object, we can now finally use the program object for rendering!
To use the program object for rendering, we bind it using glUseProgram.

// Use the program object
glUseProgram(userData->programObject);

After calling glUseProgram with the program object handle, all
subsequent rendering will occur using the vertex and fragment shaders
attached to the program object.

Setting the Viewport and Clearing the Color Buffer

Now that we have created a rendering surface with EGL and initialized
and loaded shaders, we are ready to actually draw something. The Draw
callback function draws the frame. The first command that we execute in
Draw is glViewport, which informs OpenGL ES of the origin, width, and
height of the 2D rendering surface that will be drawn to. In OpenGL ES,
the viewport defines the 2D rectangle in which all OpenGL ES rendering
operations will ultimately be displayed.

// Set the viewport
glviewport(0, 0, esContext->width, esContext->height);

The viewport is defined by an origin (x, y) and a width and height. We
cover glViewport in more detail in Chapter 7, “Primitive Assembly and
Rasterization,” when we discuss coordinate systems and clipping.

40	 Chapter 2: Hello Triangle: An OpenGL ES 3.0 Example

After setting the viewport, the next step is to clear the screen. In OpenGL
ES, multiple types of buffers are involved in drawing: color, depth, and
stencil. We cover these buffers in more detail in Chapter 11, “Fragment
Operations.” In the Hello Triangle example, only the color buffer is drawn
to. At the beginning of each frame, we clear the color buffer using the
glClear function.

// Clear the color buffer
glClear(GL_COLOR_BUFFER_BIT);

The buffer will be cleared to the color specified with glClearColor. In the
example program at the end of Init, the clear color was set to (1.0, 1.0,
1.0, 1.0), so the screen is cleared to white. The clear color should be set by
the application prior to calling glClear on the color buffer.

Loading the Geometry and Drawing a Primitive

Now that we have the color buffer cleared, viewport set, and program
object loaded, we need to specify the geometry for the triangle. The
vertices for the triangle are specified with three (x, y, z) coordinates in the
vVertices array.

GLfloat vVertices[] = { O.Of, 0.5f, O.Of,
-0.5f, -0.5f, O.Of,
0.5f, -0.5f, O.Of};

…
// Load the vertex data
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, vVertices);
glEnableVertexAttribArray(O) ;
glDrawArrays(GL_TRIANGLES, 0, 3);

The vertex positions need to be loaded to the GL and connected to the
vPosition attribute declared in the vertex shader. As you will remember,
earlier we bound the vPosition variable to the input attribute location
0. Each attribute in the vertex shader has a location that is uniquely
identified by an unsigned integer value. To load the data into vertex
attribute 0, we call the glVertexAttribPointer function. In Chapter 6,
“Vertex Attributes, Vertex Arrays, and Buffer Objects,” we cover how to
load vertex attributes and use vertex arrays in full.

The final step in drawing the triangle is to actually tell OpenGL ES to draw
the primitive. In this example, we use the function glDrawArrays for

Displaying the Back Buffer	 41

this purpose. This function draws a primitive such as a triangle, line, or
strip. We get into primitives in much more detail in Chapter 7, “Primitive
Assembly and Rasterization.”

Displaying the Back Buffer

We have finally gotten to the point where our triangle has been drawn
into the framebuffer. Now there is one final detail we must address: how
to actually display the framebuffer on the screen. Before we get into that,
let’s back up a little bit and discuss the concept of double buffering.

The framebuffer that is visible on the screen is represented by a two-
dimensional array of pixel data. One possible way we could think about
displaying images on the screen is to simply update the pixel data in the
visible framebuffer as we draw. However, there is a significant issue with
updating pixels directly on the displayable buffer—that is, in a typical
display system, the physical screen is updated from framebuffer memory at
a fixed rate. If we were to draw directly into the framebuffer, the user could
see artifacts as partial updates to the framebuffer where it is displayed.

To address this problem, we use a system known as double buffering. In
this scheme, there are two buffers: a front buffer and a back buffer. All
rendering occurs to the back buffer, which is located in an area of memory
that is not visible to the screen. When all rendering is complete, this
buffer is “swapped” with the front buffer (or visible buffer). The front
buffer then becomes the back buffer for the next frame.

Using this technique, we do not display a visible surface until all
rendering is complete for a frame. This activity is controlled in an
OpenGL ES application through EGL, by using an EGL function called
eglSwapBuffers (this function is called by our framework after calling
the Draw callback function):

eglSwapBuffers(esContext->eglDisplay, esContext->eglSurface);

This function informs EGL to swap the front buffer and back buffers.
The parameters sent to eglSwapBuffers are the EGL display and surface.
These two parameters represent the physical display and the rendering
surface, respectively. In the next chapter, we explain eglSwapBuffers in
more detail and further clarify the concepts of surface, context, and buffer
management. For now, suffice it to say that after swapping buffers we
finally have our triangle on screen!

42	 Chapter 2: Hello Triangle: An OpenGL ES 3.0 Example

Summary

In this chapter, we introduced a simple OpenGL ES 3.0 program that
draws a single triangle to the screen. The purpose of this introduction
was to familiarize you with several of the key components that make
up an OpenGL ES 3.0 application: creating an on-screen render surface
with EGL, working with shaders and their associated objects, setting
the viewport, clearing the color buffer, and rendering a primitive. Now
that you understand the basics of what makes up an OpenGL ES 3.0
application, we will dive into these topics in more detail, starting in the
next chapter with more information on EGL.

43

Chapter 3

An Introduction to EGL

In Chapter 2, “Hello Triangle: An OpenGL ES 3.0 Example,” we drew a
triangle into a window using OpenGL ES 3.0, but we used some custom
functions of our own design to open and manage the window. Although
that technique simplifies our examples, it obscures how you might need
to work with OpenGL ES 3.0 on your own systems.

As part of the family of APIs provided by the Khronos Group for
developing content, a (mostly) platform-independent API, EGL, is
available for managing drawing surfaces (windows are just one type;
we will talk about others later). EGL provides the mechanisms for the
following:

•• Communicating with the native windowing system of your device

•• Querying the available types and configurations of drawing surfaces

•• Creating drawing surfaces

•• Synchronizing rendering between OpenGL ES 3.0 and other graphics-
rendering APIs (such as desktop OpenGL and OpenVG, a cross-platform
API for hardware-accelerated vector graphics, or the native drawing
commands of your windowing system)

•• Managing rendering resources such as texture maps

This chapter introduces the fundamentals required to open a window. As
we describe other operations, such as creating texture maps, we discuss
the necessary EGL commands.

44	 Chapter 3: An Introduction to EGL

Communicating with the Windowing System

EGL provides a “glue” layer between OpenGL ES 3.0 (and other Khronos
graphics APIs) and the native windowing system running on your
computer, like the X Window System commonly found on GNU/Linux
systems, Microsoft Windows, or Mac OS X’s Quartz. Before EGL can
determine which types of drawing surfaces are available—or any other
characteristics of the underlying system, for that matter—it needs to open
a communications channel with the windowing system. Note that Apple
provides its own iOS implementation of the EGL API called EAGL.

Because every windowing system has different semantics, EGL provides a
basic opaque type—the EGLDisplay—that encapsulates all of the system
dependencies for interfacing with the native windowing system. The first
operation that any application using EGL will need to perform is to create
and initialize a connection with the local EGL display. This is done in a
two-call sequence, as shown in Example 3-1.

To open a connection to the EGL display server, you call the following
function:

Example 3-1	 Initializing EGL

EGLint majorVersion;
EGLint minorVersion;

EGLDisplay display = eglGetDisplay (EGL_DEFAULT_DISPLAY);
if (display == EGL_NO_DISPLAY)
{
 // Unable to open connection to local windowing system
}

if (!eglInitialize (display, &majorVersion, &minorVersion))
{
 // Unable to initialize EGL; handle and recover
}

EGLDisplay eglGetDisplay(EGLNativeDisplayType displayId)

displayId �specifies the display connection, use EGL_DEFAULT_DISPLAY
for the default connection

Checking for Errors	 45

EGLNativeDisplayType is defined to match the native window
system’s display type. On Microsoft Windows, for example, an
EGLNativeDisplayType would be defined to be an HDC—a handle to
the Microsoft Windows device context. However, to make it easy to move
your code to different operating systems and platforms, the token
EGL_DEFAULT_DISPLAY is accepted and will return a connection to the
default native display, as we did.

If a display connection isn’t available, eglGetDisplay will return
EGL_NO_DISPLAY. This error indicates that EGL isn’t available, and you
won’t be able to use OpenGL ES 3.0.

Before we continue by discussing more EGL operations, we need to briefly
describe how EGL processes and reports errors to your application.

Checking for Errors

Most functions in EGL return EGL_TRUE when successful and EGL_FALSE
otherwise. However, EGL will do more than just tell you if the call
failed—it will record an error to indicate the reason for failure. However,
that error code is not returned to you directly; you need to query EGL
explicitly for the error code, which you can do by calling the following
function:

This function returns the error code of the most recent EGL function
called in a specific thread. If EGL_SUCCESS is returned, then there is no
status to return.

You might wonder why this is a prudent approach, as compared to
directly returning the error code when the call completes. Although
we never encourage anyone to ignore function return codes, allowing
optional error code recovery reduces redundant code in applications
verified to work properly. You should certainly check for errors during
development and debugging, and on an ongoing basis in critical
applications, but once you are convinced your application is working as
expected, you can likely reduce your error checking.

EGLint eglGetError()

46	 Chapter 3: An Introduction to EGL

Initializing EGL

Once you have successfully opened a connection, EGL needs to be
initialized, which is done by calling the following function:

This function initializes EGL’s internal data structures and returns the
major and minor version numbers of the EGL implementation. If EGL
is unable to be initialized, this call will return EGL_FALSE, and set EGL’s
error code to

•• EGL_BAD_DISPLAY if display doesn’t specify a valid EGLDisplay.

•• EGL_NOT_INITIALIZED if the EGL cannot be initialized.

Determining the Available Surface Configurations

Once we have initialized EGL, we are able to determine which types and
configurations of rendering surfaces are available to us. There are two ways
to go about this:

•• Query every surface configuration and find the best choice ourselves.

•• Specify a set of requirements and let EGL make a recommendation for
the best match.

In many situations, the second option is simpler to implement, and
most likely yields what you would have found using the first option.
In either case, EGL will return an EGLConfig, which is an identifier
to an EGL-internal data structure that contains information about a
particular surface and its characteristics, such as the number of bits for

EGLBoolean eglInitialize(EGLDisplay display,
EGLint *majorVersion,
EGLint *minorVersion)

display	 specifies the EGL display connection

majorVersion	� specifies the major version number returned by the EGL
implementation; may be NULL

minorVersion	� specifies the minor version number returned by the EGL
implementation; may be NULL

Determining the Available Surface Configurations	 47

each color component, or the depth buffer (if any) associated with that
EGLConfig. You can query any of the attributes of an EGLConfig, using
the eglGetConfigAttrib function, which we describe later.

To query all EGL surface configurations supported by the underlying
windowing system, call this function:

EGLBoolean eglGetConfigs(EGLDisplay display,
EGLConfig *configs,
EGLint maxReturnConfigs,
EGLint *numConfigs)

display	 specifies the EGL display connection

configs	 specifies the list of configs

maxReturnConfigs	 specifies the size of configs

numConfigs	 specifies the size of configs returned

This function returns EGL_TRUE if the call succeeded. On failure, this call
will return EGL_FALSE and set EGL’s error code to

•• EGL_NOT_INITIALIZED if display is not initialized.

•• EGL_BAD_PARAMETER if numConfigs is NULL.

There are two ways to call eglGetConfigs. First, if you specify NULL
for the value of configs, the system will return EGL_TRUE and set
numConfigs to the number of available EGLConfigs. No additional
information about any of the EGLConfigs in the system is returned, but
knowing the number of available configurations allows you to allocate
enough memory to get the entire set of EGLConfigs, should you care to
do so.

Alternatively, and perhaps more usefully, you can allocate an array of
uninitialized EGLConfig values and pass them into eglGetConfigs as the
configs parameter. Set maxReturnConfigs to the size of the array you
allocated, which will also specify the maximum number of configurations
that will be returned. When the call completes, numConfigs will be
updated with the number of entries in configs that were modified.
You can then begin processing the list of returned values, querying the
characteristics of the various configurations to determine which one best
matches your needs.

48	 Chapter 3: An Introduction to EGL

Querying EGLConfig Attributes

We now describe the values that EGL associates with an EGLConfig and
explain how you can retrieve those values.

An EGLConfig contains all of the information about a surface made
available by EGL. This includes information about the number of
available colors, additional buffers associated with the configuration
(such as depth and stencil buffers, which we discuss later), the type of
surfaces, and numerous other characteristics. The following is a list of
the attributes that can be queried from an EGLConfig. We discuss only a
subset of these in this chapter, but the entire list appears in Table 3-1 as
a reference.

To query a particular attribute associated with an EGLConfig, use the
following function:

This function returns EGL_TRUE if the call succeeded. On failure,
EGL_FALSE is returned, and an EGL_BAD_ATTRIBUTE error is posted if
attribute is not a valid attribute.

This call will return the value for the specific attribute of the associated
EGLConfig. This allows you total control over which configuration you
choose for ultimately creating rendering surfaces. However, when looking
at Table 3-1, you might be somewhat intimidated by the large number of
options. EGL provides another routine, eglChooseConfig, that allows
you to specify what is important for your application, and will return the
best matching configuration given your requests.

EGLBoolean eglGetConfigAttrib(EGLDisplay display,
EGLConfig config,
EGLint attribute,
EGLint *value)

display	 specifies the EGL display connection
config	 specifies the configuration to be queried
attribute	specifies the particular attribute to be returned
value	 specifies the value returned

ptg12025281

Q
uerying EG

LC
onfi

g A
ttributes	

49

Table 3-1	 EGLConfig Attributes

Attribute Description Default Value

EGL_BUFFER_SIZE Number of bits for all color components in the color buffer 0

EGL_RED_SIZE Number of red bits in the color buffer 0

EGL_GREEN_SIZE Number of green bits in the color buffer 0

EGL_BLUE_SIZE Number of blue bits in the color buffer 0

EGL_LUMINANCE_SIZE Number of luminance bits in the color buffer 0

EGL_ALPHA_SIZE Number of alpha bits in the color buffer 0

EGL_ALPHA_MASK_SIZE Number of alpha-mask bits in the mask buffer 0

EGL_BIND_TO_TEXTURE_RGB True if bindable to RGB textures EGL_DONT_CARE

EGL_BIND_TO_TEXTURE_RGBA True if bindable to RGBA textures EGL_DONT_CARE

EGL_COLOR_BUFFER_TYPE Type of the color buffer: either EGL_RGB_BUFFER or
EGL_LUMINANCE_BUFFER

EGL_RGB_BUFFER

EGL_CONFIG_CAVEAT Any caveats associated with the configuration EGL_DONT_CARE

EGL_CONFIG_ID The unique EGLConfig identifier value EGL_DONT_CARE

EGL_CONFORMANT True if contexts created with this EGLConfig are conformant —

EGL_DEPTH_SIZE Number of bits in the depth buffer 0

EGL_LEVEL Framebuffer level 0

EGL_MAX_PBUFFER_WIDTH Maximum width for a PBuffer created with this EGLConfig —

EGL_MAX_PBUFFER_HEIGHT Maximum height for a PBuffer created with this EGLConfig —

EGL_MAX_PBUFFER_PIXELS Maximum size of a PBuffer created with this EGLConfig —

EGL_MAX_SWAP_INTERVAL Maximum buffer swap interval EGL_DONT_CARE

(continues)

ptg12025281

50	
C

hapter 3: A
n Introduction to EG

L

Table 3-1	 EGLConfig Attributes (continued)

Attribute Description Default Value

EGL_MIN_SWAP_INTERVAL Minimum buffer swap interval EGL_DONT_CARE

EGL_NATIVE_RENDERABLE True if native rendering libraries can render into a surface
created with EGLConfig

EGL_DONT_CARE

EGL_NATIVE_VISUAL_ID Handle of corresponding native window system visual ID EGL_DONT_CARE

EGL_NATIVE_VISUAL_TYPE Type of corresponding native window system visual EGL_DONT_CARE

EGL_RENDERABLE_TYPE A bitmask composed of the tokens EGL_OPENGL_ES_BIT,
EGL_OPENGL_ES2_BIT, EGL_OPENGL_ES3_BIT_KHR (requires
EGL_KHR_create_context extension), EGL_OPENGL_BIT, or
EGL_OPENVG_BIT, which represent the rendering interfaces
supported with the configuration

EGL_OPENGL_ES_BIT

EGL_SAMPLE_BUFFERS Number of available multisample buffers 0

EGL_SAMPLES Number of samples per pixel 0

EGL_STENCIL_SIZE Number of bits in the stencil buffer 0

EGL_SURFACE_TYPE Type of EGL surfaces supported; can be any of
EGL_WINDOW_BIT, EGL_PIXMAP_BIT, EGL_PBUFFER_BIT,
EGL_MULTISAMPLE_RESOLVE_BOX_BIT,
EGL_SWAP_BEHAVIOR_PRESERVED_BIT,
EGL_VG_COLORSPACE_LINEAR_BIT, or
EGL_VG_ALPHA_FORMAT_PRE_BIT

EGL_WINDOW_BIT

EGL_TRANSPARENT_TYPE Type of transparency supported EGL_NONE

EGL_TRANSPARENT_RED_VALUE Red color value interpreted as transparent EGL_DONT_CARE

EGL_TRANSPARENT_GREEN_VALUE Green color value interpreted as transparent EGL_DONT_CARE

EGL_TRANSPARENT_BLUE_VALUE Blue color value interpreted as transparent EGL_DONT_CARE

Note: Various tokens do not have a default value mandated in the EGL specification, as indicated by the dash (—) for their default value.

Letting EGL Choose the Configuration	 51

Letting EGL Choose the Configuration

To have EGL make the choice of matching EGLConfigs, use this function:

This function returns EGL_TRUE if the call succeeded. On failure,
EGL_FALSE is returned, and an EGL_BAD_ATTRIBUTE error is posted if
attribList contains an undefined EGL attribute or an attribute value
that is unrecognized or out of range.

You need to provide a list of the attributes, with associated preferred
values for all the attributes that are important for the correct operation of
your application. For example, if you need an EGLConfig that supports
a rendering surface having five bits red and blue, and six bits green (the
commonly used “RGB 565” format); a depth buffer; and OpenGL ES 3.0,
you might declare the array shown in Example 3-2.

For values that are not explicitly specified in the attribute list, EGL will use the
default values shown in Table 3-1. Additionally, when specifying a numeric
value for an attribute, EGL will guarantee the returned configuration has at
least that value at a minimum if there is a matching EGLConfig available.

EGLBoolean eglChooseConfig(EGLDisplay display,
const EGLint *attribList,
EGLConfig *configs,
EGLint maxReturnConfigs,
EGLint *numConfigs)

display	 specifies the EGL display connection
attribList	 specifies the list of attributes to match by configs
configs	 specifies the list of configurations
maxReturnConfigs	 specifies the size of configurations
numConfigs	 specifies the size of configurations returned

Example 3-2	 Specifying EGL Attributes

EGLint attribList[] =
{
 EGL_RENDERABLE_TYPE, EGL_OPENGL_ES3_BIT_KHR,
 EGL_RED_SIZE, 5,
 EGL_GREEN_SIZE, 6,
 EGL_BLUE_SIZE, 5,
 EGL_DEPTH_SIZE, 1,
 EGL_NONE
};

52	 Chapter 3: An Introduction to EGL

Note:	 Using the EGL_OPENGL_ES3_BIT_KHR attribute requires the
EGL_KHR_create_context extension. This attribute is defined
in eglext.h (EGL v1.4). It is also worth noting that some
implementations will always promote OpenGL ES 2.0 contexts to
OpenGL ES 3.0 contexts, as OpenGL ES 3.0 is backward compatible
with OpenGL ES 2.0.

To use this set of attributes as a selection criteria, follow Example 3-3.

Example 3-3	 Querying EGL Surface Configurations

const EGLint MaxConfigs = 10;
EGLConfig configs[MaxConfigs]; // We'll accept only 10 configs
EGLint numConfigs;
if (!eglChooseConfig(display, attribList, configs, MaxConfigs,

&numConfigs))
{
 // Something did not work ... handle error situation
}
else
{
 // Everything is okay; continue to create a rendering surface
}

If eglChooseConfig returns successfully, a set of EGLConfigs matching
your criteria will be returned. If more than one EGLConfig matches
(with at most the maximum number of configurations you specify),
eglChooseConfig will sort the configurations using the following ordering:

1. By the value of EGL_CONFIG_CAVEAT. Precedence is given to
configurations where there are no configuration caveats (when the
value of EGL_CONFIG_CAVEAT is EGL_NONE), then slow rendering
configurations (EGL_SLOW_CONFIG), and finally nonconformant
configurations (EGL_NON_CONFORMANT_CONFIG).

2. By the type of buffer as specified by EGL_COLOR_BUFFER_TYPE.

3. By the number of bits in the color buffer in descending sizes. The
number of bits in a buffer depends on the EGL_COLOR_BUFFER_TYPE, and
will be at least the value specified for a particular color channel. When
the buffer type is EGL_RGB_BUFFER, the number of bits is computed
as the total of EGL_RED_SIZE, EGL_GREEN_SIZE, and EGL_BLUE_SIZE.
When the color buffer type is EGL_LUMINANCE_BUFFER, the number of
bits is the sum of EGL_LUMINANCE_SIZE and EGL_ALPHA_SIZE.

4. By the value of EGL_BUFFER_SIZE in ascending order.

Creating an On-Screen Rendering Area: The EGL Window	 53

5. By the value of EGL_SAMPLE_BUFFERS in ascending order.

6. By the number of EGL_SAMPLES in ascending order.

7. By the value of EGL_DEPTH_SIZE in ascending order.

8. By the value of the EGL_STENCIL_SIZE in ascending order.

9. By the value of the EGL_ALPHA_MASK_SIZE (which is applicable only
to OpenVG surfaces).

10. By the EGL_NATIVE_VISUAL_TYPE in an implementation-dependent
manner.

11. By the value of the EGL_CONFIG_ID in ascending order.

Parameters not mentioned in this list are not used in the sorting process.

Note:	 Because of the third sorting rule, to get the best format that matches
what you specified, you will need to add extra logic to go through
the returned results. For example, if you ask for “565” RGB format,
then the “888” format will appear in the returned results first.

As mentioned in Example 3-3, if eglChooseConfig returns successfully,
we have enough information to continue to create something to draw
into. By default, if you do not specify which type of rendering surface
type you would like (by specifying the EGL_SURFACE_TYPE attribute), EGL
assumes you want an on-screen window.

Creating an On-Screen Rendering Area:
The EGL Window

Once we have a suitable EGLConfig that meets our requirements for
rendering, we are ready to create our window. To create a window, call the
following function:

EGLSurface eglCreateWindowSurface(EGLDisplay display,
EGLConfig config,
EGLNativeWindowType window,
const EGLint *attribList)

display	 specifies the EGL display connection
config	 specifies the configuration
window	 specifies the native window
attribList	specifies the list of window attributes; may be NULL

54	 Chapter 3: An Introduction to EGL

This function takes as arguments our connection to the native
display manager and the EGLConfig that we obtained in the previous
step. Additionally, it requires a window from the native windowing
system that was created previously. Because EGL is a software layer
between many different windowing systems and OpenGL ES 3.0,
demonstrating how to create a native window is outside the scope
of this guide. Please refer to the documentation for your native
windowing system to determine what is required to create a window
in that environment.

Finally, this call takes a list of attributes; however, this list differs
from the attributes shown in Table 3-1. Because EGL supports other
rendering APIs (notably OpenVG), some attributes accepted by
eglCreateWindowSurface do not apply when working with OpenGL ES
3.0 (see Table 3-2). For our purposes, eglCreateWindowSurface accepts a
single attribute, which is used to specify the buffer of the front- or back-
buffer we would like to render into.

Table 3-2	 �Attributes for Window Creation Using eglCreateWindowSurface

Token Description Default Value

EGL_RENDER_BUFFER Specifies which buffer
should be used for
rendering (using the
EGL_SINGLE_BUFFER
value), or back
(EGL_BACK_BUFFER)

EGL_BACK_BUFFER

Note:	 For OpenGL ES 3.0 window rendering surfaces, only double-
buffered windows are supported.

The attribute list might be empty (i.e., passing a NULL pointer as the value
for attribList), or it might be a list populated with an EGL_NONE token
as the first element. In such cases, all of the relevant attributes use their
default values.

There are a number of ways in which eglCreateWindowSurface could
fail, and if any of them occur, EGL_NO_SURFACE is returned from the call
and the particular error is set. If this situation occurs, we can determine
the reason for the failure by calling eglGetError, which will return one
of the reasons shown in Table 3-3.

Creating an On-Screen Rendering Area:The EGL Window 55

Putting this all together, our code for creating a window is shown in
Example 3-4.

Table 3-3	 Possible Errors When eglCreateWindowSurface Fails

Error Code Description

EGL_BAD_MATCH This situation occurs when:

•• The attributes of the native window do not match
those of the provided EGLConfig.

•• The provided EGLConfig does not support rendering
into a window (i.e., the EGL_SURFACE_TYPE attribute
does not have the EGL_WINDOW_BIT set).

EGL_BAD_CONFIG This error is flagged if the provided EGLConfig is not
supported by the system.

EGL_BAD_
NATIVE_WINDOW

This error is specified if the provided native window
handle is not valid.

EGL_BAD_ALLOC This error occurs if eglCreateWindowSurface is
unable to allocate the resources for the new EGL window,
or if there is already an EGLConfig associated with the
provided native window.

Example 3-4	 Creating an EGL Window Surface

EGLint attribList[] =
{
 EGL_RENDER_BUFFER, EGL_BACK_BUFFER,
 EGL_NONE
);

EGLSurface window = eglCreateWindowSurface (display, config,
nativeWindow,
attribList);

if (window == EGL_NO_SURFACE)
{
 switch (eglGetError ())
 {

case EGL_BAD_MATCH:
// Check window and EGLConfig attributes to determine
// compatibility, or verify that the EGLConfig
// supports rendering to a window
break;

case EGL_BAD_CONFIG:
// Verify that provided EGLConfig is valid
break;

(continues)

56	 Chapter 3: An Introduction to EGL

This creates a place for us to draw into, but we still have two more steps
that must be completed before we can successfully use OpenGL ES 3.0
with our window. Windows, however, are not the only rendering surfaces
that you might find useful. We introduce another type of rendering
surface next before completing our discussion.

Creating an Off-Screen Rendering Area:
EGL Pbuffers

In addition to being able to render into an on-screen window using
OpenGL ES 3.0, you can render into nonvisible off-screen surfaces called
pbuffers (short for pixel buffer). Pbuffers can take full advantage of any
hardware acceleration available to OpenGL ES 3.0, just as a window does.
Pbuffers are most often used for generating texture maps. If all you want
to do is render to a texture, we recommend using framebuffer objects
(covered in Chapter 12, “Framebuffer Objects”) instead of pbuffers because
they are more efficient. However, pbuffers can still be useful in some cases
where framebuffer objects cannot be used, such as when rendering an off-
screen surface with OpenGL ES and then using it as a texture in another
API such as OpenVG.

Creating a pbuffer is very similar to creating an EGL window, with a few
minor differences. To create a pbuffer, we need to find an EGLConfig
just as we did for a window, with one modification: We need to
augment the value of EGL_SURFACE_TYPE to include EGL_PBUFFER_BIT.
Once we have a suitable EGLConfig, we can create a pbuffer using the
function

Example 3-4	 Creating an EGL Window Surface (continued)

case EGL_BAD_NATIVE_WINDOW:
// Verify that provided EGLNativeWindow is valid
break;

case EGL_BAD_ALLOC:
// Not enough resources available; handle and recover
break;

 }
}

Creating an Off-Screen Rendering Area: EGL Pbuffers 57

EGLSurface eglCreatePbufferSurface(EGLDisplay display,
EGLConfig config,
const EGLint *attribList)

display	 specifies the EGL display connection
config	 specifies the configuration
attribList	specifies the list of pixel buffer attributes; may be NULL

As with window creation, this function takes our connection to the native
display manager and the EGLConfig that we selected. This call also takes a
list of attributes, as described in Table 3-4.

Table 3-4	 EGL Pixel Buffer Attributes

Token Description Default Value

EGL_WIDTH Specifies the desired width (in
pixels) of the pbuffer.

0

EGL_HEIGHT Specifies the desired height
(in pixels) of the pbuffer.

0

EGL_LARGEST_PBUFFER Select the largest available
pbuffer if one of the
requested size is not available.
Valid values are EGL_TRUE
and EGL_FALSE.

EGL_FALSE

EGL_TEXTURE_FORMAT Specifies the type of texture
format (see Chapter 9,
“Texturing”) if the pbuffer is
bound to a texture map. Valid
values are EGL_TEXTURE_RGB,
EGL_TEXTURE_RGBA, and
EGL_NO_TEXTURE (which
indicates that the pbuffer
will not be used directly as a
texture).

EGL_NO_TEXTURE

EGL_TEXTURE_TARGET Specifies the associated texture
target that the pbuffer should
be attached to if used as a
texture map (see Chapter 9,
“Texturing”). Valid values are
EGL_TEXTURE_2D and EGL_
NO_TEXTURE.

EGL_NO_TEXTURE

(continues)

58	 Chapter 3: An Introduction to EGL

There are a number of ways that eglCreatePbufferSurface could fail. Just
as with window creation, if any of these failures occur, EGL_NO_SURFACE
is returned from the call and the particular error is set. In this situation,
eglGetError will return one of the errors listed in Table 3-5.

Table 3-5	 Possible Errors When eglCreatePbufferSurface Fails

Error Code Description

EGL_BAD_ALLOC This error occurs when the pbuffer cannot be allocated
due to a lack of resources.

EGL_BAD_CONFIG This error is flagged if the provided EGLConfig is not a
valid EGLConfig supported by the system.

EGL_BAD_PARAMETER This error is generated if either the EGL_WIDTH or
EGL_HEIGHT provided in the attribute list is a negative value.

EGL_BAD_MATCH This error is generated if any of the following
situations occur: if the EGLConfig provided does
not support pbuffer surfaces; if the pbuffer will be
used as a texture map (EGL_TEXTURE_FORMAT is not
EGL_NO_TEXTURE), and the specified EGL_WIDTH and
EGL_HEIGHT specify an invalid texture size; or if either
EGL_TEXTURE_FORMAT and EGL_TEXTURE_TARGET
is EGL_NO_TEXTURE, and the other attribute is not
EGL_NO_TEXTURE.

EGL_BAD_
ATTRIBUTE

This error occurs if either EGL_TEXTURE_FORMAT,
EGL_TEXTURE_TARGET, or EGL_MIPMAP_TEXTURE
is specified, but the provided EGLConfig does not
support OpenGL ES rendering (e.g., only OpenVG
rendering is supported).

Putting this all together, we create a pbuffer, as shown in Example 3-5.

Table 3-4	 EGL Pixel Buffer Attributes (continued)

Token Description Default Value

EGL_MIPMAP_TEXTURE Specifies whether storage
for texture mipmap levels
(see Chapter 9, “Texturing”)
should be additionally
allocated. Valid values are
EGL_TRUE and EGL_FALSE.

EGL_FALSE

Creating an Off-Screen Rendering Area: EGL Pbuffers 59

(continues)

Example 3-5	 Creating an EGL Pixel Buffer

EGLint attribList[] =
{
 EGL_SURFACE_TYPE, EGL_PBUFFER_BIT,
 EGL_RENDERABLE_TYPE, EGL_OPENGL_ES3_BIT_KHR,
 EGL_RED_SIZE, 5,
 EGL_GREEN_SIZE, 6,
 EGL_BLUE_SIZE, 5,
 EGL_DEPTH_SIZE, 1,
 EGL_NONE
};

const EGLint MaxConfigs = 10;
EGLConfig configs[MaxConfigs]; // We'll accept only 10 configs
EGLint numConfigs;
if (!eglChooseConfig(display, attribList, configs, MaxConfigs,

&numConfigs))
{
 // Something did not work ... handle error situation
}
else
{
 // We have found a pbuffer-capable EGLConfig
}

// Proceed to create a 512 x 512 pbuffer
// (or the largest available)
EGLSurface pbuffer;
EGLint attribList[] =
{
 EGL_WIDTH, 512,
 EGL_HEIGHT, 512,
 EGL_LARGEST_PBUFFER, EGL_TRUE,
 EGL_NONE
);

pbuffer = eglCreatePbufferSurface(display, config, attribList);
if (pbuffer == EGL_NO_SURFACE)
{
 switch (eglGetError ())
 {

case EGL_BAD_ALLOC:
// Not enough resources available; handle and recover
break;

case EGL_BAD_CONFIG:
// Verify that provided EGLConfig is valid
break;

60	 Chapter 3: An Introduction to EGL

Pbuffers support all OpenGL ES 3.0 rendering facilities, just as windows
do. The major difference—aside from the fact that you cannot display a
pbuffer on the screen—is that instead of swapping buffers when you are
finished rendering as you do with a window, you either copy the values
from a pbuffer to your application or modify the binding of the pbuffer as
a texture.

Creating a Rendering Context

A rendering context is a data structure internal to OpenGL ES 3.0 that
contains all of the state information required for operation. For example,
it contains references to the vertex and fragment shaders and the array of
vertex data used in the example program in Chapter 2, “Hello Triangle:
An OpenGL ES 3.0 Example.” Before OpenGL ES 3.0 can draw, it needs to
have a context available for its use.

Example 3-5	 Creating an EGL Pixel Buffer (continued)

case EGL_BAD_PARAMETER:
// Verify that EGL_WIDTH and EGL_HEIGHT are
// non-negative values
break;

case EGL_BAD_MATCH:
// Check window and EGLConfig attributes to determine
// compatibility and pbuffer-texture parameters
break;

 }
}

// Check the size of pbuffer that was allocated
EGLint width;
EGLint height;

if (!eglQuerySurface (display, pbuffer, EGL_WIDTH, &width) ||
 !eglQuerySurface (display, pbuffer, EGL_HEIGHT, &height))
{
 // Unable to query surface information
}

Creating a Rendering Context	 61

EGLContext eglCreateContext(EGLDisplay display,
EGLConfig config,
EGLContext shareContext,
const EGLint *attribList)

display	 specifies the EGL display connection
config	 specifies the configuration
shareContext	� allows multiple EGL contexts to share specific types of

data, such as shader programs and texture maps; use
EGL_NO_CONTEXT for no sharing

attribList	� specifies the list of attributes for the context to be
created; only a single attribute is accepted,
EGL_CONTEXT_CLIENT_VERSION

Once again, you will need the display connection and the EGLConfig
that best represents your application’s requirements. The third parameter,
shareContext, allows multiple EGLContexts to share specific types of
data, such as shader programs and texture maps. For the time being, we
pass EGL_NO_CONTEXT in as the value for shareContext, indicating that
we are not sharing resources with any other contexts.

Finally, as with many EGL calls, a list of attributes specific to eglCreate
Context’s operation is specified. In this case, a single attribute is accepted,
EGL_CONTEXT_CLIENT_VERSION, which is discussed in Table 3-6.

Table 3-6	 Attributes for Context Creation Using eglCreateContext

Token Description Default Value

EGL_CONTEXT_
CLIENT_VERSION

Specifies the type of
context associated with
the version of OpenGL
ES that you are using

1 (specifies an OpenGL ES
1.X context)

Because we want to use OpenGL ES 3.0, we will always have to specify this
attribute to obtain the right type of context.

When eglCreateContext succeeds, it returns a handle to the newly
created context. If a context cannot be created, then eglCreateContext
returns EGL_NO_CONTEXT, and the reason for the failure is set and can be
obtained by calling eglGetError. With our current knowledge, the only

To create a context, use the following function:

62	 Chapter 3: An Introduction to EGL

Other errors may be generated by eglCreateContext, but for the
moment we will check for only bad EGLConfig errors.

After successfully creating an EGLContext, we need to complete one final
step before we can render.

Making an EGLContext Current

As an application might have created multiple EGLContexts for various
purposes, we need a way to associate a particular EGLContext with our
rendering surface—a process commonly called “make current.”

Example 3-6	 Creating an EGL Context

const EGLint attribList[] =
{
 // EGL_KHR_create_context is required
 EGL_CONTEXT_CLIENT_VERSION, 3,
 EGL_NONE
};

EGLContext context = eglCreateContext (display, config,
EGL_NO_CONTEXT,
attribList);

if (context == EGL_NO_CONTEXT)
{
 EGLError error = eglGetError ();

 if (error == EGL_BAD_CONFIG)
 {

// Handle error and recover
 }
}

reason that eglCreateContext would fail is if the EGLConfig we provide
is not valid, in which case the error returned by eglGetError is EGL_BAD_
CONFIG.

Example 3-6 shows how to create a context after selecting an appropriate
EGLConfig.

Putting All Our EGL Knowledge Together	 63

EGLBoolean eglMakeCurrent(EGLDisplay display,
EGLSurface draw,
EGLSurface read,
EGLContext context)

display	 specifies the EGL display connection
draw	 specifies the EGL draw surface
read	 specifies the EGL read surface
context	� specifies the EGL rendering context to be attached to the

surfaces

This function returns EGL_TRUE if the call succeeded. On failure, it returns
EGL_FALSE.

You probably noticed that this call takes two EGLSurfaces. Although
this approach allows flexibility that we will exploit in our discussion of
advanced EGL usage, we set both read and draw to the same value, the
window that we created previously.

Note:	 Because the EGL specification requires a flush for eglMakeCurrent
implementation, this call is expensive for tile-based architectures.

Putting All Our EGL Knowledge Together

This chapter concludes with a complete example showing the entire
process starting with the initialization of the EGL through binding an
EGLContext to an EGLSurface. We will assume that a native window has
already been created, and that if any errors occur, the application will
terminate.

In fact, Example 3-7 is similar to what is done in esCreateWindow, our
homegrown function that wraps the required EGL window creation code,
as shown in Chapter 2, “Hello Triangle: An OpenGL ES 3.0 Example,”
except for those routines that separate the creation of the window and the
context (for reasons that we discuss later).

To associate a particular EGLContext with an EGLSurface, use the call

64	 Chapter 3: An Introduction to EGL

Example 3-7	 A Complete Routine for Creating an EGL Window

EGLBoolean initializeWindow (EGLNativeWindow nativeWindow)
{
 const EGLint configAttribs[] =
 {

EGL_RENDER_TYPE, EGL_WINDOW_BIT,
EGL_RED_SIZE, 8,
EGL_GREEN_SIZE, 8,
EGL_BLUE_SIZE, 8,
EGL_DEPTH_SIZE, 24,
EGL_NONE

 };

 const EGLint contextAttribs[] =
 {

EGL_CONTEXT_CLIENT_VERSION, 3,
EGL_NONE

 };

 EGLDisplay display = eglGetDisplay (EGL_DEFAULT_DISPLAY)
 if (display == EGL_NO_DISPLAY)
 {

return EGL_FALSE;
 }

 EGLint major, minor;
 if (!eglInitialize (display, &major, &minor))
 {

return EGL_FALSE;
 }

 EGLConfig config;
 EGLint numConfigs;
 if (!eglChooseConfig (display, configAttribs, &config, 1,

&numConfigs))
 {

return EGL_FALSE;
 }

 EGLSurface window = eglCreateWindowSurface (display, config,
nativeWindow, NULL);

 if (window == EGL_NO_SURFACE)
 {

return EGL_FALSE;
 }

Putting All Our EGL Knowledge Together	 65

Example 3-8	 Creating a Window Using the esUtil Library

ESContext esContext;
const char* title = "OpenGL ES Application Window Title";

if (esCreateWindow(&esContext, title, 512, 512,
ES_WINDOW_RGB | ES_WINDOW_DEPTH))

{
 // Window creation failed
}

This code would be similar if an application made the call in Example 3-8
to open a 512 × 512 window.

The last parameter to esCreateWindow specifies the characteristics we
want in our window, and specifies as a bitmask of the following values:

•• ES_WINDOW_RGB—Specify an RGB-based color buffer.

•• ES_WINDOW_ALPHA—Allocate a destination alpha buffer.

•• ES_WINDOW_DEPTH—Allocate a depth buffer.

•• ES_WINDOW_STENCIL—Allocate a stencil buffer.

•• ES_WINDOW_MULTISAMPLE—Allocate a multisample buffer.

 EGLContext context = eglCreateContext (display, config,
EGL_NO_CONTEXT,
contextAttribs);

 if (context == EGL_NO_CONTEXT)
 {

return EGL_FALSE;
 }

 if (!eglMakeCurrent (display, window, window, context))
 {

return EGL_FALSE;
 }
 return EGL_TRUE;
}

66	 Chapter 3: An Introduction to EGL

Specifying these values in the window configuration bitmask will add the
appropriate tokens and values into the EGLConfig attributes list
(i.e., configAttribs in the preceding example).

Synchronizing Rendering

You might encounter situations in which you need to coordinate the
rendering of multiple graphics APIs into a single window. For example,
you might find it easier to use OpenVG or find the native windowing
system’s font rendering functions better suited for drawing characters into
a window than OpenGL ES 3.0. In such cases, you will need to have your
application allow the various libraries to render into the shared window.
EGL has a few functions to help with your synchronization tasks.

If your application is rendering only with OpenGL ES 3.0, then you can
guarantee that all rendering has occurred by simply calling glFinish (or
more efficient sync objects and fences, which are discussed in Chapter 13,
“Sync Objects and Fences”).

However, if you are using more than one Khronos API for rendering (such
as OpenVG) and you might not know which API is used before switching
to the window system’s native rendering API, you can call this function:

EGLBoolean eglWaitNative(EGLint engine)

engine  specifies the renderer to wait for rendering completion

This function’s operation is similar to that of glFinish, but it works
regardless of which Khronos API is currently in operation.

Likewise, if you need to guarantee that the native windowing system’s
rendering is completed, call this function:

EGLBoolean eglWaitClient()

Delays execution of the client until all rendering through a Khronos API
(e.g., OpenGL ES 3.0, OpenGL, or OpenVG) is completed. On success, it
returns EGL_TRUE. On failure, it returns EGL_FALSE and an
EGL_BAD_CURRENT_SURFACE error is posted.

Summary	 67

EGL_CORE_NATIVE_ENGINE is always accepted, and represents the most
common engine supported; other engines are implementation specific,
and are specified through EGL extensions. EGL_TRUE is returned on
success. On failure, EGL_FALSE is returned and an EGL_BAD_PARAMETER
error is posted.

Summary

In this chapter, you learned about EGL, the API for creating surfaces and
rendering contexts for OpenGL ES 3.0. Now, you know how to initialize
EGL; query various EGL attributes; and create an on-screen, off-screen
rendering area and rendering context using EGL. You have learned
enough EGL to do everything you will need for rendering with OpenGL
ES 3.0. In the next chapter, we show you how to create OpenGL ES
shaders and programs.

This page intentionally left blank

69

Chapter 4

Shaders and Programs

Chapter 2, “Hello, Triangle: An OpenGL ES 3.0 Example,” introduced
you to a simple program that draws a single triangle. In that example,
we created two shader objects (one for the vertex shader and one for
the fragment shader) and a single program object to render the triangle.
Shader objects and program objects are fundamental concepts when
working with shaders in OpenGL ES 3.0. In this chapter, we provide
the full details on how to create shaders, compile them, and link them
together into a program object. The details of writing vertex and fragment
shaders come later in this book. For now, we focus on the following topics:

•• Shader and program object overview

•• Creating and compiling a shader

•• Creating and linking a program

•• Getting and setting uniforms

•• Getting and setting attributes

•• Shader compiler and program binaries

Shaders and Programs

There are two fundamental object types you need to create to render
with shaders: shader objects and program objects. The best way to think of
a shader object and a program object is by comparison to a C compiler
and linker. A C compiler generates object code (e.g., .obj or .o files) for a
piece of source code. After the object files have been created, the C linker
then links the object files into a final program.

70	 Chapter 4: Shaders and Programs

A similar paradigm is used in OpenGL ES for representing shaders. The
shader object is an object that contains a single shader. The source code
is given to the shader object, and then the shader object is compiled into
object form (like an .obj file). After compilation, the shader object can then
be attached to a program object. A program object gets multiple shader
objects attached to it. In OpenGL ES, each program object will need to
have one vertex shader object and one fragment shader object attached to
it (no more and no less), unlike in desktop OpenGL. The program object is
linked into a final “executable,” which can then be used to render.

The general process to get a linked shader object involves six steps:

1. Create a vertex shader object and a fragment shader object.

2. Attach source code to each of the shader objects.

3. Compile the shader objects.

4. Create a program object.

5. Attach the compiled shader objects to the program object.

6. Link the program object.

If there are no errors, you can then tell the GL to use this program for
drawing any time you like. The next sections detail the API calls you use
to execute this process.

Creating and Compiling a Shader

The first step in working with a shader object is to create it. This is done
using glCreateShader.

GLuint glCreateShader(GLenum type)

type 	�the type of the shader to create, either GL_VERTEX_SHADER
or GL_FRAGMENT_SHADER

Calling glCreateShader causes a new vertex or fragment shader to be
created, depending on the type passed in. The return value is a handle to
the new shader object. When you are finished with a shader object, you
can delete it using glDeleteShader.

Shaders and Programs	 71

Note that if a shader is attached to a program object (more on this later),
calling glDeleteShader will not immediately delete the shader. Rather,
the shader will be marked for deletion and its memory will be freed once
the shader is no longer attached to any program objects.

Once you have a shader object created, typically the next thing you will
do is provide the shader source code using glShaderSource.

void glDeleteShader(GLuint shader)

shader handle to the shader object to delete

void glShaderSource(GLuint shader, GLsizei count,
const GLchar* const *string,
const GLint *length)

shader	 handle to the shader object.

count	� the number of shader source strings. A shader can be
composed of a number of source strings, although each
shader can have only one main function.

string	� pointer to an array of strings holding count number of
shader source strings.

length	� pointer to an array of count integers that holds the size of
each respective shader string. If length is NULL, the shader
strings are assumed to be null terminated. If length is not
NULL, then each element of length holds the number of
characters in the corresponding shader in the string array.
If the value of length for any element is less than zero, then
that string is assumed to be null terminated.

void glCompileShader(GLuint shader)

shader	 handle to the shader object to compile

Once the shader source has been specified, the next step is to compile the
shader using glCompileShader.

72	 Chapter 4: Shaders and Programs

To check whether a shader has compiled successfully, you can call
glGetShaderiv on the shader object with the GL_COMPILE_STATUS
argument for pname. If the shader compiled successfully, the result
will be GL_TRUE. If the shader failed to compile, the result will be
GL_FALSE. If the shader does fail to compile, the compile errors will be
written into the info log. The info log is a log written by the compiler
that contains any error messages or warnings. It can be written with
information even if the compile operation is successful. To check the
info log, its length can be queried using GL_INFO_LOG_LENGTH. The
info log itself can be retrieved using glGetShaderInfoLog (described
next). Querying for GL_SHADER_TYPE will return whether the shader
is a GL_VERTEX_SHADER or GL_FRAGMENT_SHADER. Querying for
GL_SHADER_SOURCE_LENGTH returns the length of the shader source
code, including the null terminator. Finally, querying for GL_DELETE_
STATUS returns whether the shader has been marked for deletion using
glDeleteShader.

After compiling the shader and checking the info log length, you might
want to retrieve the info log (especially if compilation failed, to find out
why). To do so, you first need to query for the GL_INFO_LOG_LENGTH and
allocate a string with sufficient storage to store the info log. The info log
can then be retrieved using glGetShaderInfoLog.

void glGetShaderiv(GLuint shader, GLenum pname,
GLint *params)

shader	 handle to the shader object to get information about

pname	 the parameter to get information about; can be

GL_COMPILE_STATUS
GL_DELETE_STATUS
GL_INFO_LOG_LENGTH
GL_SHADER_SOURCE_LENGTH
GL_SHADER_TYPE

params	 pointer to integer storage location for the result of the query

Calling glCompileShader will cause the shader source code that has
been stored in the shader object to be compiled. As with any normal
language compiler, the first thing you want to know after compiling is
whether there were any errors. You can use glGetShaderiv to query
for this information, along with other information about the shader
object.

Shaders and Programs	 73

void glGetShaderInfoLog(GLuint shader, GLsizei maxLength,
GLsizei *length, GLchar *infoLog)

shader	 handle to the shader object for which to get the info log

maxLength	 the size of the buffer in which to store the info log

length	� the length of the info log written (minus the null
terminator); if the length does not need to be known, this
parameter can be NULL

infoLog	 pointer to the character buffer in which to store the info log

Example 4-1	 Loading a Shader

GLuint LoadShader (GLenum type, const char *shaderSrc)
{
 GLuint shader;
 GLint compiled;

 // Create the shader object
 shader = glCreateShader (type);

 if (shader == 0)
 {

return 0;
 }

The info log does not have any mandated format or required information.
Nevertheless, most OpenGL ES 3.0 implementations will return error
messages that contain the line number of the source code on which the
compiler was working when it detected the error. Some implementations
will also provide warnings or additional information in the log. For
example, the following error message is produced by the compiler when
the shader source code contains an undeclared variable:

ERROR: 0:10: ‘i_position’ : undeclared identifier
ERROR: 0:10: ‘assign’ : cannot convert from ‘4X4 matrix of float’
to ‘vertex out/varying 4-component vector of float’
ERROR: 2 compilation errors. No code generated.

At this point, we have shown you all of the functions you need to create
a shader, compile it, find out the compile status, and query the info log.
For review, Example 4-1 shows the code from Chapter 2, “Hello Triangle:
An OpenGL ES 3.0 Example,” to load a shader that uses the functions just
described.

(continues)

74	 Chapter 4: Shaders and Programs

GLuint glCreateProgram()

Example 4-1	 Loading a Shader (continued)

 // Load the shader source
 glShaderSource (shader, 1, &shaderSrc, NULL);

 // Compile the shader
 glCompileShader (shader);

 // Check the compile status
 glGetShaderiv (shader, GL_COMPILE_STATUS, &compiled);

 if (!compiled)
 {

// Retrieve the compiler messages when compilation fails
GLint infoLen = 0;

glGetShaderiv (shader, GL_INFO_LOG_LENGTH, &infoLen);

if (infoLen > 1)
{

char* infoLog = malloc (sizeof (char) * infoLen);

glGetShaderInfoLog (shader, infoLen, NULL, infoLog);
esLogMessage(“Error compiling shader:\n%s\n”, infoLog);

   free (infoLog);
}

glDeleteShader (shader);
return 0;

 }

 return shader;

}

Creating and Linking a Program

Now that we have shown you how to create shader objects, the next step
is to create a program object. As previously described, a program object is
a container object to which you attach shaders and link a final executable
program. The function calls to manipulate program objects are similar to
shader objects. You create a program object by using glCreateProgram.

Shaders and Programs	 75

You might notice that glCreateProgram does not take any arguments; it
simply returns a handle to a new program object. You delete a program
object by using glDeleteProgram.

Void glDeleteProgram(GLuint program)

program	 handle to the program object to delete

void glAttachShader(GLuint program, GLuint shader)

program	 handle to the program object

shader	 handle to the shader object to attach to the program

void glDetachShader(GLuint program, GLuint shader)

program	 handle to the program object

shader	 handle to the shader object to detach from the program

void glLinkProgram(GLuint program)

program	 handle to the program object to link

Once the shaders have been attached (and the shaders have been
successfully compiled), we are finally ready to link the shaders together.
Linking a program object is accomplished using glLinkProgram.

Once you have a program object created, the next step is to attach shaders
to it. In OpenGL ES 3.0, each program object needs to have one vertex
shader and one fragment shader object attached to it. To attach shaders to
a program, you use glAttachShader.

This function attaches the shader to the given program. Note that a shader
can be attached at any point—it does not necessarily need to be compiled
or even have source code before being attached to a program. The only
requirement is that every program object must have one and only one
vertex shader and fragment shader object attached to it. In addition to
attaching shaders, you can detach shaders using glDetachShader.

76	 Chapter 4: Shaders and Programs

The link operation is responsible for generating the final executable
program. The linker will check for a number of things to ensure
successful linkage. We mention some of these conditions now, but until
we describe vertex and fragment shaders in detail, these conditions might
be a bit confusing to you. The linker will make sure that any vertex
shader output variables that are consumed by the fragment shader are
written by the vertex shader (and declared with the same type). The
linker will also make sure that any uniforms and uniform buffers declared
in both the vertex and fragment shaders have matching types. In
addition, the linker will make sure that the final program fits within the
limits of the implementation (e.g., the number of attributes, uniforms,
or input and output shader variables). Typically, the link phase is the
time at which the final hardware instructions are generated to run on the
hardware.

After linking a program, you need to check whether the link succeeded. To
check the link status, you use glGetProgramiv.

void glGetProgramiv(GLuint program, GLenum pname,
GLint *params)

program	 handle to the program object to get information about

pname	 the parameter to get information about; can be

GL_ACTIVE_ATTRIBUTES
GL_ACTIVE_ATTRIBUTE_MAX_LENGTH
GL_ACTIVE_UNIFORM_BLOCK
GL_ACTIVE_UNIFORM_BLOCK_MAX_LENGTH
GL_ACTIVE_UNIFORMS
GL_ACTIVE_UNIFORM_MAX_LENGTH
GL_ATTACHED_SHADERS
GL_DELETE_STATUS
GL_INFO_LOG_LENGTH
GL_LINK_STATUS
GL_PROGRAM_BINARY_RETRIEVABLE_HINT
GL_TRANSFORM_FEEDBACK_BUFFER_MODE
GL_TRANSFORM_FEEDBACK_VARYINGS
GL_TRANSFORM_FEEDBACK_VARYING_MAX_LENGTH
GL_VALIDATE_STATUS

params	� pointer to integer storage location for the result of the
query

Shaders and Programs	 77

To check whether a link was successful, you can query for GL_LINK_
STATUS. A large number of other queries can also be executed on
program objects. Querying for GL_ACTIVE_ATTRIBUTES returns a count
of the number of active attributes in the vertex shader. Querying for
GL_ACTIVE_ATTRIBUTE_MAX_LENGTH returns the maximum length (in
characters) of the largest attribute name; this information can be used to
determine how much memory to allocate to store attribute name strings.
Likewise, GL_ACTIVE_UNIFORMS and GL_ACTIVE_UNIFORM_MAX_LENGTH
return the number of active uniforms and the maximum length of the
largest uniform name, respectively. The number of shaders attached to
the program object can be queried using GL_ATTACHED_SHADERS. The
GL_DELETE_STATUS query returns whether a program object has been
marked for deletion. As with shader objects, program objects store an info
log, the length of which can be queried for using GL_INFO_LOG_LENGTH.
Querying for GL_TRANSFORM_FEEDBACK_BUFFER_MODE returns either
GL_SEPARATE_ATTRIBS or GL_INTERLEAVED_ATTRIBS, which is the buffer
mode when transform feedback is active. Queries for GL_TRANSFORM_
FEEDBACK_VARYINGS and GL_TRANSFORM_FEEDBACK_VARYING_MAX_LENGTH
return the number of output variables to capture in transform feedback
mode for the program and the maximum length of the output variable
names, respectively. The transform feedback is described in Chapter 8,
“Vertex Shaders.” The number of uniform blocks for programs containing
active uniforms and the maximum length of the uniform block names can
be queried using GL_ACTIVE_UNIFORM_BLOCKS and GL_ACTIVE_UNIFORM_
BLOCK_MAX_LENGTH, respectively. Uniform blocks are described in a later
section. Querying for GL_PROGRAM_BINARY_RETRIEVABLE_HINT returns a
value indicating whether the binary retrieval hint is currently enabled for
program. Finally, the status of the last validation operation can be queried
for using GL_VALIDATE_STATUS. The validation of program objects is
described later in this section.

After linking the program, we next want to get information from the
program info log (particularly if a link failure occurred). Doing so is
similar to getting the info log for shader objects.

void glGetProgramInfoLog(GLuint program, GLsizei maxLength,
GLsizei *length,
GLchar *infoLog)

program	 handle to the program object for which to get information

maxLength	 the size of the buffer in which to store the info log
(continues)

78	 Chapter 4: Shaders and Programs

Once we have linked the program successfully, we are almost ready to
render with it. Before doing so, however, we might want to check whether
the program validates. That is, there are certain aspects of execution that
a successful link cannot guarantee. For example, perhaps the application
never binds valid texture units to samplers. This behavior will not be
known at link time, but instead will become apparent at draw time. To
check that your program will execute with the current state, you can call
glValidateProgram.

void glValidateProgram(GLuint program)

program	 handle to the program object to validate

void glUseProgram(GLuint program)

program	 handle to the program object to make active

(continued)
length 	�the length of the info log written (minus the null

terminator); if the length does not need to be known,
this parameter can be NULL

infoLog	 pointer to the character buffer in which to store the info log

The result of the validation can be checked using GL_VALIDATE_STATUS
described earlier. The info log will also be updated.

Note:	 You really want to use glValidateProgram only for debugging
purposes. It is a slow operation and certainly not something you
want to check before every render. In fact, you can get away with
never using it if your application is successfully rendering. We want
to make you aware that this function does exist, though.

So far, we have shown you the functions needed for creating a program
object, attaching shaders to it, linking, and getting the info log. There is
one more thing you need to do with a program object before rendering,
and that is to set it as the active program using glUseProgram.

Now that we have our program active, we are set to render. Once again,
Example 4-2 shows the code from our sample in Chapter 2, “Hello
Triangle: An OpenGL ES 3.0 Example,” that uses these functions.

Shaders and Programs	 79

Example 4-2	 Create, Attach Shaders to, and Link a Program

// Create the program object
programObject = glCreateProgram ();

if (programObject == 0)
{
 return 0;
}

glAttachShader (programObject, vertexShader);
glAttachShader (programObject, fragmentShader);

// Link the program
glLinkProgram (programObject);

// Check the link status
glGetProgramiv (programObject, GL_LINK_STATUS, &linked);

if (!linked)
{
 // Retrieve compiler error messages when linking fails
 GLint infoLen = 0;

 glGetProgramiv(programObject, GL_INFO_LOG_LENGTH, &infoLen);

 if (infoLen > 1)
 {

char* infoLog = malloc (sizeof (char) * infoLen);

glGetProgramInfoLog (programObject, infoLen, NULL,
infoLog);

esLogMessage (“Error linking program:\n%s\n”, infoLog);

free (infoLog);
 }

 glDeleteProgram (programObject);
 return FALSE;
}

// ...

// Use the program object
glUseProgram (programObject);

80	 Chapter 4: Shaders and Programs

Uniforms and Attributes

Once you have a linked program object, there are number of queries that
you might want to do on it. First, you will likely need to find out about
the active uniforms in your program. Uniforms—as we detail more in the
next chapter on the shading language—are variables that store read-only
constant values that are passed in by the application through the OpenGL
ES 3.0 API to the shader.

Sets of uniforms are grouped into two categories of uniform blocks. The
first category is the named uniform block, where the uniform’s value is
backed by a buffer object called a uniform buffer object (more on that
next). The named uniform block is assigned a uniform block index.
The following example declares a named uniform block with the name
TransformBlock containing three uniforms (matViewProj, matNormal,
and matTexGen):

uniform TransformBlock
{
 mat4 matViewProj;
 mat3 matNormal;
 mat3 matTexGen;
};

The second category is the default uniform block for uniforms that are
declared outside of a named uniform block. Unlike with the named
uniform block, there is no name or uniform block index for default
uniform blocks. The following example declares the same three uniforms
outside of a named uniform block:

uniform mat4 matViewProj;
uniform mat3 matNormal;
uniform mat3 matTexGen;

We describe uniform blocks in more detail in the section Uniform Blocks in
Chapter 5.

If a uniform is declared in both a vertex shader and a fragment shader, it
must have the same type, and its value will be the same in both shaders.
During the link phase, the linker will assign uniform locations to each
of the active uniforms associated with the default uniform block in the
program. These locations are the identifiers the application will use to
load the uniform with a value. The linker will also assign offsets and
strides (for array and matrix type uniforms) for active uniforms associated
with the named uniform blocks.

Uniforms and Attributes	 81

Getting and Setting Uniforms

To query for the list of active uniforms in a program, you first call
glGetProgramiv with the GL_ACTIVE_UNIFORMS parameter (as described
in the previous section). This will tell you the number of active uniforms
in the program. The list includes uniforms in named uniform blocks,
default block uniforms declared in shader code, and built-in uniforms
used in shader code. A uniform is considered “active” if it was used by
the program. In other words, if you declare a uniform in one of your
shaders but never use it, the linker will likely optimize that away and not
return it in the active uniform list. You can also find out the number of
characters (including the null terminator) that the largest uniform name
has in the program; this can be done by calling glGetProgramiv with the
GL_ACTIVE_UNIFORM_MAX_LENGTH parameter.

Once we know the number of active uniforms and the number
of characters needed to store the uniform names, we can find
out the details on each uniform using glGetActiveUniform and
glGetActiveUniformsiv.

void glGetActiveUniform(GLuint program, GLuint index,
GLsizei bufSize, GLsizei *length,
GLint *size, GLenum *type,
GLchar *name)

program	 handle to the program object

index	 the uniform index to be queried

bufSize	 the number of characters in the name array

length	� if not NULL, will be written with the number of characters
written into the name array (less the null terminator)

size 	�if the uniform variable being queried is an array, this
variable will be written with the maximum array element
used in the program (plus 1); if the uniform variable being
queried is not an array, this value will be 1

type	 will be written with the uniform type; can be

GL_FLOAT, GL_FLOAT_VEC2, GL_FLOAT_VEC3,
GL_FLOAT_VEC4, GL_INT, GL_INT_VEC2, GL_INT_VEC3,
GL_INT_VEC4, GL_UNSIGNED_INT,
GL_UNSIGNED_INT_VEC2, GL_UNSIGNED_INT_VEC3,
GL_UNSIGNED_INT_VEC4, GL_BOOL, GL_BOOL_VEC2,
GL_BOOL_VEC3, GL_BOOL_VEC4, GL_FLOAT_MAT2,

(continues)

82	 Chapter 4: Shaders and Programs

Using glGetActiveUniform, you can determine nearly all of the properties
of the uniform. You can determine the name of the uniform variable along
with its type. In addition, you can find out if the variable is an array, and
if so what the maximum element used in the array was. The name of the
uniform is necessary to find the uniform’s location, and the type and size

(continued)
GL_FLOAT_MAT3, GL_FLOAT_MAT4, GL_FLOAT_MAT2x3,
GL_FLOAT_MAT2x4, GL_FLOAT_MAT3x2, GL_FLOAT_MAT3x4,
GL_FLOAT_MAT4x2, GL_FLOAT_MAT4x3, GL_SAMPLER_2D,
GL_SAMPLER_3D, GL_SAMPLER_CUBE,
GL_SAMPLER_2D_SHADOW, GL_SAMPLER_2D_ARRAY,
GL_SAMPLER_2D_ARRAY_SHADOW,
GL_SAMPLER_CUBE_SHADOW, GL_INT_SAMPLER_2D,
GL_INT_SAMPLER_3D, GL_INT_SAMPLER_CUBE,
GL_INT_SAMPLER_2D_ARRAY,
GL_UNSIGNED_INT_SAMPLER_2D,
GL_UNSIGNED_INT_SAMPLER_3D,
GL_UNSIGNED_INT_SAMPLER_CUBE,
GL_UNSIGNED_INT_SAMPLER_2D_ARRAY

name 	�will be written with the name of the uniform up to bufSize
number of characters; this will be a null-terminated string

void glGetActiveUniformsiv(GLuint program, GLsizei count,
const GLuint *indices,
GLenum pname, GLint *params)

program	 handle to the program object

count	 the number of elements in the array of indices

indices	 a list of uniform indices

pname 	�property of each uniform in the uniform indices to be
written into the elements of params; can be

GL_UNIFORM_TYPE, GL_UNIFORM_SIZE,
GL_UNIFORM_NAME_LENGTH, GL_UNIFORM_BLOCK_INDEX,
GL_UNIFORM_OFFSET, GL_UNIFORM_ARRAY_STRIDE,
GL_UNIFORM_MATRIX_STRIDE, GL_UNIFORM_IS_ROW_MAJOR

params	� will be written with the result specified by pname
corresponding to each uniform in the uniform indices

Uniforms and Attributes	 83

are needed to figure out how to load it with data. Once we have the name
of the uniform, we can find its location using glGetUniformLocation. The
uniform location is an integer value used to identify the location of the
uniform in the program (note that uniforms in the named uniform blocks
are not assigned a location). That location value is used by subsequent calls
for loading uniforms with values (e.g., glUniformlf).

GLint glGetUniformLocation(GLuint program,
const GLchar* name)	

program	 handle to the program object

name	 the name of the uniform for which to get the location

void	 glUniform1f(GLint location, GLfloat x)
void	 glUniform1fv(�GLint location, GLsizei count,

const GLfloat* value)
void	 glUniform1i(GLint location, GLint x)
void	 glUniform1iv(�GLint location, GLsizei count,

const GLint* value)
void	 glUniform1ui(GLint location, GLuint x)
void	 glUniform1uiv(�GLint location, GLsizei count,

const GLuint* value)
void	 glUniform2f(GLint location, GLfloat x, GLfloat y)
void	 glUniform2fv(�GLint location, GLsizei count,

const GLfloat* value)
void	 glUniform2i(GLint location, GLint x, GLint y)
void	 glUniform2iv(GLint location, GLsizei count,

const GLint* value)
void	 glUniform2ui(GLint location, GLuint x, GLuint y)
void	 glUniform2uiv(GLint location, GLsizei count,

const GLuint* value)

This function will return the location of the uniform given by name. If
the uniform is not an active uniform in the program, then the return
value will be –1. Once we have the uniform location along with its type
and array size, we can then load the uniform with values. A number of
different functions for loading uniforms are available, with different
functions for each uniform type.

(continues)

84	 Chapter 4: Shaders and Programs

(continued)
void	 glUniform3f(�GLint location, GLfloat x, GLfloat y,

GLfloat z)
void	 glUniform3fv(�GLint location, GLsizei count,

const GLfloat* value)
void	 glUniform3i(�GLint location, GLint x, GLint y,

GLint z)
void	 glUniform3iv(�GLint location, GLsizei count,

const GLint* value)
void	 glUniform3ui(�GLint location, GLuint x, GLuint y,

GLuint z)
void	 glUniform3uiv(�GLint location, GLsizei count,

const GLuint* value)
void	 glUniform4f(�GLint location, GLfloat x, GLfloat y,

GLfloat z, GLfloat w);
void	 glUniform4fv(�GLint location, GLsizei count,

const GLfloat* value)
void	 glUniform4i(�GLint location, GLint x, GLint y,

GLint z, GLint w)
void	 glUniform4iv(�GLint location, GLsizei count,

const GLint* value)
void	 glUniform4ui(�GLint location, GLuint x, GLuint y,

GLuint z, GLuint w)
void	 glUniform4uiv(�GLint location, GLsizei count,

const GLuint* value)
void	 glUniformMatrix2fv(�GLint location, GLsizei count,

GLboolean transpose,
const GLfloat* value)

void	 glUniformMatrix3fv(�GLint location, GLsizei count,
GLboolean transpose,
const GLfloat* value)

void	 glUniformMatrix4fv(�GLint location, GLsizei count,
GLboolean transpose,
const GLfloat* value)

void	 glUniformMatrix2x3fv(�GLint location, GLsizei count,
GLboolean transpose,
const GLfloat* value)

void	 glUniformMatrix3x2fv(�GLint location, GLsizei count,
GLboolean transpose,
const GLfloat* value)

Uniforms and Attributes	 85

The functions for loading uniforms are mostly self-explanatory. The
determination of which function you need to use for loading the uniform
is based on the type returned by the glGetActiveUniform function.
For example, if the type is GL_FLOAT_VEC4, then either glUniform4f or
glUniform4fv can be used. If the size returned by glGetActiveUniform
is greater than 1, then glUniform4fv would be used to load the entire
array in one call. If the uniform is not an array, then either glUniform4f
or glUniform4fv could be used.

One point worth noting here is that the glUniform* calls do not
take a program object handle as a parameter. The reason is that the
glUniform* calls always act on the current program that is bound with
glUseProgram. The uniform values themselves are kept with the program
object. That is, once you set a uniform to a value in a program object,
that value will remain with it even if you make another program active.
In that sense, we can say that uniform values are local to a program object.

The block of code in Example 4-3 demonstrates how you would go
about querying for uniform information on a program object using the
functions we have described.

void	 glUniformMatrix2x4fv(�GLint location, GLsizei count,
GLboolean transpose,
const GLfloat* value)

void	 glUniformMatrix4x2fv(�GLint location, GLsizei count,
GLboolean transpose,
const GLfloat* value)

void	 glUniformMatrix3x4fv(�GLint location, GLsizei count,
GLboolean transpose,
const GLfloat* value)

void	 glUniformMatrix4x3fv(�GLint location, GLsizei count,
GLboolean transpose,
const GLfloat* value)

location	 the location of the uniform to load with a value.

count	 �specifies the number of array elements to be loaded
(for vector commands) or the number of matrices to be
modified (for matrix commands).

transpose	 �for matrix commands, specifies whether the matrix is in
column major order (with GL_FALSE) or row major order
(with GL_TRUE).

x, y, z, w	 updated uniform values

value	 a pointer to an array of count elements

86	 Chapter 4: Shaders and Programs

Example 4-3	 Querying for Active Uniforms

GLint maxUniformLen;
GLint numUniforms;
char *uniformName;
GLint index;

glGetProgramiv (progObj, GL_ACTIVE_UNIFORMS, &numUniforms);
glGetProgramiv (progObj, GL_ACTIVE_UNIFORM_MAX_LENGTH,

&maxUniformLen);

uniformName = malloc (sizeof (char) * maxUniformLen);

for (index = 0; index < numUniforms; index++)
{
 GLint size;
 GLenum type;
 GLint location;

 // Get the uniform info
 glGetActiveUniform (progObj, index, maxUniformLen, NULL,

&size, &type, uniformName);

 // Get the uniform location
 location = glGetUniformLocation (progObj, uniformName);

 switch (type)
 {
 case GL_FLOAT:

//
break;

 case GL_FLOAT_VEC2:
//
break;

 case GL_FLOAT_VEC3:
//
break;

 case GL_FLOAT_VEC4:
//
break;

 case GL_INT:
//
break;

 // ... Check for all the types ...

Uniforms and Attributes	 87

Uniform Buffer Objects

You can share uniforms between shaders in a program or even between
programs by using a buffer object to store uniform data. Such buffer
objects are called uniform buffer objects. Using uniform buffer objects, you
can potentially reduce the API overhead when updating large blocks of
uniforms. In addition, this approach increases the potential storage available
for uniforms because you are not limited by the default uniform block size.

To update the uniform data in a uniform buffer object, you can modify
the contents of the buffer object using commands such as glBufferData,
glBufferSubData, glMapBufferRange, and glUnmapBuffer (these
commands are described in Chapter 6, “Vertex Attributes, Vertex Arrays,
and Buffer Objects”) rather than using the glUniform* commands
described in the previous section.

In the uniform buffer objects, uniforms are represented in memory as follows:

•• Members of type bool, int, uint, and float are stored in memory at
the specified offset as single uint-typed, int-typed, uint-typed, and
float-typed components, respectively.

•• Vectors with basic data types of bool, int, uint, or float are stored
in consecutive memory locations beginning at the specified offset,
with the first component at the lowest offset.

•• Column-major matrices with C columns and R rows are treated as
an array of C floating-point column vectors, each consisting of R
components. Similarly, row-major matrices with R rows and C columns
are treated as an array of R floating-point row vectors, each consisting
of C components. While the column or row vectors are stored
consecutively, they may be stored with gaps by the implementation. The
offset between two vectors in the matrix is referred to as the column or
row stride (GL_UNIFORM_MATRIX_STRIDE) and can be queried in a linked
program using glGetActiveUniformsiv.

Example 4-3	 Querying for Active Uniforms (continued)

 default:
// Unknown type
break;

 }

}

88	 Chapter 4: Shaders and Programs

•• Arrays of scalars, vectors, and matrices are stored in memory by
element order, with array member zero placed at the lowest offset.
The offset between each pair of elements in the array is constant and
referred to as the array stride (GL_UNIFORM_ARRAY_STRIDE) and can be
queried in a linked program using glGetActiveUniformsiv.

Unless you use the std140 uniform block layout (the default),
you will need to query the program object for the byte offsets and
strides to set uniform data in the uniform buffer object. The std140
layout guarantees a specific packing behavior with an explicit layout
specification defined by the OpenGL ES 3.0 specification. Thus using
std140 layout allows you to share the uniform block between different
OpenGL ES 3.0 implementations. Other packing formats (see Table 5-4)
may allow some OpenGL ES 3.0 implementations to pack the data more
tightly together than the std140 layout.

The following is an example of a named uniform block LightBlock using
the std140 layout:

layout (std140) uniform LightBlock
{
 vec3 lightDirection;
 vec4 lightPosition;
};

The std140 layout is specified as follows (adapted from the OpenGL
ES 3.0 specification). When the uniform block contains the following
member:

1. A scalar variable—The base alignment is the size of the scalar. For
example, sizeof(GLint).

2. A two-component vector—The base alignment is twice the size of the
underlying component type size.

3. A three-component or four-component vector—The base alignment
is four times the size of the underlying component type size.

4. An array of scalars or vectors—The base alignment and array stride
are set to match the base alignment of a single element array. The
entire array is padded to a multiple of the size of a vec4.

5. A column-major matrix with C columns and R rows—Stored as an
array of C vectors with R components according to rule 4.

6. An array of M column-major matrices with C columns and R rows—
Stored as M × C vectors with R components according to rule 4.

Uniforms and Attributes	 89

7. A row-major matrix with C columns and R rows—Stored as an array
of R vectors with C components according to rule 4.

8. An array of M row-major matrices with C columns and R rows—
Stored as M × R vectors with C components according to rule 4.

9. A single structure—The offset and size are calculated according to the
preceding rules. The structure’s size will be padded to a multiple of
the size of a vec4.

10. An array of S structures—The base alignment is calculated according
to the alignment of the element of the array. The element of the
array is calculated according to rule 9.

Similar to how a uniform location value is used to refer to a uniform, a
uniform block index is used to refer to a uniform block. You can retrieve
the uniform block index using glGetUniformBlockIndex.

GLuint glGetUniformBlockIndex(GLuint program,
const GLchar *blockName)

program	 handle to the program object

blockName	 �the name of the uniform block for which to get the index

From the uniform block index, you can determine the details of the active
uniform block using glGetActiveUniformBlockName (to get the block
name) and glGetActiveUniformBlockiv (to get many properties of the
uniform block).

void glGetActiveUniformBlockName(GLuint program,
GLuint index,
GLsizei bufSize,
GLsizei *length,
GLchar *blockName)

program	 handle to the program object

index	 the uniform block index to be queried

bufSize	 the number of characters in the name array

length	 �if not NULL, will be written with the number of characters
written into the name array (less the null terminator)

(continues)

90	 Chapter 4: Shaders and Programs

Querying for GL_UNIFORM_BLOCK_BINDING returns the last buffer binding
point for the uniform block (zero, if this block does not exist). The
GL_UNIFORM_BLOCK_DATA_SIZE argument returns the minimum total
buffer object size to hold all the uniforms for the uniform block, while
querying for GL_UNIFORM_BLOCK_NAME_LENGTH returns the total length
(including the null terminator) of the name of the uniform block. The
number of active uniforms in the uniform block can be queried using
GL_UNIFORM_BLOCK_ACTIVE_UNIFORMS. The GL_UNIFORM_BLOCK_ACTIVE_
NUMBER_INDICES query returns a list of the active uniform indices in the
uniform block. Finally, querying for GL_UNIFORM_BLOCK_REFERENCED_
BY_VERTEX_SHADER and GL_UNIFORM_BLOCK_REFERENCED_BY_FRAGMENT_
SHADER returns a boolean value, whether the uniform block is referenced
by the vertex or fragment shader in the program, respectively.

Once you have the uniform block index, you can associate the
index with a uniform block binding point in the program by calling
glUniformBlockBinding.

void glGetActiveUniformBlockiv(�GLuint program,
GLuint index,
	�GLenum pname,
GLint *params)

program	 handle to the program object

index	 the uniform block index to be queried

pname	 �property of the uniform block index to be written into
params; can be

GL_UNIFORM_BLOCK_BINDING
GL_UNIFORM_BLOCK_DATA_SIZE
GL_UNIFORM_BLOCK_NAME_LENGTH
GL_UNIFORM_BLOCK_ACTIVE_UNIFORMS
GL_UNIFORM_BLOCK_ACTIVE_UNIFORM_INDICES
GL_UNIFORM_BLOCK_REFERENCED_BY_VERTEX_SHADER
GL_UNIFORM_BLOCK_REFERENCED_BY_FRAGMENT_SHADER

params	 will be written with the result specified by pname

(continued)

blockName	 �will be written with the name of the uniform up to
bufSize number of characters; this will be a null-
terminated string

Uniforms and Attributes	 91

void glBindBufferRange(�GLenum target, GLuint index,
GLuint buffer, GLintptr offset,
GLsizeiptr size)

void glBindBufferBase(GLenum target, GLuint index,
GLuint buffer)

target	 �must be GL_UNIFORM_BUFFER or
GL_TRANSFORM_FEEDBACK_BUFFER

index	 the binding index

buffer	 the handle to the buffer object

offset	 a starting offset in bytes into the buffer object

(glBindBufferRange only)

size	 �the amount of data in bytes that can be read from or written
to the buffer object (glBindBufferRange only)

void glUniformBlockBinding(GLuint program,
GLuint blockIndex,
GLuint blockBinding)

program	 handle to the program object

blockIndex	 index of the uniform block

blockBinding	 uniform buffer object binding point

When programming the uniform blocks, you should pay attention to the
following limitations:

•• The maximum number of active uniform blocks used by a vertex
or fragment shader can be queried using glGetIntegerv with
GL_MAX_VERTEX_UNIFORM_BLOCKS or GL_MAX_FRAGMENT_UNIFORM_
BLOCKS, respectively. The minimum supported number for any
implementation is 12.

•• The maximum number of combined active uniform blocks used by
all shaders in a program can be queried using glGetIntegerv with
GL_MAX_COMBINED_UNIFORM_BLOCKS. The minimum supported
number for any implementation is 24.

Finally, you can bind the uniform buffer object to the GL_UNIFORM_
BUFFER target and a uniform block binding point in the program using
glBindBufferRange or glBindBufferBase.

92	 Chapter 4: Shaders and Programs

•• The maximum available storage per uniform buffer can be queried
using glGetInteger64v with GL_MAX_UNIFORM_BLOCK_SIZE, which
returns the size in bytes. The minimum supported number for any
implementation is 16 KB.

If you violate any of these limits, the program will fail to link.

The following example shows how to set up a uniform buffer object with
the named uniform block LightTransform described earlier:

GLuint blockId, bufferId;
GLint blockSize;
GLuint bindingPoint = 1;
GLfloat lightData[] =
{
 // lightDirection (padded to vec4 based on std140 rule)
 1.0f, 0.0f, 0.0f, 0.0f,

 // lightPosition
 0.0f, 0.0f, 0.0f, 1.0f
};

// Retrieve the uniform block index
blockId = glGetUniformBlockIndex (program, “LightBlock”);

// Associate the uniform block index with a binding point
glUniformBlockBinding (program, blockId, bindingPoint);

// Get the size of lightData; alternatively,
// we can calculate it using sizeof(lightData) in this example
glGetActiveUniformBlockiv (program, blockId,

GL_UNIFORM_BLOCK_DATA_SIZE,
&blockSize);

// Create and fill a buffer object
glGenBuffers (1, &bufferId);
glBindBuffer (GL_UNIFORM_BUFFER, bufferId);
glBufferData (GL_UNIFORM_BUFFER, blockSize, lightData,

GL_DYNAMIC_DRAW);

// Bind the buffer object to the uniform block binding point
glBindBufferBase (GL_UNIFORM_BUFFER, bindingPoint, buffer);

Getting and Setting Attributes

In addition to querying for uniform information on the program object,
you will need to use the program object to set up vertex attributes.
The queries for vertex attributes are very similar to the uniform

Shader Compiler	 93

queries. You can find the list of active attributes using the GL_ACTIVE_
ATTRIBUTES query. You can find the properties of an attribute using
glGetActiveAttrib. A set of routines are then available for setting up
vertex arrays to load the vertex attributes with values.

However, setting up vertex attributes really requires a bit more
understanding of primitives and the vertex shader than we are ready to
delve into right now. Instead, we dedicate an entire chapter (Chapter 6,
“Vertex Attributes, Vertex Arrays, and Buffer Objects”) to vertex attributes
and vertex arrays. If you want to find out how to query for vertex attribute
info, jump to Chapter 6 and the section Declaring Vertex Attribute Variables
in a Vertex Shader.

Shader Compiler

When you ask OpenGL ES to compile and link a shader, take a minute
to think about what the implementation has to do. The shader code is
typically parsed into some sort of intermediate representation, as most
compiled languages are (e.g., an Abstract Syntax Tree). A compiler must
then convert the abstract representation into machine instructions
for the hardware. Ideally, this compiler should also do a great deal
of optimization, such as dead-code removal, constant propagation,
and more. Performing all this work comes at a price—and this price is
primarily CPU time and memory.

OpenGL ES 3.0 implementations must support online shader compilation
(the value of GL_SHADER_COMPILER retrieved using glGetBooleanv
must be GL_TRUE). You can specify your shaders using glShaderSource,
as we have done so far in our examples. You can also try to mitigate
the resource impact of shader compilation. That is, once you have
finished compiling any shaders for your application, you can call
glReleaseShaderCompiler. This function provides a hint to the
implementation that you are done with the shader compiler, so it can
free its resources. Note that this function is only a hint; if you decide to
compile more shaders using glCompileShader, the implementation will
need to reallocate its resources for the compiler.

void glReleaseShaderCompiler (void)

Provides a hint to the implementation that it can release resources
used by the shader compiler. Because this function is only a hint, some
implementations may ignore a call to this function.

94	 Chapter 4: Shaders and Programs

Program Binaries

Program binaries are the binary representation of a complete compiled
and linked program. They are useful because they can be saved to the file
system to be reused later, thereby avoiding the cost of online compilation.
You may also use program binaries so that you do not have to distribute
the shader source codes in your implementation.

You can retrieve the program binary using glGetProgramBinary after you
have compiled and linked the program successfully.

After you have retrieved the program binary, you can save it to the file
system or load the program binary back into the implementation using
glProgramBinary.

void glGetProgramBinary(�GLuint program, GLsizei bufSize,
GLsizei *length, GLenum binaryFormat,
GLvoid *binary)

program	 handle to the program object

bufSize	 �the maximum number of bytes that may be written
into the binary

length	 the number of bytes in the binary data

binaryFormat	 the vendor-specific binary format token

binary	 �pointer to the binary data generated by the shader
compiler

void glProgramBinary(�GLuint program, GLenum binaryFormat,
const GLvoid *binary, GLsizei length)

program	 handle to the program object

binaryFormat	 the vendor-specific binary format token

binary	 �pointer to the binary data generated by the shader
compiler

length	 the number of bytes in the binary data

Summary	 95

The OpenGL ES specification does not mandate any particular binary
format; instead, the binary format is left completely up to the vendor. This
obviously means that programs have less portability, but it also means the
vendor can create a less burdensome implementation of OpenGL ES 3.0.
In fact, the binary format may change from one driver version to another
implemented by the same vendor. To ensure that the stored program
binary is still compatible, after calling glProgramBinary, you can
query the GL_LINK_STATUS through glGetProgramiv. If it is no longer
compatible, then you will need to recompile the shader source code.

Summary

In this chapter, you learned how to create, compile, and link shaders
into a program. Shader objects and program objects form the most
fundamental objects in OpenGL ES 3.0. We discussed how to query the
program object for information and how to load uniforms. In addition,
you learned how source shaders and program binaries differ and how to
use each. Next, you will learn how to write a shader using the OpenGL ES
Shading Language.

This page intentionally left blank

97

Chapter 5

OpenGL ES Shading Language

As you saw in earlier chapters, shaders are a fundamental concept that
lies at the heart of the OpenGL ES 3.0 API. Every OpenGL ES 3.0 program
requires both a vertex shader and a fragment shader to render a meaningful
picture. Given the centrality of the concept of shaders to the API, we want
to make sure you are grounded in the fundamentals of writing shaders
before diving into more details of the graphics API.

This chapter’s goal is to make sure you understand the following concepts
in the shading language:

•• Variables and variable types

•• Vector and matrix construction and selection

•• Constants

•• Structures and arrays

•• Operators, control flow, and functions

•• Input/output variables, uniforms, uniform blocks, and layout
qualifiers

•• Preprocessor and directives

•• Uniform and interpolator packing

•• Precision qualifiers and invariance

You were introduced to some of these concepts in a small amount of
detail with the example in Chapter 2, “Hello Triangle: An OpenGL ES 3.0
Example.” Now we will fill in the concepts with a lot more detail to make
sure you understand how to write and read shaders.

98	 Chapter 5: OpenGL ES Shading Language

OpenGL ES Shading Language Basics

As you read through this book, you will look at a lot of shaders. If you
ever start developing your own OpenGL ES 3.0 application, chances
are that you will write a lot of shaders. By now, you should understand
the fundamental concepts of what a shader does and how it fits in the
pipeline. If not, please go back and review Chapter 1, “Introduction to
OpenGL ES 3.0,” where we covered the pipeline and described where
vertex and fragment shaders fit within it.

What we want to look at now is what exactly makes up a shader. As you
have probably already observed, the syntax bears great similarity to that
seen in the C programming language. If you can understand C code, you
likely will not have much difficulty understanding the syntax of shaders.
However, there are certainly some major differences between the two
languages, beginning with the version specification and the native data
types that are supported.

Shader Version Specification

The first line of your OpenGL ES 3.0 vertex and fragment shaders will
always declare a shader version. Declaring the shader version informs the
shader compiler which syntax and constructs it can expect to be present
in the shader. The compiler checks the shader syntax against the declared
version of the shading language used. To declare that your shader uses
version 3.00 of the OpenGL ES Shading Language, use the following
syntax:

#version 300 es

Shaders that do not declare a version number are assumed to use revision
1.00 of the OpenGL ES Shading Language. Revision 1.00 of the shading
language is the version that was used in OpenGL ES 2.0. For OpenGL
ES 3.0, the specification authors decided to match the version numbers
for the API and Shading Language, which explains why the number
jumped from 1.00 to 3.00 for OpenGL ES 3.0. As described in Chapter 1,
“Introduction to OpenGL ES 3.0,” the OpenGL ES Shading Language
3.0 adds many new features, including non-square matrices, full integer
support, interpolation qualifiers, uniform blocks, layout qualifiers, new
built-in functions, full looping, full branching support, and unlimited
shader instruction length.

Variables and Variable Types	 99

Variables and Variable Types

In computer graphics, two fundamental data types form the basis of
transformations: vectors and matrices. These two data types are central to
the OpenGL ES Shading Language as well. Specifically, Table 5-1 describes
the scalar-, vector-, and matrix-based data types that exist in the shading
language.

Variables in the shading language must be declared with a type. For
example, the following declarations illustrate how to declare a scalar, a
vector, and a matrix:

float specularAtten; // A floating-point-based scalar
vec4 vPosition; // A floating-point-based 4-tuple vector

Table 5-1	 Data Types in the OpenGL ES Shading Language

Variable Class Types Description

Scalars float, int, uint,
bool

Scalar-based data types
for floating-point, integer,
unsigned integer, and
boolean values

Floating-point
vectors

float, vec2, vec3,
vec4

Floating-point–based vector
types of one, two, three, or
four components

Integer vector int, ivec2, ivec3,
ivec4

Integer-based vector types
of one, two, three, or four
components

Unsigned integer
vector

uint, uvec2, uvec3,
uvec4

Unsigned integer-based vector
types of one, two, three, or
four components

Boolean vector bool, bvec2, bvec3,
bvec4

Boolean-based vector types
of one, two, three, or four
components

Matrices mat2 (or mat2x2),
mat2x3, mat2x4,
mat3x2, mat3 (or
mat3x3), mat3x4,
mat4x2, mat4x3,
mat4 (or mat4x4)

Floating-point based matrices
of size 2 × 2, 2 × 3, 2 × 4, 3 × 2,
3 × 3, 3 × 4, 4 × 2, 4 × 3, or 4 × 4

100	 Chapter 5: OpenGL ES Shading Language

mat4 mViewProjection; // A 4 x 4 matrix variable declaration
ivec2 vOffset; // An integer-based 2-tuple vector

Variables can be initialized either at declaration time or later. Initialization is done
through the use of constructors, which are also used for doing type conversions.

Variable Constructors

The OpenGL ES Shading Language has very strict rules regarding type
conversion. That is, variables can only be assigned to or operated on
other variables of the same type. The reasoning behind not allowing
implicit type conversion in the language is that it avoids shader authors
encountering unintended conversion that can lead to difficult-to-track-
down bugs. To cope with type conversions, a number of constructors
are available in the language. You can use constructors for initializing
variables and as a way of type-casting between variables of different types.
Variables can be initialized at declaration (or later in the shader) through
the use of constructors. Each of the built-in variable types has a set of
associated constructors.

Let’s first look at how constructors can be used to initialize and type-cast
between scalar values.

float myFloat = 1.0;
float myFloat2 = 1; // ERROR: invalid type conversion
bool myBool = true;
int myInt = 0;
int myInt2 = 0.0; // ERROR: invalid type conversion
myFloat = float(myBool); // Convert from bool -> float
myFloat = float(myInt); // Convert from int -> float
myBool = bool(myInt); // Convert from int -> bool

Similarly, constructors can be used to convert to and initialize vector data
types. The arguments to a vector constructor will be converted to the same
basic type as the vector being constructed (float, int, or bool). There are
two basic ways to pass arguments to vector constructors:

•• If only one scalar argument is provided to a vector constructor, that
value is used to set all values of the vector.

•• If multiple scalar or vector arguments are provided, the values of the
vector are set from left to right using those arguments. If multiple
scalar arguments are provided, there must be at least as many
components in the arguments as in the vector.

Vector and Matrix Components	 101

The following shows some examples of constructing vectors:

vec4 myVec4 = vec4(1.0); // myVec4 = {1.0, 1.0, 1.0,
// 1.0}

vec3 myVec3 = vec3(1.0,0.0,0.5); // myVec3 = {1.0, 0.0, 0.5}
vec3 temp = vec3(myVec3); // temp = myVec3
vec2 myVec2 = vec2(myVec3); // myVec2 = {myVec3.x,

// myVec3.y}

myVec4 = vec4(myVec2, temp); // myVec4 = {myVec2.x,
// myVec2.y,
// temp.x, temp.y}

For matrix construction, the language is flexible. These basic rules describe
how matrices can be constructed:

•• If only one scalar argument is provided to a matrix constructor, that
value is placed in the diagonal of the matrix. For example, mat4
(1.0) will create a 4 × 4 identity matrix.

•• A matrix can be constructed from multiple vector arguments. For
example, a mat2 can be constructed from two vec2s.

•• A matrix can be constructed from multiple scalar arguments—one for
each value in the matrix, consumed from left to right.

The matrix construction is even more flexible than the basic rules just
stated, in that a matrix can basically be constructed from any combination
of scalars and vectors as long as enough components are provided to
initialize the matrix. Matrices in OpenGL ES are stored in column major
order. When using a matrix constructor, the arguments will be consumed
to fill the matrix by column. The comments in the following example
show how the matrix constructor arguments map into columns.

mat3 myMat3 = mat3(1.0, 0.0, 0.0, // First column
0.0, 1.0, 0.0, // Second column
0.0, 1.0, 1.0); // Third column

Vector and Matrix Components

The individual components of a vector can be accessed in two ways:
by using the “.” operator or through array subscripting. Depending on
the number of components that make up a given vector, each of the
components can be accessed through the use of the swizzles {x, y, z, w},
{r, g, b, a}, or {s, t, p, q}. The reason for the three different naming schemes

102	 Chapter 5: OpenGL ES Shading Language

is that vectors are used interchangeably to represent mathematical vectors,
colors, and texture coordinates. The x, r, or s component will always refer
to the first element of a vector. The different naming conventions are just
provided as a convenience. That said, you cannot mix naming conventions
when accessing a vector (in other words, you cannot do something like
.xgr, as you can use only one naming convention at a time). When using
the “.” operator, it is also possible to reorder components of a vector in an
operation. The following examples show how this can be done.

vec3 myVec3 = vec3(0.0, 1.0, 2.0); // myVec3 = {0.0, 1.0, 2.0}
vec3 temp;

temp = myVec3.xyz; // temp = {0.0, 1.0, 2.0}
temp = myVec3.xxx; // temp = {0.0, 0.0, 0.0}
temp = myVec3.zyx; // temp = {2.0, 1.0, 0.0}

In addition to the “.” operator, vectors can be accessed using the array
subscript “[]” operator. In array subscripting, element [0] corresponds to
x, element [1] corresponds to y, and so forth. Matrices are treated as being
composed of a number of vectors. For example, a mat2 can be thought
of as two vec2s, a mat3 as three vec3s, and so forth. For matrices, the
individual column is selected using the array subscript operator “[]”, and
then each vector can be accessed using the vector access behavior. The
following shows some examples of accessing matrices:

mat4 myMat4 = mat4(1.0); // Initialize diagonal to 1.0
(identity)

vec4 colO = myMat4[0]; // Get colO vector out of the matrix
float ml_l = myMat4[1][1]; // Get element at [1][1] in matrix
float m2_2 = myMat4[2].z; // Get element at [2][2] in matrix

Constants

It is possible to declare any of the basic types as being constant variables.
Constant variables are those whose values do not change within the shader.
To declare a constant, you add the const qualifier to the declaration.
Constant variables must be initialized at declaration time. Some examples
of const declarations follow:

const float zero = 0.0;
const float pi = 3.14159;
const vec4 red = vec4(1.0, 0.0, 0.0, 1.0);
const mat4 identity = mat4(1.0);

Structures	 103

Just as in C or C++, a variable that is declared as const is read-only and
cannot be modified within the source.

Structures

In addition to using the basic types provided in the language, it is possible
to aggregate variables into structures much like in C. The declaration
syntax for a structure in the OpenGL ES Shading Language is shown in the
following example:

struct fogStruct
{
 vec4 color;
 float start;
 float end;
} fogVar;

The preceding definition will result in a new user type named fogStruct
and a new variable named fogVar.

Structures can be initialized using constructors. After a new structure type
is defined, a new structure constructor is also defined with the same name
as the type. There must be a one-to-one correspondence between types
in the structure and those in the constructor. For example, the preceding
structure could be initialized using the following construction syntax:

struct fogStruct
{
 vec4 color;
 float start;
 float end;
} fogVar;

fogVar = fogStruct(vec4(0.0, 1.0, 0.0, 0.0), // color
0.5, // start
2.0); // end

The constructor for the structure is based on the name of the type and
takes as arguments each of the components. Accessing the elements of a
structure is done just as you would with a structure in C, as shown in the
following example:

vec4 color = fogVar.color;
float start = fogVar.start;
float end = fogVar.end;

104	 Chapter 5: OpenGL ES Shading Language

Arrays

In addition to structures, the OpenGL ES Shading Language supports
arrays. The syntax is very similar to C, with the arrays being based on a
0 index. The following block of code shows some examples of creating
arrays:

float floatArray[4];
vec4 vecArray[2];

Arrays can be initialized using the array initializer constructor, as shown
in the following code:

float a[4] = float[](1.0, 2.0, 3.0, 4.0);
float b[4] = float[4](1.0, 2.0, 3.0, 4.0);
vec2 c[2] = vec2[2](vec2(1.0), vec2(1.0));

Providing a size to the array constructor is optional. The number of
arguments in the array constructor must be equal to the size of the array.

Operators

Table 5-2 lists the operators that are offered in the OpenGL ES Shading
Language.

Table 5-2	 OpenGL ES Shading Language Operators

Operator Type Description

* Multiply

/ Divide

% Modulus

+ Add

– Subtract

++ Increment (prefix and postfix)

– – Decrement (prefix and postfix)

= Assignment

+=, –=, *=, /= Arithmetic assignment

Operators	 105

Most of these operators behave just as they do in C. As mentioned in the
constructor section, the OpenGL ES Shading Language has strict type rules
that govern operators. That is, the operators must occur between variables
that have the same basic type. For the binary operators (*, /, +, –), the
basic types of the variables must be floating point or integer. Furthermore,
operators such as multiply can operate between combinations of floats,
vectors, and matrices. Some examples are provided here:

float   myFloat;
vec4   myVec4;
mat4   myMat4;

myVec4 = myVec4 * myFloat;	//	Multiplies each component of
//	myVec4 by a scalar myFloat

myVec4 = myVec4 * myVec4; 	//	Multiplies each component of
//	myVec4 together (e.g.,
//	myVec4 ^ 2)

myVec4 = myMat4 * myVec4;	 //	Does a matrix * vector multiply of
//	myMat4 * myVec4

myMat4 = myMat4 * myMat4;	 //	Does a matrix * matrix multiply of
//	myMat4 * myMat4

myMat4 = myMat4 * myFloat;	//	Multiplies each matrix component
//	by the scalar myFloat

The comparison operators, aside from == and != (<, <=, >, >=), can be used
only with scalar values. To compare vectors, special built-in functions
allow you to perform comparisons on a component-by-component basis
(more on that later).

Table 5-2	 OpenGL ES Shading Language Operators (continued)

Operator Type Description

==, !=, <, >, <=, >= Comparison operators

&& Logical and

^^ Logical exclusive or

|| Logical inclusive or

<<, >> Bit-wise shift

&, ^, | Bit-wise and, xor, or

?: Selection

, Sequence

106	 Chapter 5: OpenGL ES Shading Language

Functions

Functions are declared in much the same way as in C. If a function will be
used prior to its definition, then a prototype declaration must be
provided. The most significant difference between functions in the
OpenGL ES Shading Language and C is the way in which parameters are
passed to functions. The OpenGL ES Shading Language provides special
qualifiers to define whether a variable argument can be modified by the
function; these qualifiers are shown in Table 5-3.

An example function declaration is provided here. This example shows
the use of parameter qualifiers.

vec4 myFunc(inout float myFloat, // inout parameter
out vec4 myVec4, // out parameter
mat4 myMat4); // in parameter (default)

An example function definition is given here for a simple function that
computes basic diffuse lighting:

vec4 diffuse(vec3 normal,
vec3 light,
vec4 baseColor)

{
 return baseColor * dot(normal, light);
}

One note about functions in the OpenGL ES Shading Language:
functions cannot be recursive. The reason for this limitation is that some
implementations will implement function calls by actually placing the
function code inline in the final generated program for the GPU. The
shading language was purposely structured to allow this sort of inline
implementation to support GPUs that do not have a stack.

Table 5-3	 OpenGL ES Shading Language Qualifiers

Qualifier Description

in (Default if none specified) This qualifier specifies that the parameter
is passed by value and will not be modified by the function.

inout This qualifier specifies that the variable is passed by reference into
the function and if its value is modified, it will be changed after
function exit.

out This qualifier says that the variable’s value is not passed into the
function, but it will be modified on return from the function.

Control Flow Statements	 107

Built-In Functions

The preceding section described how a shader author creates a function.
One of the most powerful features of the OpenGL ES Shading Language is
the built-in functions that are provided in the language. As an example,
here is some shader code for computing basic specular lighting in a
fragment shader:

float nDotL = dot(normal, light);
float rDotV = dot(viewDir, (2.0 * normal) * nDotL - light);
float specular = specularColor * pow(rDotV, specularPower);

As you can see, this block of shader code uses the dot built-in function
to compute the dot product of two vectors and the pow built-in function
to raise a scalar to a power. These are just two simple examples; a wide
array of built-in functions are available in the OpenGL ES Shading
Language to handle the various computational tasks that one typically
has to do in a shader. Appendix B of this text provides a complete
reference to the built-in functions provided in the OpenGL ES Shading
Language. For now, we just want to make you aware that there are a lot
of built-in functions in the language. To become proficient in writing
shaders, you will need to familiarize yourself with the most
common ones.

Control Flow Statements

The syntax for control flow statements in the OpenGL ES Shading
Language is similar to that used in C. Simple if-then-else logical tests can
be done using the same syntax as C. For example:

if(color.a < 0.25)
{
 color *= color.a;
}
else
{
 color = vec4(0.0);
}

The expression that is being tested in the conditional statement must
evaluate to a boolean value. That is, the test must be based on either
a boolean value or some expression that evaluates to a boolean value
(e.g., a comparison operator). This is the basic concept underlying how
conditionals are expressed in the OpenGL ES Shading Language.

108	 Chapter 5: OpenGL ES Shading Language

In addition to basic if-then-else statements, it is possible to write for,
while, and do-while loops. In OpenGL ES 2.0, very strict rules governed
the usage of loops. Essentially, only loops that could be unrolled by the
compiler were supported. These restrictions no longer exist in OpenGL
ES 3.0. The GPU hardware is expected to provide support for looping and
flow control; thus loops are fully supported.

That is not to say that loops don’t come with some performance
implications. On most GPU architectures, vertices or fragments are
executed in parallel in batches. The GPU typically requires that all
fragments or vertices in a batch evaluate all branches (or loop iterations)
of flow control statements. If vertices or fragments in a batch execute
different paths, then, usually all of the other vertices/fragments in a
batch will need to execute that path as well. The size of a batch is GPU
dependent and will often require profiling to determine the performance
implications of the use of flow control on a particular architecture.
However, a good rule of thumb is to try to limit the use of divergent flow
control or loop iterations across vertices/fragments.

Uniforms

One of the variable type modifiers in the OpenGL ES Shading Language
is the uniform variable. Uniform variables store read-only values that
are passed in by the application through the OpenGL ES 3.0 API to the
shader. Uniforms are useful for storing all kinds of data that shaders need,
such as transformation matrices, light parameters, and colors. Basically,
any parameter to a shader that is constant across either all vertices or
fragments should be passed in as a uniform. Variables whose value is
known at compile-time should be constants rather than uniforms for
efficiency.

Uniform variables are declared at the global scope and simply require the
uniform qualifier. Some examples of uniform variables are shown here:

uniform mat4 viewProjMatrix;
uniform mat4 viewMatrix;
uniform vec3 lightPosition;

In Chapter 4, “Shaders and Programs,” we described how an application
loads uniform variables to a shader. Note also that the namespace for
uniform variables is shared across both a vertex shader and a fragment
shader. That is, if vertex and fragment shaders are linked together into a

Uniform Blocks	 109

program object, they share the same set of uniform variables. Therefore,
if a uniform variable is declared in the vertex shader and also in the
fragment shader, both of those declarations must match. When the
application loads the uniform variable through the API, its value will be
available in both the vertex and fragment shaders.

Uniform variables generally are stored in hardware into what is known
as the “constant store.” This special space is allocated in the hardware
for the storage of constant values. Because it is typically of a fixed
size, the number of uniforms that can be used in a program is limited.
This limitation can be determined by reading the value of the
gl_MaxVertexUniformVectors and gl_MaxFragmentUniformVectors
built-in variables (or by querying GL_MAX_VERTEX_UNIFORM_VECTORS or
GL_MAX_FRAGMENT_UNIFORM_VECTORS using glGetintegerv). An
implementation of OpenGL ES 3.0 must provide at least 256 vertex
uniform vectors and 224 fragment uniform vectors, although it is free to
provide more. We cover the full set of limitations and queries available
for the vertex and fragment shaders in Chapter 8, “Vertex Shaders,” and
Chapter 10, “Fragment Shaders.”

Uniform Blocks

In Chapter 4, “Shaders and Programs,” we introduced the concept of
uniform buffer objects. To review, uniform buffer objects allow the storage
of uniform data to be backed by a buffer object. Uniform buffer objects
offer several advantages over individual uniform variables in certain
situations. For example, with uniform buffer objects, uniform buffer data
can be shared across multiple programs but need to be set only once.
Further, uniform buffer objects typically allow for storage of larger amounts
of uniform data. Finally, it can be more efficient to switch between
uniform buffer objects than to individually load one uniform at a time.

Uniform buffer objects can be used in the OpenGL ES Shading Language
through application of uniform blocks. An example uniform block
follows:

uniform TransformBlock
{
 mat4 matViewProj;
 mat3 matNormal;
 mat3 matTexGen;
};

110	 Chapter 5: OpenGL ES Shading Language

This code declares a uniform block with the name TransformBlock
containing three matrices. The name TransformBlock will be used by the
application as the blockName parameter to glGetUniformBlockIndex
as described in Chapter 4, “Shaders and Programs,” for uniform buffer
objects. The variables in the uniform block declaration are then accessed
throughout the shader just as if they were declared as a regular uniform.
For example, the matViewProj matrix declared in TransformBlock would
be accessed as follows:

#version 300 es
uniform TransformBlock
{
 mat4 matViewProj;
 mat3 matNormal;
 mat3 matTexGen;
};
layout(location = 0) in vec4 a_position;
void main()
{
 gl_Position = matViewProj * a_position;
}

A number of optional layout qualifiers can be used to specify how the
uniform buffer object that backs the uniform block will be laid out in
memory. Layout qualifiers can be provided either for individual
uniform blocks or globally for all uniform blocks. At the global
scope, setting the default layout for all uniform blocks would look as
follows:

layout(shared, column_major) uniform; // default if not
// specified

layout(packed, row_major) uniform;

Individual uniform blocks can also set the layout by overriding the default
set at the global scope. In addition, individual uniforms within a uniform
block can specify a layout qualifier as shown here:

layout(std140) uniform TransformBlock
{
 mat4 matViewProj;
 layout(row_major) mat3 matNormal;
 mat3 matTexGen;
};

Table 5-4 lists all of the layout qualifiers that can be provided for uniform
blocks.

Vertex and Fragment Shader Inputs/Outputs	 111

Vertex and Fragment Shader Inputs/Outputs

Another special variable type in the OpenGL ES Shading Language is the
vertex input (or attribute) variable. Vertex input variables are used to
specify the per-vertex inputs to the vertex shader and are specified with
the in keyword. They typically store data such as positions, normals,
texture coordinates, and colors. The key here to understand is that vertex
inputs are data that are specified for each vertex being drawn. Example 5-1
is a sample vertex shader that has a position and color vertex input.

The two vertex inputs in this shader, a_position and a_color, will
be loaded with data by the application. Essentially, the application will
create a vertex array that contains a position and a color for each vertex.
Notice that the vertex inputs in Example 5-1 are preceded by the layout
qualifier. The layout qualifier in this case is used to specify the index of
the vertex attribute. The layout qualifier is optional; if it is not specified,
the linker will automatically assign locations for the vertex inputs.
We explain this entire process in full detail in Chapter 6, “Vertex
Attributes, Vertex Arrays, and Buffer Objects.”

Table 5-4	 Uniform Block Layout Qualifiers

Qualifier Description

shared The shared qualifier specifies that the layout in memory
of the uniform block across multiple shaders or multiple
programs will be the same. To use this qualifier, the
row_major/column_major values must be identical
across definitions. Overrides std140 and packed. (default)

packed The packed layout qualifier specifies that the compiler
can optimize the memory layout of the uniform block.
The location of the offsets must be queried when using
this qualifier, and the uniform blocks cannot be shared
across vertex/fragment shader or programs. Overrides
std140 and shared.

std140 The std140 layout qualifier specifies that the layout
of the uniform block is based on a set of standard rules
defined in the “Standard Uniform Block Layout” section
of the OpenGL ES 3.0 Specification. We detail these layout
rules in the Uniform Buffer Objects section of Chapter 4.
Overrides shared and packed.

row_major Matrices are laid out in row-major order in memory.

column_major Matrices are laid out in column-major order in memory.
(default)

112	 Chapter 5: OpenGL ES Shading Language

As with uniform variables, the underlying hardware typically places limits on
the number of attribute variables that can be input to a vertex shader. The
maximum number of attributes that an implementation supports is given by
the gl_MaxVertexAttribs built-in variable (it can also be found by querying
for GL_MAX_VERTEX_ATTRIBS using glGetIntegerv). The minimum
number of attributes that an OpenGL ES 3.0 implementation can support
is 16. Implementations are free to support more, but if you want to write
shaders that are guaranteed to run on any OpenGL ES 3.0 implementation,
you should restrict yourself to using no more than 16 attributes. We cover
attribute limitations in more detail in Chapter 8, “Vertex Shaders.”

The output variables from the vertex shader are specified with the out
keyword. In Example 5-1, the v_color variable is declared as an output
and its contents are copied from the a_color input variable. Each vertex
shader will output the data it needs to pass the fragment shader into one
or more output variables. These variables will then also be declared in the
fragment shader as in variables (with matching types) and will be linearly
interpolated across the primitive during rasterization (if you want more
details on how this interpolation occurs during rasterization, jump to
Chapter 7, “Primitive Assembly and Rasterization”).

For example, the matching input declaration in the fragment shader for
the v_color vertex output in Example 5-1 follows:

in vec3 v_color;

Note that unlike the vertex shader input, the vertex shader output/fragment
shader input variables cannot have layout qualifiers. The implementation
automatically chooses locations. As with uniforms and vertex input
attributes, the underlying hardware typically limits the number of vertex
shader outputs/fragment shader inputs (on the hardware, these are usually

Example 5-1	 Sample Vertex Shader

#version 300 es

uniform mat4 u_matViewProjection;
layout(location = 0) in vec4 a_position;
layout(location = 1) in vec3 a_color;
out vec3 v_color;
void main(void)
{
 gl_Position = u_matViewProjection * a_position;
 v_color = a_color;
}

Vertex and Fragment Shader Inputs/Outputs	 113

referred to as interpolators). The number of vertex shader outputs supported
by an implementation is given by the gl_MaxVertexOutputVectors
built-in variable (querying for GL_MAX_VERTEX_OUTPUT_COMPONENTS
using glGetIntegerv will provide the number of total component values
rather than the number of vectors). The minimum number of vertex
output vectors that an implementation of OpenGL ES 3.0 can support
is 16. Likewise, the number of fragment shader inputs supported by an
implementation is given by gl_MaxFragmentInputVectors (querying for
GL_MAX_FRAGMENT_INPUT_COMPONENTS using glGetIntegerv will provide
the number of total component values rather than the number of vectors).
The minimum number of fragment input vectors that an implementation
of OpenGL ES 3.0 can support is 15.

Example 5-2 is an example of a vertex shader and a fragment shader with
matching output/input declarations.

Example 5-2	 �Vertex and Fragment Shaders with Matching Output/Input
Declarations

// Vertex shader
#version 300 es

uniform mat4 u_matViewProjection;

// Vertex shader inputs
layout(location = 0) in vec4 a_position;
layout(location = 1) in vec3 a_color;

// Vertex shader output
out vec3 v_color;

void main(void)
{
 gl_Position = u_matViewProjection * a_position;
 v_color = a_color;
}

// Fragment shader
#version 300 es
precision mediump float;

// Input from vertex shader
in vec3 v_color;

// Output of fragment shader
layout(location = 0) out vec4 o_fragColor;

(continues)

114	 Chapter 5: OpenGL ES Shading Language

In Example 5-2, the fragment shader contains the definition for the
output variable o_fragColor:

layout(location = 0) out vec4 o_fragColor;

The fragment shader can output one or more colors. In the typical case,
we will render just to a single color buffer, in which case the layout
qualifier is optional (the output variable is assumed to go to location 0).
However, when rendering to multiple render targets (MRTs), we can use
the layout qualifier to specify which render target each output goes to.
MRTs are covered in detail in Chapter 11, “Fragment Operations.” For the
typical case, you will have one output variable in your fragment shader,
and that value will be the output color that is passed to the per-fragment
operations portions of the pipeline.

Interpolation Qualifiers

In Example 5-2, we declared our vertex shader output and fragment
shader input without any qualifiers. The default behavior for interpolation
when no qualifiers are present is to perform smooth shading. That is, the
output variables from the vertex shader are linearly interpolated across
the primitive, and the fragment shader receives that linearly interpolated
value as its input. We could have explicitly requested smooth shading
rather than relying on the default behavior in Example 5-2, in which case
our output/inputs would be as follows:

// ...Vertex shader...
// Vertex shader output
smooth out vec3 v_color;

// ...Fragment shader...
// Input from vertex shader
smooth in vec3 v_color;

OpenGL ES 3.0 also introduces another type of interpolation known as flat
shading. In flat shading, the value is not interpolated across the primitive.
Rather, one of the vertices is considered the provoking vertex (dependent

Example 5-2	 �Vertex and Fragment Shaders with Matching Output/Input
Declarations (continued)

void main()
{
 o_fragColor = vec4(v_color, 1.0);
}

Preprocessor and Directives	 115

on the primitive type; we describe this in the Chapter 7 section, Provoking
Vertex), and that vertex value is used for all fragments in the primitive. We
can declare the output/inputs as flat shaded as follows:

// ...Vertex shader...
// Vertex shader output
flat out vec3 v_color;

// ...Fragment shader...
// Input from vertex shader
flat in vec3 v_color;

Finally, another qualifier can be added to interpolators with the
centroid keyword. The definition of centroid sampling is provided
in Chapter 11 in the section Multisampled Anti-Aliasing. Essentially,
when rendering with multisampling, the centroid keyword can be
used to force interpolation to occur inside the primitive being rendered
(otherwise, artifacts can occur at the edges of primitives). See Chapter 11,
“Fragment Operations,” for a full definition of centroid sampling. For
now, we simply show how you can declare an output/input variable with
centroid sampling:

// ...Vertex shader...
// Vertex shader output
smooth centroid out vec3 v_color;

// ...Fragment shader...
// Input from vertex shader
smooth centroid in vec3 v_color;

Preprocessor and Directives

One feature of the OpenGL ES Shading Language we have not mentioned
yet is the preprocessor. The OpenGL ES Shading Language features
a preprocessor that follows many of the conventions of a standard
C++ preprocessor. Macros can be defined and conditional tests can be
performed using the following directives:

#define
#undef
#if
#ifdef
#ifndef
#else
#elif
#endif

116	 Chapter 5: OpenGL ES Shading Language

Note that macros cannot be defined with parameters (as they can be
in C++ macros). The #if, #else, and #elif directives can use the
defined test to see whether a macro is defined. The following macros are
predefined and their description is given next:

__LINE__	 //	 Replaced with the current line number in a shader
__FILE__	 //	 Always 0 in OpenGL ES 3.0
__VERSION__	 //	 The OpenGL ES shading language version

//	(e.g., 300)
GL_ES	 //	 This will be defined for ES shaders to a value

//	 of 1

The #error directive will cause a compilation error to occur during shader
compilation, with a corresponding message being placed in the info log.
The #pragma directive is used to specify implementation-specific directives
to the compiler.

Another important directive in the preprocessor is #extension, which is
used to enable and set the behavior of extensions. When vendors (or groups
of vendors) extend the OpenGL ES Shading Language, they will create a
language extension specification (e.g., GL_NV_shadow_samplers_cube).
The shader must instruct the compiler as to whether to allow extensions
to be used, and if not, which behavior should occur. This is done using the
#extension directive. The general format of #extension usage is shown in
the following code:

// Set behavior for an extension
#extension extension_name : behavior
// Set behavior for ALL extensions
#extension all : behavior

The first argument will be either the name of the extension (e.g.,
GL_NV_shadow_samplers_cube) or all, which means that the behavior
applies to all extensions. The behavior has four possible options, as shown in
Table 5-5.

Table 5-5	 Extension Behaviors

Extension Behavior Description

require The extension is required, so the preprocessor will
throw an error if the extension is not supported. If all
is specified, this will always throw an error.

enable The extension is enabled, so the preprocessor will warn
if the extension is not supported. The language will
be processed as if the extension is enabled. If all is
specified, this will always throw an error.

Uniform and Interpolator Packing	 117

As an example, suppose you want the preprocessor to produce a warning
if the NVIDIA shadow samplers cube extension is not supported (and you
want the shader to be processed as if it is supported). To do so, you would
add the following at the top of your shader:

#extension GL_NV_shadow_samplers_cube : enable

Uniform and Interpolator Packing

As noted in the preceding sections on uniforms and vertex shader
outputs/fragment shader inputs, a fixed number of underlying hardware
resources are available for the storage of each variable. Uniforms are
typically stored in the so-called constant store, which can be thought
of as a physical array of vectors. Vertex shader outputs/fragment shader
inputs are typically stored in interpolators, which again are usually stored
as an array of vectors. As you have probably noticed, shaders can declare
uniforms and shader input/outputs of various types, including scalars,
various vector components, and matrices. But how do these variable
declarations map to the physical space that’s available on the hardware?
In other words, if an OpenGL ES 3.0 implementation says it supports 16
vertex shader output vectors, how does the physical storage actually
get used?

In OpenGL ES 3.0, this issue is handled through packing rules that define
how the interpolators and uniforms will map to physical storage space.
The rules for packing are based on the notion that the physical storage
space is organized into a grid with four columns (one column for each
vector component) and a row for each storage location. The packing
rules seek to pack variables such that the complexity of the generated

Table 5-5	 Extension Behaviors (continued)

Extension Behavior Description

warn Warn on any use of the extension, unless that use
is required by another enabled extension. If all is
specified, a warning will be thrown whenever the
extension is used. Also, a warning will be thrown if the
extension is not supported.

disable The extension is disabled, so errors will be thrown
if the extension is used. If all is specified (this is
specified by default), no extensions are enabled.

118	 Chapter 5: OpenGL ES Shading Language

code remains constant. In other words, the packing rules will not do
reordering that requires the compiler to generate extra instructions to
merge unpacked data. Rather, the packing rules seek to optimize the
use of the physical address space without negatively impacting runtime
performance.

Let’s look at an example group of uniform declarations and see how these
would be packed:

uniform mat3 m;
uniform float f[6];
uniform vec3 v;

If no packing were done at all, you can see that a lot of constant storage
space would be wasted. The matrix m would take up three rows, the array
f would take up six rows, and the vector v would take up one row. This
would use a total of 10 rows to store the variables. Table 5-6 shows what
the results would be without any packing. With the packing rules, the
variables will get organized such that they pack into the grid as shown in
Table 5-7.

Table 5-6	 Uniform Storage without Packing

Location X Y Z W

0 m[0].x m[0].y m[0].z —

1 m[l].x m[l].y m[l].z —

2 m[2].x m[2].y m[2].z —

3 f[0] — — —

4 f[l] — — —

5 f[2] — — —

6 f[3] — — —

7 f[4] — — —

8 f[5] — — —

9 v.x v.y v.z -6

Precision Qualifiers	 119

With the packing rules, only six physical constant locations need to be
used. You will notice that the array f needs to keep its elements spanning
across row boundaries. The reason for this is that typically GPUs index the
constant store by vector location index. The packing must keep the arrays
spanning across row boundaries so that indexing will still work.

All of the packing that is done is completely transparent to the user of the
OpenGL ES Shading Language, except for one detail: The packing impacts
the way in which uniforms and vertex shader outputs/fragment shader
inputs are counted. If you want to write shaders that are guaranteed to
run on all implementations of OpenGL ES 3.0, you should not use more
uniforms or interpolators than would exceed the minimum allowed
storage sizes after packing. For this reason, it’s important to be aware of
packing so that you can write portable shaders that will not exceed the
minimum allowed storage on any implementation of OpenGL ES 3.0.

Precision Qualifiers

Precision qualifiers enable the shader author to specify the precision with
which computations for a shader variable are performed. Variables can be
declared to have either low, medium, or high precision. These qualifiers
are used as hints to the compiler to allow it to perform computations
with variables at a potentially lower range and precision. It is possible
that at lower precisions, some implementations of OpenGL ES might
be able to run the shaders either faster or with better power efficiency.

Table 5-7	 Uniform Storage with Packing

Location X Y Z W

0 m[0].x m[0].y m[0].z f[0]

1 m[l].x m[l].y m[l].z f[l]

2 m[2].x m[2].y m[2].z f[2]

3 v.x v.y v.z f[3]

4 — — — f[4]

5 — — — f[5]

120	 Chapter 5: OpenGL ES Shading Language

Of course, that efficiency savings comes at the cost of precision, which
can result in artifacts if precision qualifiers are not used properly. Note
that nothing in the OpenGL ES specification says that multiple precisions
must be supported in the underlying hardware, so it is perfectly valid
for an implementation of OpenGL ES to perform all calculations at the
highest precision and simply ignore the qualifiers. However, on some
implementations, using a lower precision might offer an advantage.

Precision qualifiers can be used to specify the precision of any floating-
point or integer-based variable. The keywords for specifying the precision
are lowp, mediump, and highp. Some examples of declarations with
precision qualifiers are shown here:

highp vec4 position;
varying lowp vec4 color;
mediump float specularExp;

In addition to precision qualifiers, the notion of default precision is
available. That is, if a variable is declared without having a precision
qualifier, it will have the default precision for that type. The default
precision qualifier is specified at the top of a vertex or fragment shader
using the following syntax:

precision highp float;
precision mediump int;

The precision specified for float will be used as the default precision
for all variables based on a floating-point value. Likewise, the precision
specified for int will be used as the default precision for all integer-based
variables.

In the vertex shader, if no default precision is specified, then the default
precision for both int and float is highp. That is, all variables declared
without a precision qualifier in a vertex shader will have the highest
precision. The rules for the fragment shader are different. In the fragment
shader, there is no default precision given for floating-point values: Every
shader must declare a default float precision or specify the precision for
every float variable.

One final note is that the precision specified by a precision qualifier has an
implementation-dependent range and precision. There is an associated API
call for determining the range and precision for a given implementation,
which is covered in Chapter 15, “State Queries.” As an example, on the
PowerVR SGX GPU, a lowp float variable is represented in a 10-bit fixed
point format, a mediump float variable is a 16-bit floating-point value,
and a highp float is a 32-bit floating-point value.

Invariance	 121

Invariance

The keyword invariant that was introduced in the OpenGL ES Shading
Language can be applied to any varying output of a vertex shader. What
do we mean by invariance, and why is this necessary? The issue is that
shaders are compiled and the compiler might perform optimizations that
cause instructions to be reordered. This instruction reordering means
that equivalent calculations between two shaders are not guaranteed
to produce exactly identical results. This disparity can be an issue in
particular for multipass shader effects, where the same object is being
drawn on top of itself using alpha blending. If the precision of the values
used to compute the output position is not exactly identical, then artifacts
can arise due to the precision differences. This issue usually manifests
itself as “Z fighting,” when small Z precision differences per pixel cause
the different passes to shimmer against each other.

The following example demonstrates visually why invariance is important
to get right when doing multipass shading. The following torus object
is drawn in two passes: The fragment shader computes specular lighting
in the first pass and ambient and diffuse lighting in the second pass. The
vertex shaders do not use invariance so small precision differences cause
the Z fighting, as shown in Figure 5-1.

Figure 5-1	 Z Fighting Artifacts Due to Not Using Invariance

122	 Chapter 5: OpenGL ES Shading Language

Figure 5-2	 Z Fighting Avoided Using Invariance

The same multipass vertex shaders using invariance for position produce
the correct image in Figure 5-2.

The introduction of invariance gives the shader writer a way to specify
that if the same computations are used to compute an output, its value
must be exactly the same (or invariant). The invariant keyword can be
used either on varying declarations or for varyings that have already been
declared. Some examples follow:

invariant gl_Position;
invariant texCoord;

Once invariance is declared for an output, the compiler guarantees
that the results will be the same given the same computations and
inputs into the shader. For example, given two vertex shaders that
compute output position by multiplying the view projection matrix
by the input position, you are guaranteed that those positions will be
invariant.

#version 300 es
uniform mat4 u_viewProjMatrix;
layout(location = 0) in vec4 a_vertex;
invariant gl_Position;

Summary	 123

void main()
{
 // Will be the same value in all shaders with the
 // same viewProjMatrix and vertex
 gl_Position = u_viewProjMatrix * a_vertex;
}

It is also possible to make all variables globally invariant using a #pragma
directive:

#pragma STDGL invariant(all)

A word of caution: Because the compiler needs to guarantee invariance, it
might have to limit the optimizations it does. Therefore, the invariant
qualifier should be used only when necessary; otherwise, it might result in
performance degradation. For this reason, the #pragma directive to globally
enable invariance should be used only when invariance is really required for
all variables. Note also that while invariance does imply that the calculation
will have the same results on a given GPU, it does not mean that the
computation will be invariant across any implementation of OpenGL ES.

Summary

This chapter introduced the following features of the OpenGL ES Shading
Language:

•• Shader version specification with #version

•• Scalar, vector, and matrix data types and constructors

•• Declaration of constants using the const qualifier

•• Creation and initialization of structures and arrays

•• Operators, control flow, and functions

•• Vertex shader inputs/output and fragment shader inputs/outputs
using the in and out keywords and layout qualifier

•• Smooth, flat, and centroid interpolation qualifiers

•• Uniforms, uniform blocks, and uniform block layout qualifiers

•• Preprocessor and directives

•• Uniform and interpolator packing

•• Precision qualifiers and invariance

124	 Chapter 5: OpenGL ES Shading Language

In the next chapter, we focus on how to load vertex input variables with
data from vertex arrays and vertex buffer objects. We will expand your
knowledge of the OpenGL ES Shading Language throughout the book.
For example, in Chapter 8, “Vertex Shaders,” we describe how to perform
transformation, lighting, and skinning in a vertex shader. In Chapter 9,
“Texturing,” we explain how to load textures and how to use them in a
fragment shader. In Chapter 10, “Fragment Shaders,” we cover how to
compute fog, perform alpha testing, and evaluate user clip planes in a
fragment shader. In Chapter 14, “Advanced Programming with OpenGL
ES 3.0,” we go deep into writing shaders that perform advanced effects
such as environment mapping, projective texturing, and per-fragment
lighting. With the grounding in the OpenGL ES Shading Language from
this chapter, we can show you how to use shaders to achieve a variety of
rendering techniques.

125

Chapter 6

Vertex Attributes, Vertex Arrays,
and Buffer Objects

This chapter describes how vertex attributes and data are specified in
OpenGL ES 3.0. We discuss what vertex attributes are, how to specify
them and their supported data formats, and how to bind vertex attributes
for use in a vertex shader. After reading this chapter, you will have a good
grasp of what vertex attributes are and how to draw primitives with vertex
attributes in OpenGL ES 3.0.

Vertex data, also referred to as vertex attributes, specify per-vertex data.
This per-vertex data can be specified for each vertex, or a constant value
can be used for all vertices. For example, if you want to draw a triangle
that has a solid color (for the sake of this example, suppose the color is
black, as shown in Figure 6-1), you would specify a constant value that
will be used by all three vertices of the triangle. However, the position of
the three vertices that make up the triangle will not be the same, so we
will need to specify a vertex array that stores three position values.

Figure 6-1	� Triangle with a Constant Color Vertex and
Per-Vertex Position Attributes

126	 Chapter 6: Vertex Attributes, Vertex Arrays, and Buffer Objects

Specifying Vertex Attribute Data

Vertex attribute data can be specified for each vertex using a vertex array,
or a constant value can be used for all vertices of a primitive.

All OpenGL ES 3.0 implementations must support a minimum of
16 vertex attributes. An application can query the exact number of
vertex attributes that are supported by a particular implementation. The
following code shows how an application can query the number of vertex
attributes an implementation actually supports:

GLint maxVertexAttribs; // n will be >= 16
glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &maxVertexAttribs);

Constant Vertex Attribute

A constant vertex attribute is the same for all vertices of a primitive, so
only one value needs to be specified for all the vertices of a primitive. It is
specified using any of the following functions:

void glVertexAttriblf(GLuint index, GLfloat x);
void glVertexAttrib2f(GLuint index, GLfloat x, GLfloat y);
void glVertexAttrib3f(�GLuint index, GLfloat x, GLfloat y,

GLfloat z);
void glVertexAttrib4f(�GLuint index, GLfloat x, GLfloat y,

GLfloat z, GLfloat w);
void glVertexAttriblfv(GLuint index, const GLfloat *values);
void glVertexAttrib2fv(GLuint index, const GLfloat *values);
void glVertexAttrib3fv(GLuint index, const GLfloat *values);
void glVertexAttrib4fv(GLuint index, const GLfloat *values);

The glVertexAttrib* commands are used to load the generic vertex
attribute specified by index. The functions glVertexAttriblf and
glVertexAttriblfv load (x, 0.0, 0.0, 1.0) into the generic vertex attribute.
glVertexAttrib2f and glVertexAttrib2fv load (x, y, 0.0, 1.0) into the
generic vertex attribute. glVertexAttrib3f and glVertexAttrib3fv
load (x, y, z, 1.0) into the generic vertex attribute. glVertexAttrib4f and
glVertexAttrib4fv load (x, y, z, w) into the generic vertex attribute. In
practice, constant vertex attributes provide equivalent functionality to
using a scalar/vector uniform, and using either is an acceptable choice.

Vertex Arrays

Vertex arrays specify attribute data per vertex and are buffers stored in the
application’s address space (what OpenGL ES calls the client space). They

Specifying Vertex Attribute Data	 127

serve as the basis for vertex buffer objects that provide an efficient and
flexible way for specifying vertex attribute data. Vertex arrays are specified
using the glVertexAttribPointer or glVertexAttribIPointer function.

void   glVertexAttribPointer(GLuint index, GLint size,
GLenum type,
GLboolean normalized,
GLsizei stride,
const void *ptr)

void   glVertexAttribIPointer(GLuint index, GLint size,
GLenum type,
GLsizei stride,
const void *ptr)

index 	�specifies the generic vertex attribute index. This value can
range from 0 to the maximum vertex attributes supported
minus 1.

size 	�number of components specified in the vertex array for
the vertex attribute referenced by the index. Valid values
are 1–4.

type	 data format. Valid values for both functions are
GL_BYTE
GL_UNSIGNED_BYTE
GL_SHORT
GL_UNSIGNED_SHORT
GL_INT
GL_UNSIGNED_INT
Valid values for glVertexAttribPointer also include
GL_HALF_FLOAT
GL_FLOAT
GL_FIXED
GL_INT_2_10_10_10_REV
GL_UNSIGNED_INT_2_10_10_10_REV

normalized	� (glVertexAttribPointer only) is used to indicate
whether the non-floating data format type should be
normalized when converted to floating-point values. For
glVertexAttribIPointer, the values are treated as integers.

stride 	�the components of vertex attribute specified by size are
stored sequentially for each vertex. stride specifies the
delta between data for vertex index I and vertex (I + 1).
If stride is 0, attribute data for all vertices are stored

(continues)

128	 Chapter 6: Vertex Attributes, Vertex Arrays, and Buffer Objects

Next, we present a few examples that illustrate how to specify vertex
attributes with glVertexAttribPointer. Two methods are commonly
used for allocating and storing vertex attribute data:

•• Store vertex attributes together in a single buffer—a method called an
array of structures. The structure represents all attributes of a vertex,
and we have an array of these attributes per vertex.

•• Store each vertex attribute in a separate buffer—a method called a
structure of arrays.

Suppose each vertex has four vertex attributes—position, normal, and two
texture coordinates—and these attributes are stored together in one buffer
that is allocated for all vertices. The vertex position attribute is specified
as a vector of three floats (x, y, z), the vertex normal is also specified as a
vector of three floats, and each texture coordinate is specified as a vector
of two floats. Figure 6-2 gives the memory layout of this buffer. In this
case, the stride of the buffer is the combined size of all attributes that
make up the vertex (one vertex is equal to 10 floats or 40 bytes – 12 bytes
for Position, 12 bytes for Normal, 8 bytes for Tex0, and 8 bytes for Tex1).

sequentially. If stride is greater than 0, then we use the
stride value as the pitch to get vertex data for next index.

ptr 	�pointer to the buffer holding vertex attribute data if using
a client-side vertex array. If using a vertex buffer object,
specifies an offset into that buffer.

Position Normal Tex0 Tex1

x y z x y z s t s t x y z x y z s t s t

Position Normal Tex0 Tex1

Figure 6-2	 Position, Normal, and Two Texture Coordinates Stored as an Array

Example 6-1 describes how these four vertex attributes are specified with
glVertexAttribPointer. Note that we are illustrating how to use client-
side vertex arrays here so that we can explain the concept of specifying
per-vertex data. We recommend that applications use vertex buffer
objects (described later in the chapter) and avoid client-side vertex arrays
to achieve best performance. Client-side vertex arrays are supported in
OpenGL ES 3.0 only for backward compatibility with OpenGL ES 2.0. In
OpenGL ES 3.0, vertex buffer objects are always recommended.

(continued)

Specifying Vertex Attribute Data	 129

Example 6-1	 Array of Structures

#define VERTEX_POS_SIZE 3 // x, y, and z
#define VERTEX_NORMAL_SIZE 3 // x, y, and z
#define VERTEX_TEXCOORD0_SIZE 2 // s and t
#define VERTEX_TEXCOORDl_SIZE 2 // s and t

#define VERTEX_POS_INDX 0
#define VERTEX_NORMAL_INDX 1
#define VERTEX_TEXCOORD0_INDX 2
#define VERTEX_TEXCOORDl_INDX 3

// the following 4 defines are used to determine the locations
// of various attributes if vertex data are stored as an array
// of structures
#define VERTEX_POS_OFFSET 0
#define VERTEX_NORMAL_OFFSET 3
#define VERTEX_TEXCOORD0_OFFSET 6
#define VERTEX_TEXC00RD1_0FFSET 8

#define VERTEX_ATTRIB_SIZE (VERTEX_POS_SIZE + \
VERTEX_NORMAL_SIZE + \
VERTEX_TEXCOORD0_SIZE + \
VERTEX_TEXC00RD1_SIZE)

float *p = (float*) malloc(numVertices * VERTEX_ATTRIB_SIZE
* sizeof(float));

// position is vertex attribute 0
glVertexAttribPointer(VERTEX_POS_INDX, VERTEX_POS_SIZE,

GL_FLOAT, GL_FALSE,
VERTEX_ATTRIB_SIZE * sizeof(float),
p);

// normal is vertex attribute 1
glVertexAttribPointer(VERTEX_NORMAL_INDX, VERTEX_NORMAL_SIZE,

GL_FLOAT, GL_FALSE,
VERTEX_ATTRIB_SIZE * sizeof(float),

(p + VERTEX_NORMAL_OFFSET));

// texture coordinate 0 is vertex attribute 2
glVertexAttribPointer(VERTEX_TEXCOORDO_INDX,

VERTEX_TEXCOORD0_SIZE,
GL_FLOAT, GL_FALSE,
VERTEX_ATTRIB_SIZE * sizeof(float),

(p + VERTEX_TEXCOORD0_OFFSET));

// texture coordinate 1 is vertex attribute 3
glVertexAttribPointer(VERTEX_TEXCOORDl_INDX,

(continues)

130	 Chapter 6: Vertex Attributes, Vertex Arrays, and Buffer Objects

In Example 6-2, position, normal, and texture coordinates 0 and 1 are
stored in separate buffers.

Example 6-1	 Array of Structures (continued)

VERTEX_TEXC00RD1_SIZE,

GL_FLOAT, GL_FALSE,

VERTEX_ATTRIB_SIZE * sizeof(float),

     (p + VERTEX_TEXC00RD1_0FFSET));

Example 6-2	 Structure of Arrays

float *position = (float*) malloc(numVertices *
 VERTEX_POS_SIZE * sizeof(float));
float *normal = (float*) malloc(numVertices *
 VERTEX_NORMAL_SIZE * sizeof(float));
float *texcoordO = (float*) malloc(numVertices *
 VERTEX_TEXCOORD0_SIZE * sizeof(float));
float *texcoordl = (float*) malloc(numVertices *
 VERTEX_TEXC00RD1_SIZE * sizeof(float));

// position is vertex attribute 0
glVertexAttribPointer(VERTEX_POS_INDX, VERTEX_POS_SIZE,

GL_FLOAT, GL_FALSE,
VERTEX_POS_SIZE * sizeof(float),
position);

// normal is vertex attribute 1
glVertexAttribPointer(VERTEX_NORMAL_INDX, VERTEX_NORMAL_SIZE,

GL_FLOAT, GL_FALSE,
VERTEX_NORMAL_SIZE * sizeof(float),
normal);

// texture coordinate 0 is vertex attribute 2
glVertexAttribPointer(VERTEX_TEXCOORDO_INDX,

VERTEX_TEXCOORD0_SIZE,
GL_FLOAT, GL_FALSE,
VERTEX_TEXCOORD0_SIZE *
sizeof(float), texcoordO);

// texture coordinate 1 is vertex attribute 3
glVertexAttribPointer(VERTEX_TEXCOORDl_INDX,

VERTEX_TEXC00RD1_SIZE,
GL_FLOAT, GL_FALSE,
VERTEX_TEXC00RD1_SIZE * sizeof(float),
  texcoordl);

Specifying Vertex Attribute Data	 131

Performance Hints

How to Store Different Attributes of a Vertex

We described the two most common ways of storing vertex attributes:
an array of structures and a structure of arrays. The question to ask is
which allocation method would be the most efficient for OpenGL ES 3.0
hardware implementations. In most cases, the answer is an array of
structures. The reason is that the attribute data for each vertex can be
read in sequential fashion, which will most likely result in an efficient
memory access pattern. A disadvantage of using an array of structures
becomes apparent when an application wants to modify specific
attributes. If a subset of vertex attribute data needs to be modified (e.g.,
texture coordinates), this will result in strided updates to the vertex
buffer. When the vertex buffer is supplied as a buffer object, the entire
vertex attribute buffer will need to be reloaded. You can avoid this
inefficiency by storing vertex attributes that are dynamic in nature in a
separate buffer.

Which Data Format to Use for Vertex Attributes

The vertex attribute data format specified by the type argument in
glVertexAttribPointer can affect not only the graphics memory
storage requirements for vertex attribute data, but also the overall
performance, which is a function of the memory bandwidth required to
render the frame(s). The smaller the data footprint, the lower the memory
bandwidth required. OpenGL ES 3.0 supports a 16-bit floating-point vertex
format named GL_HALF_FLOAT (described in detail in Appendix A). Our
recommendation is that applications use GL_HALF_FLOAT wherever possible.
Texture coordinates, normals, binormals, tangent vectors, and so on are
good candidates to be stored using GL_HALF_FLOAT for each component.
Color could be stored as GL_UNSIGNED_BYTE with four components per
vertex color. We also recommend GL_HALF_FLOAT for vertex position, but
recognize that this choice might not be feasible for quite a few cases. For
such cases, the vertex position could be stored as GL_FLOAT.

How the Normalized Flag in gIVertexAttribPointer Works

Vertex attributes are internally stored as a single-precision floating-point
number before being used in a vertex shader. If the data type indicates
that the vertex attribute is not a float, then the vertex attribute will be
converted to a single-precision floating-point number before it is used
in a vertex shader. The normalized flag controls the conversion of the
non-float vertex attribute data to a single precision floating-point value.
If the normalized flag is false, the vertex data are converted directly to a

132	 Chapter 6: Vertex Attributes, Vertex Arrays, and Buffer Objects

floating-point value. This would be similar to casting the variable that is
not a float type to float. The following code gives an example:

GLfloat f;
GLbyte b;
f = (GLfloat)b; // f represents values in the range [-128.0,

// 127.0]

If the normalized flag is true, the vertex data is mapped to the [–1.0, 1.0]
range if the data type is GL_BYTE, GL_SHORT, or GL_FIXED, or to the [0.0,
1.0] range if the data type is GL_UNSIGNED_BYTE or GL_UNSIGNED_SHORT.

Table 6-1 describes conversion of non-floating-point data types with the
normalized flag set. The value c in the second column of Table 6-1 refers
to a value of the format specified in the first column.

Table 6-1	 Data Conversions

Vertex Data Format Conversion to Floating Point

GL_BYTE max(c / (27 – 1), –1.0)

GL_UNSIGNED_BYTE c / (28 – 1)

GL_SHORT max(c / (216 – 1), –1.0)

GL_UNSIGNED_SHORT c / (216 – l)

GL_FIXED c/216

GL_FLOAT c

GL_HALF_FLOAT_OES c

It is also possible to access integer vertex attribute data as integers in the
vertex shader rather than having them be converted to floats. In this case,
the glVertexAttribIPointer function should be used and the vertex
attribute should be declared to be of an integer type in the vertex shader.

Selecting Between a Constant Vertex Attribute or a Vertex Array

The application can enable OpenGL ES to use either the constant data or
data from vertex array. Figure 6-3 describes how this works in OpenGL ES 3.0.

The commands glEnableVertexAttribArray and glDisableVertex
AttribArray are used to enable and disable a generic vertex attribute
array, respectively. If the vertex attribute array is disabled for a generic
attribute index, the constant vertex attribute data specified for that index
will be used.

Specifying Vertex Attribute Data	 133

Constant
Vertex Attribute 0

Vertex Array
Vertex Attribute 0

Vertex Attribute 0
Enable/Disable

enable

disable

Vertex Data

Figure 6-3	 Selecting Constant or Vertex Array Vertex Attribute

void glEnableVertexAttribArray(GLuint index);
void glDisableVertexAttribArray(GLuint index);

index �specifies the generic vertex attribute index. This value ranges
from 0 to the maximum vertex attributes supported minus 1.

Example 6-3 illustrates how to draw a triangle where one of the vertex
attributes is constant and the other is specified using a vertex array.

Example 6-3	 Using Constant and Vertex Array Attributes

int Init (ESContext *esContext)
{
 UserData *userData = (UserData*) esContext->userData;
 const char vShaderStr[] =

"#version 300 es \n"
"layout(location = 0) in vec4 a_color; \n"
"layout(location = 1) in vec4 a_position; \n"
"out vec4 v_color; \n"
"void main() \n"
"{ \n"
" v_color = a_color; \n"
" gl_Position = a_position; \n"
"}";

 const char fShaderStr[] =
"#version 300 es \n"
"precision mediump float; \n"
"in vec4 v_color; \n"
"out vec4 o_fragColor; \n"

(continues)

134	 Chapter 6: Vertex Attributes, Vertex Arrays, and Buffer Objects

Example 6-3	 Using Constant and Vertex Array Attributes (continued)

"void main() \n"
"{ \n"
" o_fragColor = v_color; \n"
"}" ;

 GLuint programObject;

 // Create the program object
 programObject = esLoadProgram (vShaderStr, fShaderStr);

 if (programObject == 0)
return GL_FALSE;

 // Store the program object
 userData->programObject = programObject;

 glClearColor (0.0f, 0.0f, 0.0f, 0.0f);
 return GL_TRUE;
}

void Draw (ESContext *esContext)
{
 UserData *userData = (UserData*) esContext->userData;
 GLfloat color[4] = { 1.0f, 0.0f, 0.0f, 1.0f };
 // 3 vertices, with (x, y, z) per-vertex
 GLfloat vertexPos[3 * 3] =
 {

0.0f, 0.5f, 0.0f, // v0
-0.5f, -0.5f, 0.0f, // v1
0.5f, -0.5f, 0.0f // v2

 };

 glViewport (0, 0, esContext->width, esContext->height);

 glClear (GL_COLOR_BUFFER_BIT);

 glUseProgram (userData->programObject);

 glVertexAttrib4fv (0, color);
 glVertexAttribPointer (1, 3, GL_FLOAT, GL_FALSE, 0,

vertexPos);
 glEnableVertexAttribArray (1);

 glDrawArrays (GL_TRIANGLES, 0, 3);

 glDisableVertexAttribArray (1);
}

Declaring Vertex Attribute Variables in a Vertex Shader	 135

The vertex attribute color used in the code example is a constant
value specified with glVertexAttrib4fv without enabling the vertex
attribute array 0. The vertexPos attribute is specified by using a vertex
array with glVertexAttribPointer and enabling the array with
glEnableVertexAttribArray. The value of color will be the same for all
vertices of the triangle(s) drawn, whereas the vertexPos attribute could
vary for vertices of the triangle(s) drawn.

Declaring Vertex Attribute Variables
in a Vertex Shader

We have looked at what a vertex attribute is, and considered how to
specify vertex attributes in OpenGL ES. We now discuss how to declare
vertex attribute variables in a vertex shader.

In a vertex shader, a variable is declared as a vertex attribute by using the
in qualifier. Optionally, the attribute variable can also include a layout
qualifier that provides the attribute index. A few example declarations of
vertex attributes are given here:

layout(location = 0) in vec4 a_position;
layout(location = 1) in vec2 a_texcoord;
layout(location = 2) in vec3 a_normal;

The in qualifier can be used only with the data types float, vec2,
vec3, vec4, int, ivec2, ivec3, ivec4, uint, uvec2, uvec3,
uvec4, mat2, mat2x2, mat2x3, mat2x4, mat3, mat3x3, mat3x4,
mat4, mat4x2, and mat4x3. Attribute variables cannot be declared
as arrays or structures. The following example declarations of vertex
attributes are invalid and should result in a compilation error:

in foo_t a_A; // foo_t is a structure
in vec4 a_B[10];

An OpenGL ES 3.0 implementation supports GL_MAX_VERTEX_ATTRIBS
four-component vector vertex attributes. A vertex attribute that is declared
as a scalar, two-component vector, or three-component vector will count as
a single four-component vector attribute. Vertex attributes declared as two-
dimensional, three-dimensional, or four-dimensional matrices will count
as two, three, or four 4-component vector attributes, respectively. Unlike
uniform and vertex shader output/fragment shader input variables, which
are packed automatically by the compiler, attributes do not get packed.
Please consider your choices carefully when declaring vertex attributes
with sizes less than a four-component vector, as the maximum number of
vertex attributes available is a limited resource. It might be better to pack

136	 Chapter 6: Vertex Attributes, Vertex Arrays, and Buffer Objects

them together into a single four-component attribute instead of declaring
them as individual vertex attributes in the vertex shader.

Variables declared as vertex attributes in a vertex shader are read-only
variables and cannot be modified. The following code should cause a
compilation error:

in vec4 a_pos;
uniform vec4 u_v;

void main()
{
 a_pos = u_v; <--- cannot assign to a_pos as it is read-only
}

An attribute can be declared inside a vertex shader—but if it is not
used, then it is not considered active and does not count against the
limit. If the number of attributes used in a vertex shader is greater than
GL_MAX_VERTEX_ATTRIBS, the vertex shader will fail to link.

Once a program has been successfully linked, we may need to find out
the number of active vertex attributes used by the vertex shader attached
to this program. Note that this step is necessary only if you are not using
input layout qualifiers for attributes. In OpenGL ES 3.0, it is recommended
that you use layout qualifiers; thus you will not need to query this
information after the fact. However, for completeness, the following line
of code shows how to get the number of active vertex attributes:

glGetProgramiv(program, GL_ACTIVE_ATTRIBUTES, &numActiveAttribs);

A detailed description of glGetProgramiv is given in Chapter 4, “Shaders
and Programs.”

The list of active vertex attributes used by a program and their data types
can be queried using the glGetActiveAttrib command.

void glGetActiveAttrib(�GLuint program, GLuint index,
GLsizei bufsize, GLsizei *length,
GLenum *type, GLint *size,     
GLchar *name)

program name of a program object that was successfully linked
previously.

Declaring Vertex Attribute Variables in a Vertex Shader	 137

The glGetActiveAttrib call provides information about the attribute
selected by index. As detailed in the description of glGetActiveAttrib,
index must be a value between 0 and GL_ACTIVE_ATTRIBUTES – l. The
value of GL_ACTIVE_ATTRIBUTES is queried using glGetProgramiv.
An index of 0 selects the first active attributes, and an index of
GL_ACTIVE_ATTRIBUTES – 1 selects the last vertex attribute.

Binding Vertex Attributes to Attribute Variables
in a Vertex Shader

We discussed earlier that in a vertex shader, vertex attribute variables
are specified by the in qualifier, the number of active attributes can
be queried using glGetProgramiv, and the list of active attributes
in a program can be queried using glGetActiveAttrib. We also
described how generic attribute indices that range from 0 to
(GL_MAX_VERTEX_ATTRIBS – 1) are used to enable a generic vertex

index specifies the vertex attribute to query and will be a
value between 0 and GL_ACTIVE_ATTRIBUTES – 1. The
value of GL_ACTIVE_ATTRIBUTES is determined with
glGetProgramiv.

bufsize specifies the maximum number of characters that may be
written into name, including the null terminator.

length returns the number of characters written into name,
excluding the null terminator, if length is not NULL.

type returns the type of the attribute. Valid values are
GL_FLOAT, GL_FLOAT_VEC2, GL_FLOAT_VEC3,
GL_FLOAT_VEC4, GL_FLOAT_MAT2, GL_FLOAT_MAT3,
GL_FLOAT_MAT4, GL_FLOAT_MAT2x3, GL_FLOAT_MAT2x4,
GL_FLOAT_MAT3x2, GL_FLOAT_MAT3x4, GL_FLOAT_MAT4x2,
GL_FLOAT_MAT_4x3, GL_INT, GL_INT_VEC2, GL_INT_VEC3,
GL_INT_VEC4, GL_UNSIGNED_INT, GL_UNSIGNED_INT_VEC2,
GL_UNSIGNED_INT_VEC3, GL_UNSIGNED_INT_VEC4

size returns the size of the attribute. This is specified in units of
the type returned by type. If the variable is not an array,
size will always be 1. If the variable is an array, then size
returns the size of the array.

name name of the attribute variable as declared in the vertex
shader.

138	 Chapter 6: Vertex Attributes, Vertex Arrays, and Buffer Objects

attribute and specify a constant or per-vertex (i.e., vertex array) value
using the glVertexAttrib* and glVertexAttribPointer commands.
Now we consider how to map this generic attribute index to the
appropriate attribute variable declared in the vertex shader. This mapping
will allow appropriate vertex data to be read into the correct vertex
attribute variable in the vertex shader.

Figure 6-4 describes how generic vertex attributes are specified and bound
to attribute names in a vertex shader.

Constant
Vertex Attribute 0

Vertex Array
Vertex Attribute 0

e 0

y

Vertex Attribute 0
Enable/Disable

Vertex Attributee 0

Constant
Vertex Attribute 1

Vertex Array
Vertex Attribute 1

e 1

1

Vertex Attribute 1
Enable/Disable

Constant
Vertex Attribute n – 1

Vertex Array
Vertex Attribute n – 1

n – 1

n – 1

Vertex Attribute n – 1
Enable/Disable

glDrawArrays/gl DrawElementss/gl DrawElements

Attribute Vertex Attribute
 Variable Index Bindings

Vertex Shader

Attribute 0

Attribute 1

V

Attribute n – 1

Figure 6-4	� Specifying and Binding Vertex Attributes for Drawing One or More
Primitives

Declaring Vertex Attribute Variables in a Vertex Shader	 139

void glBindAttribLocation(�GLuint program, GLuint index,
const GLchar *name)

program name of a program object
index generic vertex attribute index
name name of the attribute variable

If name was bound previously, its assigned binding is replaced with an
index. glBindAttribLocation can be called even before a vertex shader
is attached to a program object. As a consequence, this call can be used
to bind any attribute name. Attribute names that do not exist or are not
active in a vertex shader attached to the program object are ignored.

Another option is to let OpenGL ES 3.0 bind the attribute variable name
to a generic vertex attribute index. This binding is performed when the
program is linked. In the linking phase, the OpenGL ES 3.0 implementation
performs the following operation for each attribute variable:

For each attribute variable, check whether a binding has been specified via
glBindAttribLocation. If a binding is specified, the appropriate attribute
index specified is used. If not, the implementation will assign a generic vertex
attribute index.

In OpenGL ES 3.0, three approaches may be used to map a generic vertex
attribute index to an attribute variable name in the vertex shader. These
approaches can be categorized as follows:

•• The index can be specified in the vertex shader source code using the
layout(location = N) qualifier (recommended).

•• OpenGL ES 3.0 will bind the generic vertex attribute index to the
attribute name.

•• The application can bind the vertex attribute index to an attribute
name.

The easiest way to bind attributes to a location is to simply use the
layout(location = N) qualifier; this approach requires the least amount
of code. However, in some cases, the other two options might be more
desirable. The glBindAttribLocation command can be used to bind a
generic vertex attribute index to an attribute variable in a vertex shader.
This binding takes effect when the program is linked the next time—it
does not change the bindings used by the currently linked program.

140	 Chapter 6: Vertex Attributes, Vertex Arrays, and Buffer Objects

This assignment is implementation specific; that is, it can vary from one
OpenGL ES 3.0 implementation to another. An application can query the
assigned binding by using the glGetAttribLocation command.

GLint glGetAttribLocation�(�GLuint program,
const GLchar *name)

program program object
name name of attribute variable

glGetAttribLocation returns the generic attribute index that was
bound to the attribute variable name when the program object defined by
program was last linked. If name is not an active attribute variable, or if
program is not a valid program object or was not linked successfully, then
–1 is returned, indicating an invalid attribute index.

Vertex Buffer Objects

The vertex data specified using vertex arrays are stored in client memory.
This data must be copied from client memory to graphics memory when
a draw call such as glDrawArrays or glDrawElements is made. These
two commands are described in detail in Chapter 7, “Primitive Assembly
and Rasterization.” It would, however, be much better if we did not have
to copy the vertex data on every draw call, but instead could cache the
data in graphics memory. This approach can significantly improve the
rendering performance and also reduce the memory bandwidth and
power consumption requirements, both of which are quite important
for handheld devices. This is where vertex buffer objects can help. Vertex
buffer objects allow OpenGL ES 3.0 applications to allocate and cache
vertex data in high-performance graphics memory and render from this
memory, thereby avoiding resending data every time a primitive is drawn.
Not only the vertex data, but also the element indices that describe
the vertex indices of the primitive and are passed as an argument to
glDrawElements, can be cached.

OpenGL ES 3.0 supports two types of buffer objects that are used for
specifying vertex and primitive data: array buffer objects and element array
buffer objects. The array buffer objects specified by the GL_ARRAY_BUFFER
token are used to create buffer objects that will store vertex data. The
element array buffer objects specified by the GL_ELEMENT_ARRAY_BUFFER

Vertex Buffer Objects	 141

token are used to create buffer objects that will store indices of a primitive.
Other buffer object types in OpenGL ES 3.0 are described elsewhere in this
book: uniform buffers (Chapter 4), transform feedback buffers (Chapter 8),
pixel unpack buffers (Chapter 9), pixel pack buffers (Chapter 11), and
copy buffers (the Copying Buffer Objects section later in this chapter).
For now, we will focus on the buffer objects used for specifying vertex
attributes and element arrays.

Note:	 To get best performance, we recommend that OpenGL ES 3.0
applications use vertex buffer objects for vertex attribute data and
element indices.

Before we can render using buffer objects, we need to allocate the
buffer objects and upload the vertex data and element indices into
appropriate buffer objects. This is demonstrated by the sample code in
Example 6-4.

Example 6-4	 Creating and Binding Vertex Buffer Objects

void initVertexBufferObjects(vertex_t *vertexBuffer,
GLushort *indices,
GLuint numVertices,
GLuint numlndices,
GLuint *vboIds)

{
 glGenBuffers(2, vboIds);

 glBindBuffer(GL_ARRAY_BUFFER, vboIds[0]);
 glBufferData(GL_ARRAY_BUFFER, numVertices *

sizeof(vertex_t), vertexBuffer,
GL_STATIC_DRAW);

 // bind buffer object for element indices
 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vboIds[1]);
 glBufferData(GL_ELEMENT_ARRAY_BUFFER,

numIndices * sizeof(GLushort),
indices, GL_STATIC_DRAW);

}

The code in Example 6-4 creates two buffer objects: a buffer object to store
the actual vertex attribute data, and a buffer object to store the element
indices that make up the primitive. In this example, the glGenBuffers
command is called to get two unused buffer object names in vboIds.
The unused buffer object names returned in vboIds are then used to
create an array buffer object and an element array buffer object. The array

142	 Chapter 6: Vertex Attributes, Vertex Arrays, and Buffer Objects

buffer object is used to store vertex attribute data for vertices of one or
more primitives. The element array buffer object stores the indices of one
or more primitives. The actual array or element data are specified using
glBufferData. Note that GL_STATIC_DRAW is passed as an argument to
glBufferData. This value is used to describe how the buffer is accessed by
the application and will be described later in this section.

void glGenBuffers(GLsizei n, GLuint *buffers)

n number of buffer object names to return
buffers pointer to an array of n entries, where allocated buffer

objects are returned

glGenBuffers assigns n buffer object names and returns them in
buffers. The buffer object names returned by glGenBuffers are
unsigned integer numbers other than 0. The value 0 is reserved by
OpenGL ES and does not refer to a buffer object. Attempts to modify or
query the buffer object state for buffer object 0 will generate an error.

The glBindBuffer command is used to make a buffer object current. The
first time a buffer object name is bound by calling glBindBuffer,
the buffer object is allocated with the default state; if the allocation is
successful, this allocated object is bound as the current buffer object for
the target.

void glBindBuffer(GLenum target, GLuint buffer)

target can be set to any of the following targets:
GL_ARRAY_BUFFER
GL_ELEMENT_ARRAY_BUFFER
GL_COPY_READ_BUFFER
GL_COPY_WRITE_BUFFER
GL_PIXEL_PACK_BUFFER
GL_PIXEL_UNPACK_BUFFER
GL_TRANSFORM_FEEDBACK_BUFFER
GL_UNIFORM_BUFFER

buffer buffer object to be assigned as the current object to target

Vertex Buffer Objects	 143

Note that glGenBuffers is not required to assign a buffer object name
before it is bound using glBindBuffer. Alternatively, an application can
specify an unused buffer object name with glBindBuffer. However, we
recommend that OpenGL ES applications call glGenBuffers and use
buffer object names returned by glGenBuffers instead of specifying their
own buffer object names.

The state associated with a buffer object can be categorized as follows:

•• GL_BUFFER_SIZE. This refers to the size of the buffer object data that
is specified by glBufferData. The initial value when the buffer object
is first bound using glBindBuffer is 0.

•• GL_BUFFER_USAGE. This is a hint as to how the application will use the
data stored in the buffer object. It is described in detail in Table 6-2.
The initial value is GL_STATIC_DRAW.

Table 6-2	 Buffer Usage

Buffer Usage Enum Description

GL_STATIC_DRAW The buffer object data will be modified once and used
many times to draw primitives or specify images.

GL_STATIC_READ The buffer object data will be modified once and used
many times to read data back from OpenGL ES. The
data read back from OpenGL ES will be queried for
from the application.

GL_STATIC_COPY The buffer object data will be modified once and used
many times to read data back from OpenGL ES. The
data read back from OpenGL ES will be used directly as
a source to draw primitives or specify images.

GL_DYNAMIC_DRAW The buffer object data will be modified repeatedly and
used many times to draw primitives or specify images.

GL_DYNAMIC_READ The buffer object will be modified repeatedly and used
many times to read data back from OpenGL ES. The
data read back from OpenGL ES will be queried for
from the application.

GL_DYNAMIC_COPY The buffer object data will be modified repeatedly and
used many times to read data back from OpenGL ES.
The data read back from OpenGL ES will be used
directly as a source to draw primitives or specify
images.

(continues)

144	 Chapter 6: Vertex Attributes, Vertex Arrays, and Buffer Objects

As mentioned earlier, GL_BUFFER_USAGE is a hint to OpenGL ES—not a
guarantee. Therefore, an application could allocate a buffer object data
store with usage set to GL_STATIC_DRAW and frequently modify it.

The vertex array data or element array data storage is created and
initialized using the glBufferData command.

Buffer Usage Enum Description

GL_STREAM_DRAW The buffer object data will be modified once and used
only a few times to draw primitives or specify images.

GL_STREAM_READ The buffer object data will be modified once and used
only a few times to read data back from OpenGL ES.
The data read back from OpenGL ES will be queried for
from the application.

GL_STREAM_COPY The buffer object data will be modified once and used
only a few times to read data back from OpenGL ES.
The data read back from OpenGL ES will be used
directly as a source to draw primitives or specify
images.

Table 6-2	 Buffer Usage (continued)

void glBufferData(GLenum target, GLsizeiptr size,
const void *data, GLenum usage)

target can be set to any of the following targets:
GL_ARRAY_BUFFER
GL_ELEMENT_ARRAY_BUFFER
GL_COPY_READ_BUFFER
GL_COPY_WRITE_BUFFER
GL_PIXEL_PACK_BUFFER
GL_PIXEL_UNPACK_BUFFER
GL_TRANSFORM_FEEDBACK_BUFFER
GL_UNIFORM_BUFFER

size size of buffer data store in bytes
data pointer to the buffer data supplied by the application
usage a hint on how the application will use the data stored in

the buffer object (refer to Table 6-2 for details)

Vertex Buffer Objects	 145

glBufferData will reserve appropriate data storage based on the value of size.
The data argument can be a NULL value, indicating that the reserved data store
remains uninitialized. If data is a valid pointer, then the contents of data are
copied to the allocated data store. The contents of the buffer object data store
can be initialized or updated using the glBufferSubData command.

void glBufferSubData(�GLenum target, GLintptr offset,
GLsizeiptr size, const void *data)

target can be set to any of the following targets:
GL_ARRAY_BUFFER
GL_ELEMENT_ARRAY_BUFFER
GL_COPY_READ_BUFFER
GL_COPY_WRITE_BUFFER
GL_PIXEL_PACK_BUFFER
GL_PIXEL_UNPACK_BUFFER
GL_TRANSFORM_FEEDBACK_BUFFER
GL_UNIFORM_BUFFER

offset offset into the buffer data store and number of bytes of the
size data store that is being modified
data pointer to the client data that need to be copied into the

buffer object data storage

After the buffer object data store has been initialized or updated using
glBufferData or glBufferSubData, the client data store is no longer
needed and can be released. For static geometry, applications can free the
client data store and reduce the overall system memory consumed by the
application. This might not be possible for dynamic geometry.

We now look at drawing primitives with and without buffer objects.
Example 6-5 describes drawing primitives with and without vertex buffer
objects. Notice that the code to set up the vertex attributes is very similar.
In this example, we use the same buffer object for all attributes of a vertex.
When a GL_ARRAY_BUFFER buffer object is used, the pointer argument
in glVertexAttribPointer changes from being a pointer to the actual
data to being an offset in bytes into the vertex buffer store allocated using
glBufferData. Similarly, if a valid GL_ELEMENT_ARRAY_BUFFER object
is used, the indices argument in glDrawElements changes from being
a pointer to the actual element indices to being an offset in bytes to the
element index buffer store allocated using glBufferData.

146	 Chapter 6: Vertex Attributes, Vertex Arrays, and Buffer Objects

Example 6-5	 Drawing with and without Vertex Buffer Objects

#define VERTEX_POS_SIZE 3 // x, y, and z
#define VERTEX_COLOR_SIZE 4 // r, g, b, and a

#define VERTEX_POS_INDX 0
#define VERTEX_COLOR_INDX 1
//
// vertices - pointer to a buffer that contains vertex
// attribute data
// vtxStride - stride of attribute data / vertex in bytes
// numIndices - number of indices that make up primitives
// drawn as triangles
// indices - pointer to element index buffer
//
void DrawPrimitiveWithoutVBOs(GLfloat *vertices,

GLint vtxStride,
GLint numIndices,
GLushort *indices)

{
 GLfloat *vtxBuf = vertices;

 glBindBuffer(GL_ARRAY_BUFFER, 0);
 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);

 glEnableVertexAttribArray(VERTEX_POS_INDX);
 glEnableVertexAttribArray(VERTEX_COLOR_INDX);

 glVertexAttribPointer(VERTEX_POS_INDX, VERTEX_POS_SIZE,
GL_FLOAT, GL_FALSE, vtxStride,
vtxBuf);

 vtxBuf += VERTEX_POS_SIZE;

 glVertexAttribPointer(VERTEX_COLOR_INDX,
VERTEX_COLOR_SIZE, GL_FLOAT,
GL_FALSE, vtxStride, vtxBuf);

 glDrawElements(GL_TRIANGLES, numIndices, GL_UNSIGNED_SHORT,
indices);

 glDisableVertexAttribArray(VERTEX_POS_INDX);
 glDisableVertexAttribArray(VERTEX_COLOR_INDX);

}

void DrawPrimitiveWithVBOs(ESContext *esContext,
GLint numVertices, GLfloat *vtxBuf,
GLint vtxStride, GLint numIndices,
GLushort *indices)

Vertex Buffer Objects	 147

Example 6-5	 Drawing with and without Vertex Buffer Objects (continued)

{
 UserData *userData = (UserData*) esContext->userData;
 GLuint offset = 0;
 // vboIds[0] - used to store vertex attribute data
 // vboIds[l] - used to store element indices
 if (userData->vboIds[0] == 0 && userData->vboIds[1] == 0)
 {

// Only allocate on the first draw
glGenBuffers(2, userData->vboIds);

glBindBuffer(GL_ARRAY_BUFFER, userData->vboIds[0]);
glBufferData(GL_ARRAY_BUFFER, vtxStride * numVertices,

vtxBuf, GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,

userData->vboIds[1]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER,

sizeof(GLushort) * numIndices,
indices, GL_STATIC_DRAW);

 }

 glBindBuffer(GL_ARRAY_BUFFER, userData->vboIds[0]);
 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, userData->vboIds[1]);

 glEnableVertexAttribArray(VERTEX_POS_INDX);
 glEnableVertexAttribArray(VERTEX_COLOR_INDX);

 glVertexAttribPointer(VERTEX_POS_INDX, VERTEX_POS_SIZE,
GL_FLOAT, GL_FALSE, vtxStride,
(const void*)offset);

 offset += VERTEX_POS_SIZE * sizeof(GLfloat);
 glVertexAttribPointer(VERTEX_COLOR_INDX,

VERTEX_COLOR_SIZE,
GL_FLOAT, GL_FALSE, vtxStride,
(const void*)offset);

 glDrawElements(GL_TRIANGLES, numIndices, GL_UNSIGNED_SHORT,
0);

 glDisableVertexAttribArray(VERTEX_POS_INDX);
 glDisableVertexAttribArray(VERTEX_COLOR_INDX);

 glBindBuffer(GL_ARRAY_BUFFER, 0);
 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}

(continues)

148	 Chapter 6: Vertex Attributes, Vertex Arrays, and Buffer Objects

Example 6-5	 Drawing with and without Vertex Buffer Objects (continued)

void Draw (ESContext *esContext)
{
 UserData *userData = (UserData*) esContext->userData;

 // 3 vertices, with (x, y, z),(r, g, b, a) per-vertex
 GLfloat vertices[3 * (VERTEX_POS_SIZE + VERTEX_COLOR_SIZE)] =
 {

-0.5f, 0.5f, 0.0f, // v0
1.0f, 0.0f, 0.0f, 1.0f, // c0

-1.0f, -0.5f, 0.0f, // v1
0.0f, 1.0f, 0.0f, 1.0f, // c1
0.0f, -0.5f, 0.0f, // v2
0.0f, 0.0f, 1.0f, 1.0f, // c2

 };
 // index buffer data
 GLushort indices[3] = { 0, 1, 2 };

 glViewport (0, 0, esContext->width, esContext->height);
 glClear (GL_COLOR_BUFFER_BIT);
 glUseProgram (userData->programObject);
 glUniform1f (userData->offsetLoc, 0.0f);

 DrawPrimitiveWithoutVBOs (vertices,
sizeof(GLfloat) * (VERTEX_POS_SIZE + VERTEX_COLOR_SIZE),
3, indices);

 // offset the vertex positions so both can be seen
 glUniform1f (userData->offsetLoc, 1.0f);

 DrawPrimitiveWithVBOs (esContext, 3, vertices,
sizeof(GLfloat) * (VERTEX_POS_SIZE + VERTEX_COLOR_SIZE),
3, indices);

}

In Example 6-5, we used one buffer object to store all the vertex data. This
demonstrates the array of structures method of storing vertex attributes
described in Example 6-1. It is also possible to have a buffer object for
each vertex attribute—that is, the structure of arrays method of storing
vertex attributes described in Example 6-2. Example 6-6 illustrates how
drawPrimitiveWithVBOs would look with a separate buffer object for
each vertex attribute.

Vertex Buffer Objects	 149

Example 6-6	 Drawing with a Buffer Object per Attribute

#define VERTEX_POS_SIZE 3 // x, y, and z
#define VERTEX_COLOR_SIZE 4 // r, g, b, and a

#define VERTEX_POS_INDX 0
#define VERTEX_COLOR_INDX 1

void DrawPrimitiveWithVBOs(ESContext *esContext,
GLint numVertices, GLfloat **vtxBuf,
GLint *vtxStrides, GLint numIndices,
GLushort *indices)

{
 UserData *userData = (UserData*) esContext->userData;
 // vboIds[0] - used to store vertex position
 // vboIds[1] - used to store vertex color
 // vboIds[2] - used to store element indices
 if (userData->vboIds[0] == 0 && userData->vboIds[1] == 0 &&

userData->vboIds[2] == 0)
 {

// allocate only on the first draw
glGenBuffers(3, userData->vboIds);

glBindBuffer(GL_ARRAY_BUFFER, userData->vboIds[0]);
glBufferData(GL_ARRAY_BUFFER, vtxStrides[0] * numVertices,

vtxBuf[0], GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, userData->vboIds[1]);
glBufferData(GL_ARRAY_BUFFER, vtxStrides[1] * numVertices,

vtxBuf[1], GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER,

userData->vboIds[2]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER,

sizeof(GLushort) * numIndices,
indices, GL_STATIC_DRAW);

 }

 glBindBuffer(GL_ARRAY_BUFFER, userData->vboIds[0]);
 glEnableVertexAttribArray(VERTEX_POS_INDX);
 glVertexAttribPointer(VERTEX_POS_INDX, VERTEX_POS_SIZE,

GL_FLOAT, GL_FALSE, vtxStrides[0], 0);

 glBindBuffer(GL_ARRAY_BUFFER, userData->vboIds[1]);
 glEnableVertexAttribArray(VERTEX_COLOR_INDX);
 glVertexAttribPointer(VERTEX_COLOR_INDX,

VERTEX_COLOR_SIZE,
GL_FLOAT, GL_FALSE, vtxStrides[1], 0);

(continues)

150	 Chapter 6: Vertex Attributes, Vertex Arrays, and Buffer Objects

After the application has finished using the buffer objects, they can be
deleted using the glDeleteBuffers command.

glDeleteBuffers deletes the buffer objects specified in buffers. Once
a buffer object has been deleted, it can be reused as a new buffer object
that stores vertex attributes or element indices for a different primitive.

As you can see from these examples, using vertex buffer objects
is very easy and requires very little extra work to implement over
vertex arrays. The minimal extra work involved in supporting
vertex buffer objects is well worth it, considering the performance
gain this feature provides. In the next chapter, we discuss how
to draw primitives using commands such as glDrawArrays and
glDrawElements, and how the primitive assembly and rasterization
pipeline stages in OpenGL ES 3.0 work.

Vertex Array Objects

So far, we have covered how to load vertex attributes in two different
ways: using client vertex arrays and using vertex buffer objects. Vertex
buffer objects are preferred to client vertex arrays because they can reduce
the amount of data copied between the CPU and GPU and, therefore,
have better performance. In OpenGL ES 3.0, a new feature was introduced

void glDeleteBuffers(GLsizei n, const GLuint *buffers)

n number of buffer objects to be deleted
buffers array of n entries that contain the buffer objects to be deleted

Example 6-6	 Drawing with a Buffer Object per Attribute (continued)

 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, userData->vboIds[2]);

 glDrawElements(GL_TRIANGLES, numIndices,
GL_UNSIGNED_SHORT, 0);

 glDisableVertexAttribArray(VERTEX_POS_INDX);
 glDisableVertexAttribArray(VERTEX_COLOR_INDX);

 glBindBuffer(GL_ARRAY_BUFFER, 0);
 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}

Vertex Array Objects	 151

to make using vertex arrays even more efficient: vertex array objects
(VAOs). As we have seen, setting up drawing using vertex buffer objects
can require many calls to glBindBuffer, glVertexAttribPointer, and
glEnableVertexAttribArray. To make it faster to switch between vertex
array configurations, OpenGL ES 3.0 introduced vertex array objects. VAOs
provide a single object that contains all of the state required to switch
between vertex array/vertex buffer object configurations.

In fact, there is always a vertex array object that is active in OpenGL
ES 3.0. All of the examples so far in this chapter have operated on the
default vertex array object (the default VAO has the ID of 0). To create a
new vertex array object, you use the glGenVertexArrays function.

void glGenVertexArrays(GLsizei n, GLuint *arrays)

n number of vertex array object names to return
arrays pointer to an array of n entries, where allocated vertex

array objects are returned

void glBindVertexArray(GLuint array)

array object to be assigned as the current vertex array object

Once created, the vertex array object can be bound for use using
glBindVertexArray.

Each VAO contains a full state vector that describes all of the vertex
buffer bindings and vertex client state enables. When the VAO is
bound, its state vector provides the current settings of the vertex buffer
state. After binding the vertex array object using glBindVertexArray,
subsequent calls that change the vertex array state (glBindBuffer,
glVertexAttribPointer, glEnableVertexAttribArray, and
glDisableVertexAttribArray) will affect the new VAO.

In this way, an application can quickly switch between vertex array
configurations by binding a vertex array object that has been set with
state. Rather than having to make many calls to change the vertex array
state, all of the changes can be made in a single function call. Example 6-7
demonstrates the use of a vertex array object at initialization time to set
up the vertex array state. The vertex array state is then set in a single
function call at draw time using glBindVertexArray.

152	 Chapter 6: Vertex Attributes, Vertex Arrays, and Buffer Objects

Example 6-7	 Drawing with a Vertex Array Object

#define VERTEX_POS_SIZE 3 // x, y, and z
#define VERTEX_COLOR_SIZE 4 // r, g, b, and a

#define VERTEX_POS_INDX 0
#define VERTEX_COLOR_INDX 1

#define VERTEX_STRIDE (sizeof(GLfloat) * \
(VERTEX_POS_SIZE + \

VERTEX_COLOR_SIZE))

int Init (ESContext *esContext)
{
 UserData *userData = (UserData*) esContext->userData;
 const char vShaderStr[] =

"#version 300 es \n"
"layout(location = 0) in vec4 a_position; \n"
"layout(location = 1) in vec4 a_color; \n"
"out vec4 v_color; \n"
"void main() \n"
"{ \n"
" v_color = a_color; \n"
" gl_Position = a_position; \n"
"}";

 const char fShaderStr[] =
"#version 300 es \n"
"precision mediump float; \n"
"in vec4 v_color; \n"
"out vec4 o_fragColor; \n"
"void main() \n"
"{ \n"
" o_fragColor = v_color; \n"
"}" ;

 GLuint programObject;

 // 3 vertices, with (x, y, z),(r, g, b, a) per-vertex
 GLfloat vertices[3 * (VERTEX_POS_SIZE + VERTEX_COLOR_SIZE)] =
 {

0.0f, 0.5f, 0.0f, // v0
1.0f, 0.0f, 0.0f, 1.0f, // c0

-0.5f, -0.5f, 0.0f, // v1
0.0f, 1.0f, 0.0f, 1.0f, // c1
0.5f, -0.5f, 0.0f, // v2
0.0f, 0.0f, 1.0f, 1.0f, // c2

 };

Vertex Array Objects	 153

Example 6-7	 Drawing with a Vertex Array Object (continued)

 // Index buffer data
 GLushort indices[3] = { 0, 1, 2 };

 // Create the program object
 programObject = esLoadProgram (vShaderStr, fShaderStr);

 if (programObject == 0)
return GL_FALSE;

 // Store the program object
 userData->programObject = programObject;

 // Generate VBO Ids and load the VBOs with data
 glGenBuffers (2, userData->vboIds);

 glBindBuffer (GL_ARRAY_BUFFER, userData->vboIds[0]);
 glBufferData (GL_ARRAY_BUFFER, sizeof(vertices),

vertices, GL_STATIC_DRAW);
 glBindBuffer (GL_ELEMENT_ARRAY_BUFFER, userData->vboIds[1]);
 glBufferData (GL_ELEMENT_ARRAY_BUFFER, sizeof (indices),

indices, GL_STATIC_DRAW);

 // Generate VAO ID
 glGenVertexArrays (1, &userData->vaoId);

 // Bind the VAO and then set up the vertex
 // attributes
 glBindVertexArray (userData->vaoId);

 glBindBuffer(GL_ARRAY_BUFFER, userData->vboIds[0]);
 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, userData->vboIds[1]);

 glEnableVertexAttribArray(VERTEX_POS_INDX);
 glEnableVertexAttribArray(VERTEX_COLOR_INDX);

 glVertexAttribPointer (VERTEX_POS_INDX, VERTEX_POS_SIZE,
GL_FLOAT, GL_FALSE, VERTEX_STRIDE, (const void*) 0);

 glVertexAttribPointer (VERTEX_COLOR_INDX, VERTEX_COLOR_SIZE,
GL_FLOAT, GL_FALSE, VERTEX_STRIDE,
(const void*) (VERTEX_POS_SIZE * sizeof(GLfloat)));

 // Reset to the default VAO
 glBindVertexArray (0);

 glClearColor (0.0f, 0.0f, 0.0f, 0.0f);
 return GL_TRUE;
}

(continues)

154	 Chapter 6: Vertex Attributes, Vertex Arrays, and Buffer Objects

void glDeleteVertexArrays(GLsizei n, GLuint *arrays)

n number of vertex array objects to be deleted
arrays array of n entries that contain the vertex array objects to

be deleted

When an application is finished with one or more vertex array objects,
they can be deleted using glDeleteVertexArrays.

Example 6-7	 Drawing with a Vertex Array Object (continued)

void Draw (ESContext *esContext)
{
 UserData *userData = (UserData*) esContext->userData;

 glViewport (0, 0, esContext->width, esContext->height);
 glClear (GL_COLOR_BUFFER_BIT);
 glUseProgram (userData->programObject);

 // Bind the VAO
 glBindVertexArray (userData->vaoId);

 // Draw with the VAO settings
 glDrawElements (GL_TRIANGLES, 3, GL_UNSIGNED_SHORT,

(const void*) 0);

 // Return to the default VAO
 glBindVertexArray (0);
}

Mapping Buffer Objects

So far, we have shown how to load data into buffer objects using
glBufferData or glBufferSubData. It is also possible for applications to
map and unmap a buffer object’s data storage into the application’s address
space. There are several reasons why an application might prefer to map a
buffer rather than load its data using glBufferData or glBufferSubData:

•• Mapping the buffer can reduce the memory utilization of the application
because potentially only a single copy of the data needs to be stored.

•• On architectures with shared memory, mapping the buffer returns a
direct pointer into the address space where the buffer will be stored for
the GPU. By mapping the buffer, the application can avoid the copy
step, thereby realizing better performance on updates.

Mapping Buffer Objects	 155

void *glMapBufferRange(�GLenum target, GLintptr offset,
GLsizeiptr length, GLbitfield
access)

target can be set to any of the following targets:
GL_ARRAY_BUFFER
GL_ELEMENT_ARRAY_BUFFER
GL_COPY_READ_BUFFER
GL_COPY_WRITE_BUFFER

GL_MAP_READ_BIT The application will read from
the returned pointer.

GL_MAP_WRITE_BIT The application will write to
the returned pointer.

Additionally, the application may include the following
optional access flags:

GL_MAP_INVALIDATE_RANGE_BIT Indicates that the contents of
the buffer within the specified
range can be discarded by the
driver before returning the
pointer. This flag cannot be
used in combination with
GL_MAP_READ_BIT.

GL_PIXEL_PACK_BUFFER
GL_PIXEL_UNPACK_BUFFER
GL_TRANSFORM_FEEDBACK_BUFFER
GL_UNIFORM_BUFFER

offset offset in bytes into the buffer data store
length number of bytes of the buffer data to map
access a bitfield combination of access flags. The application

must specify at least one of the following flags:

The glMapBufferRange command returns a pointer to all of or a portion
(range) of the data storage for the buffer object. This pointer can be used
by the application to read or update the contents of the buffer object. The
glUnmapBuffer command is used to indicate that the updates have been
completed and to release the mapped pointer.

(continues)

156	 Chapter 6: Vertex Attributes, Vertex Arrays, and Buffer Objects

GL_MAP_INVALIDATE_BUFFER_BIT Indicates that the contents
of the entire buffer can be
discarded by the driver before
returning the pointer. This flag
can only be used in combination
with GL_MAP_READ_BIT.

GL_MAP_FLUSH_EXPLICIT_BIT Indicates that the application
will explicitly flush
operations to subranges of
the mapped range using
glFlushMappedBufferRange.
This flag cannot be used
in combination with
GL_MAP_WRITE_BIT.

GL_MAP_UNSYNCHRONIZED_BIT Indicates that the driver does
not need to wait for pending
operations on the buffer object
before returning a pointer to
the buffer range. If there are
pending operations, the results
of outstanding operations and
any future operations on the
buffer object become undefined.

GLboolean glUnmapBuffer(GLenum target)

target must be set to GL_ARRAY_BUFFER

glMapBufferRange returns a pointer to the buffer data storage range
requested. If an error occurs or an invalid request is made, the function
will return NULL. The glUnmapBuffer command unmaps a previously
mapped buffer.

glUnmapBuffer returns GL_TRUE if the unmap operation is successful.
The pointer returned by glMapBufferRange can no longer be used after
a successful unmap has been performed. glUnmapBuffer returns
GL_FALSE if the data in the vertex buffer object’s data storage have become
corrupted after the buffer has been mapped. This can occur due to a change

(continued)

Mapping Buffer Objects	 157

Example 6-8	 Mapping a Buffer Object for Writing

 GLfloat *vtxMappedBuf;
 GLushort *idxMappedBuf;

 glGenBuffers (2, userData->vboIds);

 glBindBuffer (GL_ARRAY_BUFFER, userData->vboIds[0]);
 glBufferData (GL_ARRAY_BUFFER, vtxStride * numVertices,

NULL, GL_STATIC_DRAW);

 vtxMappedBuf = (GLfloat*)
glMapBufferRange (GL_ARRAY_BUFFER, 0,

vtxStride * numVertices,
GL_MAP_WRITE_BIT |
GL_MAP_INVALIDATE_BUFFER_BIT);

 if (vtxMappedBuf == NULL)
 {

esLogMessage("Error mapping vertex buffer object.");
return;

 }

 // Copy the data into the mapped buffer
 memcpy (vtxMappedBuf, vtxBuf, vtxStride * numVertices);

 // Unmap the buffer
 if (glUnmapBuffer(GL_ARRAY_BUFFER) == GL_FALSE)
 {

esLogMessage("Error unmapping array buffer object.");
return;

 }

 // Map the index buffer
 glBindBuffer (GL_ELEMENT_ARRAY_BUFFER,

userData->vboIds[1]);
 glBufferData (GL_ELEMENT_ARRAY_BUFFER,

sizeof(GLushort) * numIndices,
NULL, GL_STATIC_DRAW);

in the screen resolution, multiple screens being used by OpenGL ES context,
or an out-of-memory event that causes the mapped memory to be discarded.1

The code in Example 6-8 demonstrates the use of glMapBufferRange and
glUnmapBuffer to write the contents of vertex buffer objects.

1. �If the screen resolution changes to a larger width, height, and bits per pixel at
runtime, the mapped memory may have to be released. Note that this is not a
very common issue on handheld devices. A backing store is rarely implemented
on most handheld and embedded devices. Therefore, an out-of-memory event will
result in memory being freed and becoming available for reuse for critical needs.

(continues)

158	 Chapter 6: Vertex Attributes, Vertex Arrays, and Buffer Objects

Flushing a Mapped Buffer

An application may wish to map a range (or all) of a buffer object using
glMapBufferRange, but update only discrete subregions of the mapped
range. To avoid the potential performance penalty for flushing the entire
mapped range when calling glUnmapBuffer, the application can map
with the GL_MAP_FLUSH_EXPLICIT_BIT access flag (along with GL_MAP_
WRITE_BIT). When the application has finished updating a portion of the
mapped range, it can indicate this fact using glFlushMappedBufferRange.

Example 6-8	 Mapping a Buffer Object for Writing (continued)

 idxMappedBuf = (GLushort*)
glMapBufferRange (GL_ELEMENT_ARRAY_BUFFER, 0,

sizeof(GLushort) * numIndices,
GL_MAP_WRITE_BIT |
GL_MAP_INVALIDATE_BUFFER_BIT);

 if (idxMappedBuf == NULL)
 {

esLogMessage("Error mapping element buffer object.");
return;

 }

 // Copy the data into the mapped buffer
 memcpy (idxMappedBuf, indices,

sizeof(GLushort) * numIndices);

 // Unmap the buffer
 if (glUnmapBuffer(GL_ELEMENT_ARRAY_BUFFER) == GL_FALSE)
 {

esLogMessage("Error unmapping element buffer object.");
return;

 }

void *glFlushMappedBufferRange(�GLenum target,
GLintptr offset,
GLsizeiptr length)

target can be set to any of the following targets:
GL_ARRAY_BUFFER
GL_ELEMENT_ARRAY_BUFFER
GL_COPY_READ_BUFFER
GL_COPY_WRITE_BUFFER
GL_PIXEL_PACK_BUFFER
GL_PIXEL_UNPACK_BUFFER

Copying Buffer Objects	 159

If an application maps with GL_MAP_FLUSH_EXPLICIT_BIT but does not
explicitly flush a modified region with glFlushMappedBufferRange,
its contents will be undefined.

Copying Buffer Objects

So far, we have shown how to load buffer objects with data using
glBufferData, glBufferSubData, and glMapBufferRange. All of these
techniques involve transferring data from the application to the device. It
is also possible with OpenGL ES 3.0 to copy data from one buffer object
to another entirely on the device. This can be done using the function
glCopyBufferSubData.

GL_TRANSFORM_FEEDBACK_BUFFER
GL_UNIFORM_BUFFER

offset offset in bytes from the beginning of the mapped buffer
length number of bytes of the buffer from offset to flush

void glCopyBufferSubData(�GLenum readtarget,
GLenum writetarget,
GLintptr readoffset,
GLintptr writeoffset,
GLsizeiptr size)

readtarget the buffer object target to read from.
writetarget the buffer object target to write to. Both readtarget

and writetarget can be set to any of the following
targets (although they must not be the same target):
GL_ARRAY_BUFFER
GL_ELEMENT_ARRAY_BUFFER
GL_COPY_READ_BUFFER
GL_COPY_WRITE_BUFFER
GL_PIXEL_PACK_BUFFER
GL_PIXEL_UNPACK_BUFFER
GL_TRANSFORM_FEEDBACK_BUFFER
GL_UNIFORM_BUFFER

(continues)

160	 Chapter 6: Vertex Attributes, Vertex Arrays, and Buffer Objects

Calling glCopyBufferSubData will copy the specified bytes from
the buffer bound to the readtarget to the writetarget. The buffer
binding is determined based on the last call to glBindBuffer for
each target. Any type of buffer object (array, element array, transform
feedback, and so on) can be bound to the GL_COPY_READ_BUFFER or
GL_COPY_WRITE_BUFFER target. These two targets are provided as a
convenience so that the application doesn’t have to change any of the
true buffer bindings to perform a copy between buffers.

Summary

This chapter explored how vertex attributes and data are specified in
OpenGL ES 3.0. Specifically, it covered the following topics:

•• How to specify constant vertex attributes using the glVertexAttrib*
functions and vertex arrays using the glVertexAttrib[I]Pointer
functions

•• How to create and store vertex attribute and element data in vertex
buffer objects

•• How vertex array state is encapsulated in vertex array objects and how
to use VAOs to improve performance

•• The variety of methods for loading buffer objects with data:
glBuffer[Sub]Data, glMapBufferRange, and glCopyBufferSubData

Now that we know how vertex data are specified, the next chapter covers
all of the primitives that can be drawn in OpenGL ES using vertex data.

readoffset offset in bytes into the read buffer data to copy from.
writeoffset offset in bytes into the write buffer data to copy to.
size the number of bytes to copy from the read buffer

data to the write buffer data.

(continued)

161

Chapter 7

Primitive Assembly and Rasterization

This chapter describes the types of primitives and geometric objects that
are supported by OpenGL ES, and explains how to draw them. It then
describes the primitive assembly stage, which occurs after the vertices of
a primitive are processed by the vertex shader. In the primitive assembly
stage, clipping, perspective divide, and viewport transformation operations
are performed. These operations are discussed in detail. The chapter
concludes with a description of the rasterization stage. Rasterization is the
process that converts primitives into a set of two-dimensional fragments,
which are processed by the fragment shader. These two-dimensional
fragments represent pixels that may be drawn on the screen.

Refer to Chapter 8, “Vertex Shaders,” for a detailed description of vertex
shaders. Chapter 9, “Texturing,” and Chapter 10, “Fragment Shaders,”
describe processing that is applied to fragments generated by the
rasterization stage.

Primitives

A primitive is a geometric object that can be drawn using the
glDrawArrays, glDrawElements, glDrawRangeElements,
glDrawArraysInstanced, and glDrawElementsInstanced commands
in OpenGL ES. The primitive is described by a set of vertices that indicate
the vertex position. Other information, such as color, texture coordinates,
and geometric normal can also be associated with each vertex as generic
attributes.

162	 Chapter 7: Primitive Assembly and Rasterization

The following primitives can be drawn in OpenGL ES 3.0:

•• Triangles

•• Lines

•• Point sprites

Triangles

Triangles represent the most common method used to describe a
geometry object rendered by a 3D application. The triangle primitives
supported by OpenGL ES are GL_TRIANGLES, GL_TRIANGLE_STRIP, and
GL_TRIANGLE_FAN. Figure 7-1 shows examples of supported triangle
primitive types.

GL_TRIANGLES draws a series of separate triangles. In Figure 7-1, two
triangles given by vertices (v0, v1, v2) and (v3, v4, v5) are drawn. A total
of n/3 triangles are drawn, where n is the number of indices specified as
count in glDraw*** APIs mentioned previously.

GL_TRIANGLE_STRIP draws a series of connected triangles. In the example
shown in Figure 7-1, three triangles are drawn given by (v0, v1, v2), (v2, v1, v3)
(note the order), and (v2, v3, v4). A total of (n – 2) triangles are drawn, where
n is the number of indices specified as count in glDraw*** APIs.

GL_TRIANGLE_FAN

GL_TRIANGLES GL_TRIANGLE_STRIP

v0

v1

v2

v3 v4

v5 v0

v1

v2

v3

v4

v2

v1 v0

v3

v4

Figure 7-1	 Triangle Primitive Types

Primitives	 163

GL_TRIANGLE_FAN also draws a series of connected triangles. In the
example shown in Figure 7-1, the triangles drawn are (v0, v1, v2), (v0, v2, v3),
and (v0, v3, v4). A total of (n – 2) triangles are drawn, where n is the number
of indices specified as count in glDraw*** APIs.

Lines

The line primitives supported by OpenGL ES are GL_LINES, GL_LINE_STRIP,
and GL_LINE_LOOP. Figure 7-2 shows examples of supported line primitive
types.

GL_LINES

v5

v2

v3

v0

v1

v4

v0 v4

v3
v1

v2

GL_LINE_LOOP

v0

v2

v1v3

GL_LINE_STRIP

Figure 7-2	 Line Primitive Types

GL_LINES draws a series of unconnected line segments. In the example
shown in Figure 7-2, three individual lines are drawn given by (v0, v1),
(v2, v3), and (v4, v5). A total of n/2 segments are drawn, where n is the
number of indices specified as count in glDraw*** APIs.

GL_LINE_STRIP draws a series of connected line segments. In the example
shown in Figure 7-2, three line segments are drawn given by (v0, v1),
(vl, v2), and (v2, v3). A total of (n – 1) line segments are drawn, where n is
the number of indices specified as count in glDraw*** APIs.

GL_LINE_LOOP works similar to GL_LINE_STRIP, except that a final line
segment is drawn from v

n–1
 to v0. In the example shown in Figure 7-2,

the line segments drawn are (v0, v1), (v1, v2), (v2, v3), (v3, v4), and (v4, v0).
A total of n line segments are drawn, where n is the number of indices
specified as count in glDraw*** APIs.

164	 Chapter 7: Primitive Assembly and Rasterization

The width specified by glLineWidth will be clamped to the line width
range supported by the OpenGL ES 3.0 implementation. In addition, the
width specified will be remembered by OpenGL until updated by the
application. The supported line width range can be queried using the
following command. There is no requirement for lines with widths greater
than 1 to be supported.

GLfloat    lineWidthRange[2];
glGetFloatv (GL_ALIASED_LINE_WIDTH_RANGE, lineWidthRange);

Point Sprites

The point sprite primitive supported by OpenGL ES is GL_POINTS. A point
sprite is drawn for each vertex specified. Point sprites are typically used for
rendering particle effects efficiently by drawing them as points instead of
quads. A point sprite is a screen-aligned quad specified as a position and a
radius. The position describes the center of the square, and the radius is
then used to calculate the four coordinates of the quad that describes the
point sprite.

gl_PointSize is the built-in variable that can be used to output the point
radius (or point size) in the vertex shader. It is important that a vertex
shader associated with the point primitive output gl_PointSize; otherwise,
the value of the point size is considered undefined and will most likely result
in drawing errors. The gl_PointSize value output by a vertex shader will
be clamped to the aliased point size range supported by the OpenGL ES 3.0
implementation. This range can be queried using the following command:

GLfloat     pointSizeRange[2];
glGetFloatv (GL_ALIASED_POINT_SIZE_RANGE, pointSizeRange);

By default, OpenGL ES 3.0 describes the window origin (0, 0) to be the
(left, bottom) region. However, for point sprites, the point coordinate
origin is (left, top).

gl_PointCoord is a built-in variable available only inside a fragment
shader when the primitive being rendered is a point sprite. It is declared as

void glLineWidth(GLfloat width)

width     � specifies the width of the line in pixels; the default
width is 1.0

The width of a line can be specified using the glLineWidth API call.

Drawing Primitives	 165

a vec2 variable using the mediump precision qualifier. The values assigned
to gl_PointCoord go from 0.0 to 1.0 as we move from left to right or
from top to bottom, as illustrated in Figure 7-3.

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Figure 7-3	 gl_PointCoord Values

The following fragment shader code illustrates how gl_PointCoord can
be used as a texture coordinate to draw a textured point sprite:

 #version 300 es
 precision mediump float;
 uniform sampler2D s_texSprite;
 layout(location = 0) out vec4 outColor;

 void main()
 {

outColor = texture(s_texSprite, gl_PointCoord);
 }

Drawing Primitives

There are five API calls in OpenGL ES to draw primitives: glDrawArrays,
glDrawElements, glDrawRangeElements, glDrawArraysInstanced, and
glDrawElementsInstanced. We will describe the first three regular non-
instanced draw call APIs in this section and the remaining two instanced
draw call APIs in the next section.

glDrawArrays draws primitives specified by mode using vertices given by
element index first to first + count – 1. A call to glDrawArrays
 (GL_TRIANGLES, 0, 6) will draw two triangles: a triangle given by element
indices (0, 1, 2) and another triangle given by element indices (3, 4, 5).
Similarly, a call to glDrawArrays(GL_TRIANGLE_STRIP, 0, 5) will draw
three triangles: a triangle given by element indices (0, 1, 2), the second
triangle given by element indices (2, 1, 3), and the final triangle given by
element indices (2, 3, 4).

166	 Chapter 7: Primitive Assembly and Rasterization

void glDrawArrays(�GLenum mode, GLint first,
GLsizei count)	

mode    specifies the primitive to render; valid values are
GL_POINTS
GL_LINES
GL_LINE_STRIP
GL_LINE_LOOP
GL_TRIANGLES
GL_TRIANGLE_STRIP
GL_TRIANGLE_FAN

first    specifies the starting vertex index in the enabled vertex arrays

count    specifies the number of vertices to be drawn

void glDrawElements(�GLenum mode, GLsizei count,
GLenum type, const GLvoid *indices)

void glDrawRangeElements(GLenum mode, GLuint start,
GLuint end, GLsizei count,
GLenum type, const GLvoid *indices)

mode	 specifies the primitive to render; valid values are
GL_POINTS
GL_LINES
GL_LINE_STRIP
GL_LINE_LOOP
GL_TRIANGLES
GL_TRIANGLE_STRIP
GL_TRIANGLE_FAN

start	 specifies the minimum array index in indices
(glDrawRangeElements only)

end	 specifies the maximum array index in indices
(glDrawRangeElements only)

count	 specifies the number of indices to be drawn

type	 specifies the type of element indices stored in indices;
valid values are
GL_UNSIGNED_BYTE
GL_UNSIGNED_SHORT
GL_UNSIGNED_INT

indices	 specifies a pointer to location where element indices are stored

Drawing Primitives	 167

glDrawArrays is great if you have a primitive described by a sequence
of element indices and if vertices of geometry are not shared. However,
typical objects used by games or other 3D applications are made up of
multiple triangle meshes where element indices may not necessarily be in
sequence and vertices will typically be shared between triangles of a mesh.

v2

v7

v1

v6 v5

v4

v3

v0

Figure 7-4	 Cube

Consider the cube shown in Figure 7-4. If we were to draw this using
glDrawArrays, the code would be as follows:

 #define VERTEX_POS_INDX 0
 #define NUM_FACES      6

 GLfloat vertices[] = { … }; // (x, y, z) per vertex
 glEnableVertexAttribArray (VERTEX_POS_INDX);
 glVertexAttribPointer (VERTEX_POS_INDX, 3, GL_FLOAT,

GL_FALSE, 0, vertices);

 for (int i=0; i<NUM_FACES; i++)
 {

glDrawArrays (GL_TRIANGLE_FAN, i*4, 4);
 }

Or

 glDrawArrays (GL_TRIANGLES, 0, 36);

To draw this cube with glDrawArrays, we would call glDrawArrays for
each face of the cube. Vertices that are shared would need to be replicated,
which means that instead of having 8 vertices, we would now need
to allocate 24 vertices (if we draw each face as a GL_TRIANGLE_FAN) or
36 vertices (if we use GL_TRIANGLES). This is not an efficient approach.

168	 Chapter 7: Primitive Assembly and Rasterization

This is how the same cube would be drawn using glDrawElements:

 #define VERTEX_POS_INDX 0
 GLfloat vertices[] = { … };// (x, y, z) per vertex
 GLubyte indices[36] = {0, 1, 2, 0, 2, 3,

0, 3, 4, 0, 4, 5,
0, 5, 6, 0, 6, 1,
7, 1, 6, 7, 2, 1,
7, 5, 4, 7, 6, 5,
7, 3, 2, 7, 4, 3 };

 glEnableVertexAttribArray (VERTEX_POS_INDX);
 glVertexAttribPointer (VERTEX_POS_INDX, 3, GL_FLOAT,

GL_FALSE, 0, vertices);
 glDrawElements (GL_TRIANGLES,

sizeof(indices)/sizeof(GLubyte),
GL_UNSIGNED_BYTE, indices);

Even though we are drawing triangles with glDrawElements and a
triangle fan with glDrawArrays and glDrawElements, our application
will run faster than glDrawArrays on a GPU for many reasons.
For example, the size of vertex attribute data will be smaller with
glDrawElements as vertices are reused (we will discuss the GPU post-
transform vertex cache in a later section). This also leads to a smaller
memory footprint and memory bandwidth requirement.

Primitive Restart

Using primitive restart, you can render multiple disconnected primitives
(such as triangle fans or strips) using a single draw call. This is beneficial
to reduce the overhead of the draw API calls. A less elegant alternative
to using primitive restart is generating degenerate triangles (with some
caveats), which we will discuss in a later section.

Using primitive restart, you can restart a primitive for indexed draw
calls (such as glDrawElements, glDrawElementsInstanced, or
glDrawRangeElements) by inserting a special index into the indices list.
The special index is the largest possible index for the type of the indices
(such as 255 or 65535 when the index type is GL_UNSIGNED_BYTE or
GL_UNSIGNED_SHORT, respectively).

For example, suppose two triangle strips have element indices of (0, 1,
2, 3) and (8, 9, 10, 11), respectively. The combined element index list
if we were to draw both strips using one call to glDrawElements* with
primitive restart would be (0, 1, 2, 3, 255, 8, 9, 10, 11) if the index type is
GL_UNSIGNED_BYTE.

Drawing Primitives	 169

You can enable and disable primitive restart as follows:

 glEnable (GL_PRIMITIVE_RESTART_FIXED_INDEX);
 // Draw primitives
 …
 glDisable (GL_PRIMITIVE_RESTART_FIXED_INDEX);

Provoking Vertex

Without qualifiers, output values of the vertex shader are linearly
interpolated across the primitive. However, with the use of flat shading
(described in the Interpolation Qualifiers section in Chapter 5), no
interpolation occurs. Because no interpolation occurs, only one of the
vertex values can be used in the fragment shader. For a given primitive
instance, the provoking vertex determines which of the vertices output
from the vertex shader are used, as only one can be used. Table 7-1 shows
the rule for the provoking vertex selection.

Table 7-1	� Provoking Vertex Selection for the ith Primitive Instance Where
Vertices Are Numbered from 1 to n, and n Is the Number of Vertices
Drawn

Type of Primitive i Provoking Vertex

GL_POINTS i

GL_LINES 2i

GL_LINE_LOOP i + 1, if i < n
1, if i = n

GL_LINE_STRIP i + 1

GL_TRIANGLES 3i

GL_TRIANGLE_STRIP i + 2

GL_TRIANGLE_FAN i + 2

Geometry Instancing

Geometry instancing allows for efficiently rendering an object multiple
times with different attributes (such as a different transformation matrix,
color, or size) using a single API call. This feature is useful in rendering
large quantities of similar objects, such as in crowd rendering. Geometry
instancing reduces the overhead of CPU processing to send many API calls

170	 Chapter 7: Primitive Assembly and Rasterization

to the OpenGL ES engine. To render using an instanced draw call, use the
following commands:

void glVertexAttribDivisor(GLuint index, GLuint divisor)

index     specifies the index of the generic vertex attribute
divisor �specifies the number of instances that will pass between

updates of the generic attribute at slot index

void glDrawArraysIns�tanced(GLenum mode, GLint first,
GLsizei count, GLsizei instanceCount)

void glDrawElementsI�nstanced (GLenum mode, GLsizei count,
GLenum type, const GLvoid *indices,
GLsizei instanceCount)

mode	 specifies the primitive to render; valid values are
GL_POINTS
GL_LINES
GL_LINE_STRIP
GL_LINE_LOOP
GL_TRIANGLES
GL_TRIANGLE_STRIP
GL_TRIANGLE_FAN

first	 specifies the starting vertex index in the enabled vertex arrays
(glDrawArraysInstanced only)

count	 specifies the number of indices to be drawn

type	 specifies the type of element indices stored in indices
(glDrawElementsInstanced only);
valid values are
GL_UNSIGNED_BYTE
GL_UNSIGNED_SHORT
GL_UNSIGNED_INT

indices	 specifies a pointer to the location where element indices are stored
(glDrawElementsInstanced only)

instanceCount	� specifies the number of instances of the primitive to be
drawn

Two methods may be used to access per-instance data. The first method is
to instruct OpenGL ES to read vertex attributes once or multiple times per
instance using the following command:

Drawing Primitives	 171

By default, if glVertexAttribDivisor is not specified or is specified with
divisor equal to 0 for the vertex attributes, then the vertex attributes will
be read once per vertex. If divisor equals 1, then the vertex attributes
will be read once per primitive instance.

The second method is to use the built-in input variable gl_InstanceID as
an index to a buffer in the vertex shader to access the per-instance data.
gl_InstanceID will hold the index of the current primitive instance
when the previously mentioned geometry instancing API calls are used.
When a non-instanced draw call is used, gl_InstanceID will return 0.

The next two code fragments illustrate how to draw many geometry (i.e.,
cubes) using a single instanced draw call where each cube instance will
be colored uniquely. Note that the complete source code is available in
Chapter_7/Instancing example.

First, we create a color buffer to store many color data to be used later for
the instanced draw call (one color per instance).

// Random color for each instance
{
 GLubyte colors[NUM_INSTANCES][4];
 int instance;

 srandom (0);

 for (instance = 0; instance < NUM_INSTANCES; instance++)
 {

colors[instance][0] = random() % 255;
colors[instance][1] = random() % 255;
colors[instance][2] = random() % 255;
colors[instance][3] = 0;

 }

 glGenBuffers (1, &userData->colorVBO);
 glBindBuffer (GL_ARRAY_BUFFER, userData->colorVBO);
 glBufferData (GL_ARRAY_BUFFER, NUM_INSTANCES * 4, colors,

GL_STATIC_DRAW);
}

After the color buffer has been created and filled, we can bind the color
buffer as one of the vertex attributes for the geometry. Then, we specify
the vertex attribute divisor as 1 so that the color will be read per primitive
instance. Finally, the cubes are drawn with a single instanced draw call.

// Load the instance color buffer
glBindBuffer (GL_ARRAY_BUFFER, userData->colorVBO);
glVertexAttribPointer (COLOR_LOC, 4, GL_UNSIGNED_BYTE,

GL_TRUE, 4 * sizeof (GLubyte),
(const void *) NULL);

172	 Chapter 7: Primitive Assembly and Rasterization

glEnableVertexAttribArray (COLOR_LOC);

// Set one color per instance
glVertexAttribDivisor (COLOR_LOC, 1);

// code skipped ...

// Bind the index buffer
glBindBuffer (GL_ELEMENT_ARRAY_BUFFER, userData->indicesIBO);

// Draw the cubes
glDrawElementsInstanced (GL_TRIANGLES, userData->numIndices,

GL_UNSIGNED_INT,
(const void *) NULL, NUM_INSTANCES);

Performance Tips

Applications should make sure that glDrawElements and
glDrawElementsInstanced are called with as large a primitive size
as possible. This is very easy to do if we are drawing GL_TRIANGLES.
However, if we have meshes of triangle strips or fans, instead of making
individual calls to glDrawElements* for each triangle strip mesh, these
meshes could be connected together by using primitive restart (see the
earlier section discussing this feature).

If you cannot use the primitive restart mechanism to connect meshes
together (to maintain compatibility with an older OpenGL ES version),
you can add element indices that result in degenerate triangles at the
expense of using more indices and some caveats that we will discuss
here. A degenerate triangle is a triangle where two or more vertices of the
triangle are coincident. GPUs can detect and reject degenerate triangles
very easily, so this is a good performance enhancement that allows us to
queue a big primitive to be rendered by the GPU.

The number of element indices (or degenerate triangles) we need to
add to connect distinct meshes will depend on whether each mesh is a
triangle fan or a triangle strip and the number of indices defined in each
strip. The number of indices in a mesh that is a triangle strip matters,
as we need to preserve the winding order as we go from one triangle to
the next triangle of the strip across the distinct meshes that are being
connected.

When connecting separate triangle strips, we need to check the order of
the last triangle and the first triangle of the two strips being connected. As
seen in Figure 7-5, the ordering of vertices that describe even-numbered

Drawing Primitives	 173

triangles of a triangle strip differs from the ordering of vertices that
describe odd-numbered triangles of the same strip.

Two cases need to be handled:

•• The odd-numbered triangle of the first triangle strip is being
connected to the first (and therefore even-numbered) triangle of the
second triangle strip.

•• The even-numbered triangle of the first triangle strip is being
connected to the first (and therefore even-numbered) triangle of the
second triangle strip.

Figure 7-5 shows two separate triangle strips that represent these two
cases, where the strips need to be connected to allow us to draw both of
them using a single call to glDrawElements*.

v0 v2 v10

v3v1

v8

v11v9

v3

Opposite Vertex Order

v0 v4

v1

v2

v10v8

v11v9

Same Vertex Order

Figure 7-5	 Connecting Triangle Strips

For the triangle strips in Figure 7-5 with opposite vertex order for the last
and first triangles of the two strips being connected, the element indices
for each triangle strip are (0, 1, 2, 3) and (8, 9, 10, 11), respectively. The
combined element index list if we were to draw both strips using one call to
glDrawElements* would be (0, 1, 2, 3, 3, 8, 8, 9, 10, 11). This new element
index results in the following triangles drawn: (0, 1, 2), (2, 1, 3), (2, 3, 3),
(3, 3, 8), (3, 8, 8), (8, 8, 9), (8, 9, 10), (10, 9, 11). The triangles in boldface

174	 Chapter 7: Primitive Assembly and Rasterization

type are the degenerate triangles. The element indices in boldface type
represent the new indices added to the combined element index list.

For triangle strips in Figure 7-5 with the same vertex order for the last and
first triangles of the two strips being connected, the element indices for
each triangle strip are (0, 1, 2, 3, 4) and (8, 9, 10, 11), respectively. The
combined element index list if we were to draw both strips using one call
to glDrawElements would be (0, 1, 2, 3, 4, 4, 4, 8, 8, 9, 10, 11). This new
element index results in the following triangles drawn: (0, 1, 2), (2, 1, 3),
(2, 3, 4), (4, 3, 4), (4, 4, 4), (4, 4, 8), (4, 8, 8), (8, 8, 9), (8, 9, 10),
(10, 9, 11). The triangles in boldface type are the degenerate triangles. The
element indices in boldface type represent the new indices added to the
combined element index list.

Note that the number of additional element indices required and the
number of degenerate triangles generated vary depending on the number
of vertices in the first strip. This is required to preserve the winding order of
the next strip being connected.

It might also be worth investigating techniques that take the size of the
post-transform vertex cache into consideration in determining how to
arrange element indices of a primitive. Most GPUs implement a post-
transform vertex cache. Before a vertex (given by its element index) is
executed by the vertex shader, a check is performed to determine whether
the vertex already exists in the post-transform cache. If the vertex exists in
the post-transform cache, the vertex is not executed by the vertex shader.
If it is not in the cache, the vertex will need to be executed by the vertex
shader. Using the post-transform cache size to determine how element
indices are created should help overall performance, as it will reduce the
number of times a vertex that is reused gets executed by the vertex shader.

Primitive Assembly

Figure 7-6 shows the primitive assembly stage. Vertices that are supplied
through glDraw*** are executed by the vertex shader. Each vertex
transformed by the vertex shader includes the vertex position that
describes the (x, y, z, w) value of the vertex. The primitive type and vertex
indices determine the individual primitives that will be rendered. For each
individual primitive (triangle, line, and point) and its corresponding vertices,
the primitive assembly stage performs the operations shown in Figure 7-6.

Before we discuss how primitives are rasterized in OpenGL ES, we need to
understand the various coordinate systems used within OpenGL ES 3.0. This

Primitive Assembly	 175

is needed to get a good understanding of what happens to vertex coordinates
as they go through the various stages of the OpenGL ES 3.0 pipeline.

Clipping

Perspective
DivisionDivision

Viewport
Transformation

Output of
vertex shader

To rasterization
stage

Figure 7-6	 OpenGL ES Primitive Assembly Stage

Coordinate Systems

Figure 7-7 shows the coordinate systems as a vertex goes through the vertex
shader and primitive assembly stages. Vertices are input to OpenGL ES in
the object or local coordinate space. This is the coordinate space in which
an object is most likely modeled and stored. After a vertex shader executes,
the vertex position is considered to be in the clip coordinate space. The
transformation of the vertex position from the local coordinate system (i.e.,
object coordinates) to clip coordinates is done by loading the appropriate
matrices that perform this conversion in appropriate uniforms defined in

Perspective
Division

PVertex
Shader

e Viewport
Transformation

Object
Coordinates

Clip
Coordinates

Normalized
Device

Coordinates

Window
Coordinates

Figure 7-7	 Coordinate Systems

176	 Chapter 7: Primitive Assembly and Rasterization

the vertex shader. Chapter 8, “Vertex Shaders,” describes how to transform
the vertex position from object to clip coordinates and how to load
appropriate matrices in the vertex shader to perform this transformation.

Clipping

To avoid processing of primitives outside the viewable volume, primitives
are clipped to the clip space. The vertex position after the vertex shader
has been executed is in the clip coordinate space. The clip coordinate is
a homogeneous coordinate given by (xc, yc, zc, wc). The vertex coordinates
defined in clip space (xc, yc, zc, wc) get clipped against the viewing volume
(also known as the clip volume).

The clip volume, as shown in Figure 7-8, is defined by six clipping planes,
referred to as the near, and far clip planes, the left and right clip planes,
and the top and bottom clip planes. In clip coordinates, the clip volume is
given as follows:

-w
c
 <= x

c
 <= w

c

-w
c
 <= y

c
 <= w

c

-w
c
 <= z

c
 <= w

c

The preceding six checks help determine the list of planes against which
the primitive needs to be clipped.

Far
Plane

Near
Plane

x

y

z

Figure 7-8	 Viewing Volume

Primitive Assembly	 177

The clipping stage will clip each primitive to the clip volume shown in
Figure 7-8. By “primitive,” here we imply each triangle of a list of separate
triangles drawn using GL_TRIANGLES, or a triangle of a triangle strip or a
fan, or a line from a list of separate lines drawn using GL_LINES, or a line
of a line strip or line loop, or a specific point in a list of point sprites. For
each primitive type, the following operations are performed:

•• Clipping triangles—If the triangle is completely inside the viewing
volume, no clipping is performed. If the triangle is completely
outside the viewing volume, the triangle is discarded. If the triangle
lies partly inside the viewing volume, then the triangle is clipped
against the appropriate planes. The clipping operation will generate
new vertices that are clipped to the plane that are arranged as a
triangle fan.

•• Clipping lines—If the line is completely inside the viewing volume,
then no clipping is performed. If the line is completely outside the
viewing volume, the line is discarded. If the line lies partly inside the
viewing volume, then the line is clipped and appropriate new vertices
are generated.

•• Clipping point sprites—The clipping stage will discard the point
sprite if the point position lies outside the near or far clip plane or if
the quad that represents the point sprite is outside the clip volume.
Otherwise, it is passed unchanged and the point sprite will be scissored
as it moves from inside the clip volume to the outside, or vice versa.

After the primitives have been clipped against the six clipping planes,
the vertex coordinates undergo perspective division to become
normalized device coordinates. A normalized device coordinate is in the
range –1.0 to +1.0.

Note:	 The clipping operation (especially for lines and triangles) can
be quite expensive to perform in hardware. A primitive must be
clipped against six clip planes of the viewing volume, as shown
in Figure 7-8. Primitives that are partly outside the near and far
planes go through the clipping operations. However, primitives
that are partially outside the x and y planes do not necessarily
need to be clipped. By rendering into a viewport that is bigger
than the dimensions of the viewport specified with glViewport,
clipping in the x and y planes becomes a scissoring operation.
Scissoring is implemented very efficiently by GPUs. This larger
viewport region is called the guard-band region. Although OpenGL
ES does not allow an application to specify a guard-band region,
most—if not all—OpenGL ES implementations implement a
guard-band.

178	 Chapter 7: Primitive Assembly and Rasterization

Perspective Division

Perspective division takes the point given by clip coordinate (xc, yc, zc, wc)
and projects it onto the screen or viewport. This projection is performed
by dividing the (xc, yc, zc) coordinates with wc. After performing (xc /wc),
(yc  /wc), and (zc /wc), we get normalized device coordinates (xd, yd, zd).
These are called normalized device coordinates, as they will be in the
[–1.0 ... 1.0] range. These normalized (xd, yd) coordinates will then be
converted to actual screen (or window) coordinates depending on the
dimensions of the viewport. The normalized (zd) coordinate is converted
to the screen z value using the near and far depth values specified
by glDepthRangef. These conversions are performed in the viewport
transformation phase.

Viewport Transformation

A viewport is a 2D rectangular window region in which all OpenGL
ES rendering operations will ultimately be displayed. The viewport
transformation can be set by using the following API call:

void glViewport(GLint x, GLint y, GLsizei w, GLsizei h)

x, y	� specifies the window coordinates of the viewport’s lower-left
corner in pixels

w, h	� specifies the width and height of viewport in pixels; these values
must be greater than 0

The conversion from normalized device coordinates (xd, yd, zd) to window
coordinates (xw, yw, zw) is given by the following transformation:

















=
+
+

− + +

















(/2)

(/2)

(()/2) ()/2

x

y

z

w x o

h y o

f n z n f

w

w

w

d x

d y

d

In the transformation ox = x + w/2 and oy = y + h/2, n and f represent the
desired depth range.

Rasterization	 179

The values specified by glDepthRangef and glViewport are used to
transform the vertex position from normalized device coordinates into
window (screen) coordinates.

The initial (or default) viewport state is set to w = width and h = height
of the window created by the application in which OpenGL ES is to do
its rendering. This window is given by the EGLNativeWindowType win
argument specified in eglCreateWindowSurface.

Rasterization

Figure 7-9 shows the rasterization pipeline. After the vertices have
been transformed and primitives have been clipped, the rasterization
pipelines take an individual primitive such as a triangle, a line segment,
or a point sprite and generate appropriate fragments for this primitive.
Each fragment is identified by its integer location (x, y) in screen space.
A fragment represents a pixel location given by (x, y) in screen space and
additional fragment data that will be processed by the fragment shader
to produce a fragment color. These operations are described in detail in
Chapter 9, “Texturing,” and Chapter 10, “Fragment Shaders.”

void  glDepthRangef(GLclampf n, GLclampf f)

n, f  � specify the desired depth range. Default values for n and f are 0.0
and 1.0, respectively. The values are clamped to lie within (0.0, 1.0).

From
Primitive
Assembly

Line
Rasterization

Line

Point-Sprite
Rasterization

RasterizationRasterization

Triangle
Rasterization

Output for each fragment—
screen (xw, yw) coordinate,
attributes such as color,
texture coordinates, etc.

To Fragment Shader Stage

Figure 7-9	 OpenGL ES Rasterization Stage

The depth range values n and f can be set using the following API call:

180	 Chapter 7: Primitive Assembly and Rasterization

In this section, we discuss the various options that an application can use
to control rasterization of triangles, strips, and fans.

Culling

Before triangles are rasterized, we need to determine whether they are
front-facing (i.e., facing the viewer) or back-facing (i.e., facing away from
the viewer). The culling operation discards triangles that face away from
the viewer. To determine whether the triangle is front-facing or back-
facing we first need to know the orientation of the triangle.

The orientation of a triangle specifies the winding order of a path that
begins at the first vertex, goes through the second and third vertex, and
ends back at the first vertex. Figure 7-10 shows two examples of triangles
with clockwise and counterclockwise winding orders.

v2

v0

v1

v0

v1

v2

Clockwise (CW)
Orientation

Counter-Clockwise (CCW)
Orientation

Figure 7-10	 Clockwise and Counterclockwise Triangles

The orientation of a triangle is computed by calculating the signed area
of the triangle in window coordinates. We now need to translate the sign
of the computed triangle area into a clockwise (CW) or counterclockwise
(CCW) orientation. This mapping from the sign of triangle area to a CW
or CCW orientation is specified by the application using the following
API call:

void glFrontFace(GLenum dir)

dir   �specifies the orientation of front-facing triangles. Valid values
are GL_CW or GL_CCW. The default value is GL_CCW.

Rasterization	 181

We have discussed how to calculate the orientation of a triangle. To
determine whether the triangle needs to be culled, we need to know the
facing of triangles that are to be culled. This is specified by the application
using the following API call:

void glCullFace(GLenum mode)

mode     �specifies the facing of triangles that are to be culled. Valid values
are GL_FRONT, GL_BACK, and GL_FRONT_AND_BACK. The default
value is GL_BACK.

Last but not least, we need to know whether the culling operation
should be performed. The culling operation will be performed if the
GL_CULL_FACE state is enabled. The GL_CULL_FACE state can be enabled or
disabled by the application using the following API calls:

void glEnable(GLenum cap)
void glDisable(GLenum cap)

where cap is set to GL_CULL_FACE. Initially, culling is disabled.

To recap, to cull appropriate triangles, an OpenGL ES application must
first enable culling using glEnable (GL_CULL_FACE), set the appropriate
cull face using glCullFace, and set the orientation of front-facing
triangles using glFrontFace.

Note:	 Culling should always be enabled to avoid the GPU wasting time
rasterizing triangles that are not visible. Enabling culling should
improve the overall performance of the OpenGL ES application.

Polygon Offset

Consider the case where we are drawing two polygons that overlap each
other. You will most likely notice artifacts, as shown in Figure 7-11. These
artifacts, called Z-fighting artifacts, occur because of limited precision of
triangle rasterization, which can affect the precision of the depth values
generated per fragment, resulting in artifacts. The limited precision of
parameters used by triangle rasterization and generated depth values per
fragment will get better and better but will never be completely resolved.

182	 Chapter 7: Primitive Assembly and Rasterization

Figure 7-11 shows two coplanar polygons being drawn. The code to draw
these two coplanar polygons without polygon offset is as follows:

 glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // load vertex shader
 // set the appropriate transformation matrices
 // set the vertex attribute state

 // draw the SMALLER quad
 glDrawArrays (GL_TRIANGLE_FAN, 0, 4);

 // set the depth func to <= as polygons are coplanar
 glDepthFunc (GL_LEQUAL);

 // set the vertex attribute state

 // draw the LARGER quad
 glDrawArrays (GL_TRIANGLE_FAN, 0, 4);

To avoid the artifacts shown in Figure 7-11, we need to add a delta to the
computed depth value before the depth test is performed and before the
depth value is written to the depth buffer. If the depth test passes, the
original depth value—and not the original depth value + delta—will be
stored in the depth buffer.

The polygon offset is set using the following API call:

Figure 7-11	 Polygon Offset

void glPolygonOffset(GLfloat factor, GLfloat units)

The depth offset is computed as follows:

depth offset = m * factor + r * units

Occlusion Queries	 183

In this equation, m is maximum depth slope of the triangle and is
calculated as

+()m = ∂z/∂x ∂z/∂y2 2

m can also be calculated as max {|∂z/∂x|, |∂z/∂y|}.

The slope terms ∂z/∂x and ∂z/∂y are calculated by the OpenGL ES
implementation during the triangle rasterization stage.

r is an implementation-defined constant and represents the smallest value
that can produce a guaranteed difference in depth value.

Polygon offset can be enabled or disabled using
glEnable(GL_POLYGON_OFFSET_FILL) and
glDisable(GL_POLYGON_OFFSET_FILL), respectively.

With polygon offset enabled, the code for triangles rendered by
Figure 7-11 is as follows:

 const float polygonOffsetFactor = –l.Of;
 const float polygonOffsetUnits = –2.Of;

 glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // load vertex shader
 // set the appropriate transformation matrices
 // set the vertex attribute state

 // draw the SMALLER quad
 glDrawArrays (GL_TRIANGLE_FAN, 0, 4);

 // set the depth func to <= as polygons are coplanar
 glDepthFunc (GL_LEQUAL);

 glEnable (GL_POLYGON_OFFSET_FILL);
 glPolygonOffset (polygonOffsetFactor, polygonOffsetUnits);

 // set the vertex attribute state

 // draw the LARGER quad
 glDrawArrays (GL_TRIANGLE_FAN, 0, 4);

Occlusion Queries

Occlusion queries use query objects to track any fragments or samples
that pass the depth test. This approach can be used for a variety of
techniques, such as visibility determination for a lens flare effect as well

184	 Chapter 7: Primitive Assembly and Rasterization

as optimization to avoid performing geometry processing on obscured
objects whose bounding volume is obscured.

Occlusion queries can be started and ended using glBeginQuery and
glEndQuery, respectively, with GL_ANY_SAMPLES_PASSED or
GL_ANY_SAMPLES_PASSED_CONSERVATIVE target.

void glBeginQuery(GLenum target, GLuint id)
void glEndQuery(GLenum target)

target � specifies the target type of query object; valid values are
GL_ANY_SAMPLES_PASSED
GL_ANY_SAMPLES_PASSED_CONSERVATIVE
GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN

id       specifies the name of the query object (glBeginQuery only)

Using the GL_ANY_SAMPLES_PASSED target will return the
precise boolean state indicating whether any samples passed the
depth test. The GL_ANY_SAMPLES_PASSED_CONSERVATIVE target
can offer better performance but a less precise answer. Using
GL_ANY_SAMPLES_PASSED_CONSERVATIVE, some implementations may
return GL_TRUE even if no sample passed the depth test.

The id is created using glGenQueries and deleted using
glDeleteQueries.

void glGenQueries(GLsizei n, GLuint *ids)

n    specifies the number of query name objects to be generated
ids      specifies an array to store the list of query name objects

void glDeleteQueries(GLsizei n, const GLuint *ids)

n    specifies the number of query name objects to be deleted

ids      specifies an array of the list of query name objects to be deleted

After you have specified the boundary of the query object using
glBeginQuery and glEndQuery, you can use glGetQueryObjectuiv to
retrieve the result of the query object.

Summary	 185

Note:	 For better performance, you should wait several frames before
performing a glGetQueryObjectuiv call to wait for the result to be
available in the GPU.

The following example shows how to set up an occlusion query object
and query the result:

 glBeginQuery (GL_ANY_SAMPLES_PASSED, queryObject);
 // draw primitives here
 …
 glEndQuery (GL_ANY_SAMPLES_PASSED);

 …
 // after several frames have elapsed, query the number of
 // �samples that passed the depth test
 glGetQueryObjectuiv(�queryObject, GL_QUERY_RESULT,

&numSamples);

Summary

In this chapter, you learned the types of primitives supported by OpenGL
ES, and saw how to draw them efficiently using regular non-instanced and
instanced draw calls. We also discussed how coordinate transformations
are performed on vertices. In addition, you learned about the rasterization
stage, in which primitives are converted into fragments representing
pixels that may be drawn on the screen. Now that you have learned how
to draw primitives using vertex data, in the next chapter we describe how
to write a vertex shader to process the vertices in a primitive.

void glGetQueryObjectuiv(�GLuint id, GLenum pname,
GLuint *params)

target specifies the name of a query object
pname specifies the query object parameter to be retrieved,

and can be GL_QUERY_RESULT or GL_QUERY_RESULT_
AVAILABLE

params specifies an array of the appropriate type for storing the
returned parameter values

This page intentionally left blank

187

Chapter 8

Vertex Shaders

This chapter describes the OpenGL ES 3.0 programmable vertex pipeline.
Figure 8-1 illustrates the entire OpenGL ES 3.0 programmable pipeline.
The shaded boxes indicate the programmable stages in OpenGL ES 3.0.
In this chapter, we discuss the vertex shader stage. Vertex shaders can
be used to do traditional vertex-based operations such as transforming the
position by a matrix, computing the lighting equation to generate a
per-vertex color, and generating or transforming texture coordinates.

The previous chapters—specifically, Chapter 5, “OpenGL ES Shading
Language,” and Chapter 6, “Vertex Attributes, Vertex Arrays, and Buffer
Objects”—discussed how to specify the vertex attribute and uniform
inputs and also gave a good description of the OpenGL ES 3.0 Shading
Language. Chapter 7, “Primitive Assembly and Rasterization,” discussed
how the output of the vertex shader, referred to as vertex shader output
variables, is used by the rasterization stage to generate per-fragment
values, which are then input to the fragment shader. In this chapter,
we begin with a high-level overview of a vertex shader, including its
inputs and outputs. We then describe how to write vertex shaders by
discussing a few examples. These examples describe common use cases
such as transforming a vertex position with a model view and projection
matrix, vertex lighting that generates per-vertex diffuse and specular
colors, texture coordinate generation, vertex skinning, and displacement
mapping. We hope that these examples help you get a good idea of how
to write vertex shaders. Last but not least, we describe a vertex shader that
implements the OpenGL ES 1.1 fixed-function vertex pipeline.

188	 Chapter 8: Vertex Shaders

Vertex Shader Overview

The vertex shader provides a general-purpose programmable method for
operating on vertices. Figure 8-2 shows the inputs and outputs of a vertex
shader. The inputs to the vertex shader consist of the following:

•• Attributes—Per-vertex data supplied using vertex arrays.

•• Uniforms and uniform buffers—Constant data used by the vertex
shader.

•• Samplers—A specific type of uniform that represents textures used by
the vertex shader.

•• Shader program—Vertex shader program source code or executable
that describes the operations that will be performed on the vertex.

The outputs of the vertex shader are called vertex shader output
variables. In the primitive rasterization stage, these variables are
computed for each generated fragment and are passed in as inputs to the
fragment shader.

Vertex Buffer/
Array ObjectsArray Objects

Vertex
ShaderShader

Textures

Fragment
Shader

Primitive
Assembly
Primitive

Transform
Feedback

Rasterization

Per-Fragment
Operations

Framebuffer

API

Figure 8-1	 OpenGL ES 3.0 Programmable Pipeline

Vertex Shader Overview	 189

Vertex Shader Built-In Variables

The built-in variables of a vertex shader can be categorized into special
variables that are input or output of the vertex shader, uniform state
such as depth range, and constants that specify maximum values such as
the number of attributes, number of vertex shader output variables, and
number of uniforms.

Built-In Special Variables

OpenGL ES 3.0 has built-in special variables that serve as inputs to the
vertex shader, or outputs by the vertex shader that then become inputs
to the fragment shader, or outputs by the fragment shader. The following
built-in special variables are available to the vertex shader:

•• gl_VertexID is an input variable that holds an integer index for the
vertex. This integer variable is declared using the highp precision qualifier.

•• gl_InstanceID is an input variable that holds the instance number of
a primitive in an instanced draw call. Its value is 0 for a regular draw
call. gl_InstanceID is an integer variable declared using the highp
precision qualifier.

... ...

Output (Varying) 0

Output (Varying) 1

Output (Varying) 2

Output (Varying) 3

Output (Varying) 4

Uniforms Samplers

Vertex Shader

Input (Attribute) 0

Input (Attribute) 1

Input (Attribute) 2

Input (Attribute) 3

Input (Attribute) 4

Input (Attribute) N Output (Varying) N

gl_PointSize

gl_Position

Figure 8-2	 OpenGL ES 3.0 Vertex Shader

190	 Chapter 8: Vertex Shaders

•• gl_Position is used to output the vertex position in clip coordinates.
Its values are used by the clipping and viewport stages to perform
appropriate clipping of primitives and to convert the vertex position
from clip coordinates to screen coordinates. The value of gl_Position
is undefined if the vertex shader does not write to gl_Position.
gl_Position is a floating-point variable declared using the highp
precision qualifier.

•• gl_PointSize is used to write the size of the point sprite in pixels.
It is used when point sprites are rendered. The gl_PointSize
value output by a vertex shader is then clamped to the aliased
point size range supported by the OpenGL ES 3.0 implementation.
gl_PointSize is a floating-point variable declared using the highp
precision qualifier.

•• gl_FrontFacing is a special variable that, although not directly
written by the vertex shader, is generated based on the position values
generated by the vertex shader and primitive type being rendered.
gl_FrontFacing is a boolean variable.

Built-In Uniform State

The only built-in uniform state available inside a vertex shader is the
depth range in window coordinates. This is given by the built-in uniform
name gl_DepthRange, which is declared as a uniform of type
gl_DepthRangeParameters.

struct gl_DepthRangeParameters
{
 highp float near; // near Z
 highp float far; // far Z
 highp float diff; // far – near
}

uniform gl_DepthRangeParameters gl_DepthRange;

Built-In Constants

The following built-in constants are also available inside the vertex
shader:

const mediump int gl_MaxVertexAttribs = 16;
const mediump int gl_MaxVertexUniformVectors = 256;
const mediump int gl_MaxVertexOutputVectors = 16;
const mediump int gl_MaxVertexTextureImageUnits = 16;
const mediump int gl_MaxCombinedTextureImageUnits = 32;

Vertex Shader Overview	 191

The built-in constants describe the following maximum terms:

•• gl_MaxVertexAttribs is the maximum number of vertex attributes
that can be specified. The minimum value supported by all ES 3.0
implementations is 16.

•• gl_MaxVertexUniformVectors is the maximum number of
vec4 uniform entries that can be used inside a vertex shader.
The minimum value supported by all ES 3.0 implementations is
256 vec4 entries. The number of vec4 uniform entries that can
actually be used by a developer can vary from one implementation
to another and from one vertex shader to another. For example,
some implementations might count user-specified literal values
used in a vertex shader against the uniform limit. In other cases,
implementation-specific uniforms (or constants) might need to be
included depending on whether the vertex shader makes use of any
built-in transcendental functions. There currently is no mechanism
that an application can use to find the number of uniform entries
that it can use in a particular vertex shader. The vertex shader
compilation will fail and the compile log might provide specific
information with regard to number of uniform entries being
used. However, the information returned by the compile log is
implementation specific. We provide some guidelines in this chapter
to help maximize the use of vertex uniform entries available in a
vertex shader.

•• gl_MaxVertexOutputVectors is the maximum number of output
vectors—that is, the number of vec4 entries that can be output
by a vertex shader. The minimum value supported by all ES 3.0
implementations is 16 vec4 entries.

•• gl_MaxVertexTextureImageUnits is the maximum number of
texture units available in a vertex shader. The minimum value is 16.

•• gl_MaxCombinedTextureImageUnits is the sum of the maximum
number of texture units available in the vertex + fragment shaders.
The minimum value is 32.

The values specified for each built-in constant are the minimum values
that must be supported by all OpenGL ES 3.0 implementations. It is
possible that implementations might support values greater than the
minimum values described. The actual supported values can be queried
using the following code:

GLint maxVertexAttribs, maxVertexUniforms, maxVaryings;
GLint maxVertexTextureUnits, maxCombinedTextureUnits;

192	 Chapter 8: Vertex Shaders

glGetIntegerv (GL_MAX_VERTEX_ATTRIBS, &maxVertexAttribs);
glGetIntegerv (GL_MAX_VERTEX_UNIFORM_VECTORS,

&maxVertexUniforms);
glGetIntegerv (GL_MAX_VARYING_VECTORS,

&maxVaryings);
glGetIntegerv (GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS,

&maxVertexTextureUnits);
glGetIntegerv (GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS,

&maxCombinedTextureUnits);

Precision Qualifiers

This section briefly reviews precision qualifiers, which are covered in
depth in Chapter 5, “OpenGL ES Shading Language.” Precision qualifiers
can be used to specify the precision of any floating-point or integer-based
variable. The keywords for specifying the precision are lowp, mediump,
and highp. Some examples of declarations with precision qualifiers are
shown here:

highp vec4 position;
out lowp vec4 color;
mediump float specularExp;
highp int oneConstant;

In addition to precision qualifiers, default precision may be employed.
That is, if a variable is declared without having a precision qualifier, it will
have the default precision for that type. The default precision qualifier
is specified at the top of a vertex or fragment shader using the following
syntax:

precision highp float;
precision mediump int;

The precision specified for float will be used as the default precision
for all variables based on a floating-point value. Likewise, the precision
specified for int will be used as the default precision for all integer-based
variables. In the vertex shader, if no default precision is specified, the
default precision for both int and float is highp.

For operations typically performed in a vertex shader, the precision
qualifier that will most likely be needed is highp. For instance, operations
that transform a position with a matrix, transform normals and texture
coordinates, or generate texture coordinates will need to be done with
highp precision. Color computations and lighting equations can most
likely be done with mediump precision. Again, this decision will depend

Vertex Shader Overview	 193

on the kind of color computations being performed and the range and
precision required for the operations being performed. We believe that
highp will most likely be the default precision used for most operations in
a vertex shader; thus we use highp as the default precision qualifier in the
examples that follow.

Number of Uniforms Limitations in a Vertex Shader

gl_MaxVertexUniformVectors describes the maximum number of
uniforms that can be used in a vertex shader. The minimum value for
gl_MaxVertexUniformVectors that must be supported by any compliant
OpenGL ES 3.0 implementation is 256 vec4 entries. The uniform storage
is used to store the following variables:

•• Variables declared with the uniform qualifier

•• Constant variables

•• Literal values

•• Implementation-specific constants

The number of uniform variables used in a vertex shader along with the
variables declared with the const qualifier, literal values, and implementation-
specific constants must fit in gl_MaxVertexUniformVectors as per the
packing rules described in Chapter 5, “OpenGL ES Shading Language.” If
these do not fit, then the vertex shader will fail to compile. A developer might
potentially apply the packing rules and determine the amount of uniform
storage needed to store uniform variables, constant variables, and literal
values. It is not possible to determine the number of implementation-specific
constants, however, as this value will not only vary from implementation to
implementation but will also change depending on which built-in shading
language functions are being used by the vertex shader. Typically, the
implementation-specific constants are required when built-in transcendental
functions are used.

As far as literal values are concerned, the OpenGL ES 3.0 Shading
Language specification states that no constant propagation is assumed.
As a consequence, multiple instances of the same literal value(s) will
be counted multiple times. Understandably, it is easier to use literal
values such as 0.0 or 1.0 in a vertex shader, but our recommendation
is that this technique be avoided as much as possible. Instead of
using literal values, appropriate constant variables should be declared.
This approach avoids having to perform the same literal value count

194	 Chapter 8: Vertex Shaders

multiple times, which might cause the vertex shader to fail to compile
if vertex uniform storage requirements exceed what the implementation
supports.

Consider the following example, which shows a snippet of vertex shader
code that transforms two texture coordinates per vertex:

#version 300 es
#define NUM_TEXTURES 2

uniform mat4 tex_matrix[NUM_TEXTURES]; // texture
// matrices

uniform bool enable_tex[NUM_TEXTURES]; // texture
// enables

uniform bool enable_tex_matrix[NUM_TEXTURES]; // texture matrix
// enables

in vec4 a_texcoord0; // available if enable_tex[0] is true
in vec4 a_texcoordl; // available if enable_tex[1] is true

out vec4 v_texcoord[NUM_TEXTURES];

void main()
{
 v_texcoord[0] = vec4 (0.0, 0.0, 0.0, 1.0);
 // is texture 0 enabled
 if (enable_tex[0])
 {

// is texture matrix 0 enabled
if (enable_tex_matrix[0])

v_texcoord[0] = tex_matrix[0] * a_texcoord0;
else

v_texcoord[0] = a_texcoord0;
 }

 v_texcoord[1] = vec4 (0.0, 0.0, 0.0, 1.0);
 // is texture 1 enabled
 if (enable_tex[1])
 {

// is texture matrix 1 enabled
if (enable_tex_matrix[1])

v_texcoord[1] = tex_matrix[1] * a_texcoordl;
else

v_texcoord[1] = a_texcoordl;
 }

 // set gl_Position to make this into a valid vertex shader
}

Vertex Shader Overview	 195

This code might result in each reference to the literal values 0, 1, 0.0, and
1.0 counting against the uniform storage. To guarantee that these literal
values count only once against the uniform storage, the vertex shader
code snippet should be written as follows:

#version 300 es
#define NUM_TEXTURES 2

const int c_zero = 0;
const int c_one = 1;

uniform mat4 tex_matrix[NUM_TEXTURES]; // texture
// matrices

uniform bool enable_tex[NUM_TEXTURES]; // texture
// enables

uniform bool enable_tex_matrix[NUM_TEXTURES]; // texture matrix
// enables

in vec4 a_texcoord0; // available if enable_tex[0] is true
in vec4 a_texcoordl; // available if enable_tex[1] is true

out vec4 v_texcoord[NUM_TEXTURES];

void main()
{
 v_texcoord[c_zero] = vec4 (float(c_zero), float(c_zero),

float(c_zero), float(c_one));
 // is texture 0 enabled
 if (enable_tex[c_zero])
 {

// is texture matrix 0 enabled
if (enable_tex_matrix[c_zero])

v_texcoord[c_zero] = tex_matrix[c_zero] * a_texcoord0;
else

v_texcoord[c_zero] = a_texcoord0;
 }

 v_texcoord[c_one] = vec4(float(c_zero), float(c_zero),
float(c_zero), float(c_one));

 // is texture 1 enabled
 if (enable_tex[c_one])
 {

// is texture matrix 1 enabled
if (enable_tex_matrix[c_one])

v_texcoord[c_one] = tex_matrix[c_one] * a_texcoordl;
else

v_texcoord[c_one] = a_texcoordl;
 }
 // set gl_Position to make this into a valid vertex shader
}

196	 Chapter 8: Vertex Shaders

This section should help you better understand the limitations of the
OpenGL ES 3.0 Shading Language and appreciate how to write vertex shaders
that should compile and run on most OpenGL ES 3.0 implementations.

Vertex Shader Examples

We now present a few examples that demonstrate how to implement the
following features in a vertex shader:

•• Transforming vertex position with a matrix

•• Lighting computations to generate per-vertex diffuse and specular color

•• Texture coordinate generation

•• Vertex skinning

•• Displacing vertex position with a texture lookup value

These features represent typical use cases that OpenGL ES 3.0 applications
will want to perform in a vertex shader.

Matrix Transformations

Example 8-1 describes a simple vertex shader written using the OpenGL
ES Shading Language. The vertex shader takes a position and its associated

Example 8-1	 Vertex Shader with Matrix Transform for the Position

#version 300 es

// uniforms used by the vertex shader
uniform mat4 u_mvpMatrix; // matrix to convert position from

// model space to clip space

// attribute inputs to the vertex shader
layout(location = 0) in vec4 a_position; // �input position value
layout(location = 1) in vec4 a_color; // input color

// vertex shader output, input to the fragment shader
out vec4 v_color;

void main()
{
 v_color = a_color;
 gl_Position = u_mvpMatrix * a_position;
}

Vertex Shader Examples	 197

color data as inputs or attributes, transforms the position by a 4 × 4
matrix, and outputs the transformed position and color.

The transformed vertex positions and primitive type are then used by the
setup and rasterization stages to rasterize the primitive into fragments. For
each fragment, the interpolated v_color will be computed and passed as
input to the fragment shader.

Example 8-1 introduces the concept of the model–view–projection (MVP)
matrix in the uniform u_mvpMatrix. As described in the Coordinate Systems
section in Chapter 7, the positions input to the vertex shader are stored in
object coordinates and the output position of the vertex shader is stored
in clip coordinates. The MVP matrix is the product of three very important
transformation matrices in 3D graphics that perform this transformation:
the model matrix, the view matrix, and the projection matrix.

The transformations performed by each of the individual matrices that
make up the MVP matrix are as follows:

•• Model matrix—Transform object coordinates to world coordinates.

•• View matrix—Transform world coordinates to eye coordinates.

•• Projection matrix—Transform eye coordinates to clip coordinates.

Model–View Matrix

In traditional fixed-function OpenGL, the model and view matrices are
combined into a single matrix known as the model–view matrix. This
4 × 4 matrix transforms the vertex position from object coordinates
into eye coordinates. It is the combination of the transformation from
object to world coordinates and the transformation from world to eye
coordinates. In fixed-function OpenGL, the model–view matrix can
be created using functions such as glRotatef, glTranslatef, and
glScalef. Because these functions do not exist in OpenGL ES 2.0 or 3.0,
it is up to the application to handle creation of the model–view matrix.

To simply this process, we have included in the sample code framework
esTransform.c, which contains functions that perform equivalently to
the fixed-function OpenGL routines for building a model–view matrix.
These transformation functions (esRotate, esTranslate, esScale,
esMatrixLoadIdentity, and esMatrixMultiply) are detailed in
Appendix C. In Example 8-1, the model–view matrix is computed as follows:

ESMatrix modelview;

// Generate a model-view matrix to rotate/translate the cube
esMatrixLoadIdentity (&modelview);

198	 Chapter 8: Vertex Shaders

// Translate away from the viewer
esTranslate (&modelview, 0.0, 0.0, -2.0);

// Rotate the cube
esRotate (&modelview, userData->angle, 1.0, 0.0, 1.0);

First, the identity matrix is loaded into the modelview matrix using
esMatrixLoadIdentity. Then the identity matrix is concatenated with a
translation that moves the object away from the viewer. Finally, a rotation
is concatenated to the modelview matrix that rotates the object around
the vector (1.0, 0.0, 1.0) with an angle in degrees that is updated based on
time to rotate the object continuously.

Projection Matrix

The projection matrix takes the eye coordinates (computed from
applying the model–view matrix) and produces clip coordinates
as described in the Clipping section in Chapter 7. In fixed-function
OpenGL, this transformation was specified using glFrustum or
the OpenGL utility function gluPerspective. In the OpenGL ES
Framework API, we have provided two equivalent functions: esFrustum
and esPerspective. These functions specify the clip volume detailed
in Chapter 7. The esFrustum function describes the clip volume by
specifying the coordinates of the clip volume. The esPerspective
function is a convenience function that computes the parameters to
esFrustum using a field-of-view and aspect ratio description of the
viewing volume. The projection matrix is computed for Example 8-1 as
follows:

ESMatrix projection;

// Compute the window aspect ratio
aspect = (GLfloat) esContext->width /

(GLfloat) esContext->height;

// Generate a perspective matrix with a 60-degree FOV
// and near and far clip planes at 1.0 and 20.0
esMatrixLoadIdentity (&projection);
esPerspective (&projection, 60.0f, aspect, 1.0f, 20.0f);

Finally, the MVP matrix is computed as the product of the model–view
and projection matrices:

// Compute the final MVP by multiplying the
// model-view and projection matrices together
esMatrixMultiply (&userData->mvpMatrix, &modelview,

&projection);

Vertex Shader Examples	 199

The MVP matrix is loaded into the uniform for the shader using
glUniformMatrix4fv.

// Get the uniform locations
userData->mvpLoc =
     glGetUniformLocation (userData->programObject,

 "u_mvpMatrix");

…

// Load the MVP matrix
glUniformMatrix4fv(userData->mvpLoc, 1, GL_FALSE,

 (GLfloat*) &userData->mvpMatrix.m[0][0]);

Lighting in a Vertex Shader

In this section, we look at examples that compute the lighting equation
for directional lights, point lights, and spotlights. The vertex shaders
described in this section use the OpenGL ES 1.1 lighting equation model
to compute the lighting equation for a directional or a spot (or point)
light. In the lighting examples described here, the viewer is assumed to be
at infinity.

A directional light is a light source that is at an infinite distance from
the objects in the scene being lit. An example of a directional light is
the sun. As the light is at infinite distance, the light rays from the light
source are parallel. The light direction vector is a constant and does not
need to be computed per vertex. Figure 8-3 describes the terms that are
needed in computing the lighting equation for a directional light. Peye is

Peye

Plight

N

01

H

02

01 = 02

V

Figure 8-3	� Geometric Factors in Computing Lighting Equation for a
Directional Light

200	 Chapter 8: Vertex Shaders

the position of the viewer, Plight is the position of the light (Plight . w = 0), N
is the normal, and H is the half-plane vector. Because Plight . w = 0, the light
direction vector will be Plight . xyz. The half-plane vector H is computed
as ||VPlight + VPeye||. As both the light source and viewer are at infinity, the
half-plane vector H = ||Plight . xyz + (0, 0, l)||.

Example 8-2 provides the vertex shader code that computes the lighting
equation for a directional light. The directional light properties are
described by a directional_light struct that contains the following
elements:

•• direction—The normalized light direction in eye space.

•• halfplane—The normalized half-plane vector H. This can be
precomputed for a directional light, as it does not change.

•• ambient_color—The ambient color of the light.

•• diffuse_color—The diffuse color of the light.

•• specular_color—The specular color of the light.

The material properties needed to compute the vertex diffuse and specular
color are described by a material_properties struct that contains the
following elements:

•• ambient_color—The ambient color of the material.

•• diffuse_color—The diffuse color of the material.

•• specular_color—The specular color of the material.

•• specular_exponent—The specular exponent that describes the
shininess of the material and is used to control the shininess of the
specular highlight.

Example 8-2	 Directional Light

#version 300 es

struct directional_light
{
 vec3 direction; // normalized light direction in eye

// space
 vec3 halfplane; // normalized half-plane vector
 vec4 ambient_color;
 vec4 diffuse_color;
 vec4 specular_color;
};

Vertex Shader Examples	 201

The directional light vertex shader code described in Example 8-2
combines the per-vertex diffuse and specular color into a single color
(given by computed_color). Another option would be to compute the
per-vertex diffuse and specular colors and pass them as separate output
variables to the fragment shader.

Example 8-2	 Directional Light (continued)

struct material_properties
{
 vec4 ambient_color;
 vec4 diffuse_color;
 vec4 specular_color;
 float specular_exponent;
};

const float c_zero = 0.0;
const float c_one = 1.0;

uniform material_properties material;
uniform directional_light light;

// normal has been transformed into eye space and is a
// normalized vector; this function returns the computed color
vec4 directional_light_color (vec3 normal)
{
 vec4 computed_color = vec4 (c_zero, c_zero, c_zero,

c_zero);
 float ndotl; // dot product of normal & light direction
 float ndoth; // dot product of normal & half-plane vector

 ndotl = max (c_zero, dot (normal, light.direction));
 ndoth = max (c_zero, dot (normal, light.halfplane));

 computed_color += (light.ambient_color
* material.ambient_color);

 computed_color += (ndotl * light.diffuse_color
* material.diffuse_color);

 if (ndoth > c_zero)
 {

computed_color += (pow (ndoth,
material.specular_exponent)*
material.specular_color *
light.specular_color);

 }

 return computed_color;
}

// add a main function to make this into a valid vertex shader

202	 Chapter 8: Vertex Shaders

Note:	 In Example 8-2, we multiply the material colors (ambient, diffuse,
and specular) with the light colors. This is fine if we are computing
the lighting equation for only one light. If we have to compute the
lighting equation for multiple lights, however, we should compute
the ambient, diffuse, and specular values for each light and then
compute the final vertex color by multiplying the material ambient,
diffuse, and specular colors with appropriate computed terms and
then summing them to generate a per-vertex color.

A point light is a light source that emanates light in all directions from a
position in space. A point light is given by a position vector (x, y, z, w),
where w ≠ 0. The point light shines evenly in all directions but its intensity
falls off (i.e., becomes attenuated) based on the distance from the light to
the object. This attenuation is computed using the following equation:

distance attenuation K K VP K VPlight light= + × + ×1/ (|| || || ||)0 1 2
2

where K0, K1, and K2 are the constant, linear, and quadratic attenuation
factors, respectively.

A spotlight is a light source with both a position and a direction that
simulates a cone of light emitted from a position (Plight) in a direction
(given by spotdirection). Figure 8-4 describes the terms that are needed in
computing the lighting equation for a spotlight.

Peye

Plight

N

01

H

02

01 = 02

V

spot direction

spot cutoff angle

Figure 8-4	 Geometric Factors in Computing Lighting Equation for a Spotlight

The intensity of the emitted light is attenuated by a spot cutoff factor
based on the angle from the center of the cone. The angle away from
the center axis of the cone is computed as the dot product of VPlight and

Vertex Shader Examples	 203

spotdirection. The spot cutoff factor is 1.0 in the spotlight direction given by
spotdirection and falls off exponentially to 0.0 at spotcutoff angle radians away.

Example 8-3 describes the vertex shader code that computes the lighting
equation for a spot (and point) light. The spotlight properties are
described by a spot_light struct that contains the following elements:

•• direction—The light direction in eye space.

•• ambient_color—The ambient color of the light.

•• diffuse_color—The diffuse color of the light.

•• specular_color—The specular color of the light.

•• attenuation_factors—The distance attenuation factors K0, K1, and K2.

•• compute_distance_attenuation—A boolean term that determines
whether the distance attenuation must be computed.

•• spot_direction—The normalized spot direction vector.

•• spot_exponent—The spotlight exponent used to compute the spot
cutoff factor.

•• spot_cutoff_angle—The spotlight cutoff angle in degrees.

Example 8-3	 Spotlight

#version 300 es

struct spot_light

{
 vec4 position; // light position in eye space
 vec4 ambient_color;
 vec4 diffuse_color;
 vec4 specular_color;
 vec3 spot_direction; // normalized spot direction
 vec3 attenuation_factors; // attenuation factors K

0
, K

1
, K

2

 bool compute_distance_attenuation;
 float spot_exponent; // spotlight exponent term
 float spot_cutoff_angle; // spot cutoff angle in degrees
};
struct material_properties
{
 vec4 ambient_color;
 vec4 diffuse_color;

(continues)

204	 Chapter 8: Vertex Shaders

Example 8-3	 Spotlight (continued)

 vec4 specular_color;
 float specular_exponent;
};

const float c_zero = 0.0;
const float c_one = 1.0;

uniform material_properties material;
uniform spot_light light;

// normal and position are normal and position values in
// eye space.
// normal is a normalized vector.
// This function returns the computed color.

vec4 spot_light_color (vec3 normal, vec4 position)
{
 vec4 computed_color = vec4 (c_zero, c_zero, c_zero,

c_zero);
 vec3 lightdir;
 vec3 halfplane;
 float ndotl, ndoth;
 float att_factor;

 att_factor = c_one;

 // we assume "w" values for light position and
 // vertex position are the same
 lightdir = light.position.xyz - position.xyz;

 // compute distance attenuation
 if (light.compute_distance_attenuation)
 {

vec3 att_dist;
att_dist.x = c_one;
att_dist.z = dot (lightdir, lightdir);
att_dist.y = sqrt (att_dist.z);
att_factor = c_one / dot (att_dist,

light.attenuation_factors);
 }

 // normalize the light direction vector
 lightdir = normalize (lightdir);

 // compute spot cutoff factor
 if (light.spot_cutoff_angle < 180.0)
 {

float spot_factor = dot (-lightdir,
light.spot_direction);

Generating Texture Coordinates	 205

Example 8-3	 Spotlight (continued)

if (spot_factor >= cos (radians (
light.spot_cutoff_angle)))

spot_factor = pow (spot_factor, light.spot_exponent);
else

spot_factor = c_zero;

// compute combined distance and spot attenuation factor
att_factor *= spot_factor;

 }

 if (att_factor > c_zero)
 {

// process lighting equation --> compute the light color
computed_color += (light.ambient_color *

material.ambient_color);
ndotl = max (c_zero, dot(normal, lightdir));
computed_color += (ndotl * light.diffuse_color *

material.diffuse_color);
halfplane = normalize (lightdir + vec3 (c_zero, c_zero,

c_one));
ndoth = dot (normal, halfplane);
if (ndoth > c_zero)
{

computed_color += (pow (ndoth,
material.specular_exponent)*
material.specular_color *
light.specular_color);

}

// multiply color with computed attenuation
computed_color *= att_factor;

 }

 return computed_color;
}
// add a main function to make this into a valid vertex shader

Generating Texture Coordinates

We look at two examples that generate texture coordinates in a vertex
shader. The two examples are used when rendering shiny (i.e., reflective)
objects in a scene by generating a reflection vector and then using this
vector to compute a texture coordinate that indexes into a latitude–
longitude map (also called a sphere map) or a cubemap (represents six

206	 Chapter 8: Vertex Shaders

views or faces that capture reflected environment, assuming a single
viewpoint in the middle of the shiny object). The fixed-function OpenGL
specification describes the texture coordinate generation modes as
GL_SPHERE_MAP and GL_REFLECTION_MAP, respectively. The GL_SPHERE_MAP
mode generates a texture coordinate that uses a reflection vector to
compute a 2D texture coordinate for lookup into a 2D texture map.
The GL_REFLECTION_MAP mode generates a texture coordinate that is a
reflection vector, which can then can be used as a 3D texture coordinate
for lookup into a cubemap. Examples 8-4 and 8-5 show the vertex shader
code that generates the texture coordinates that will be used by the
appropriate fragment shader to calculate the reflected image on the shiny
object.

Example 8-5	 Cubemap Texture Coordinate Generation

// position is the normalized position coordinate in eye space.
// normal is the normalized normal coordinate in eye space.
// This function returns the reflection vector as a vec3 texture
// coordinate.
vec3 cube_map (vec3 position, vec3 normal)
{
 return reflect (position, normal);
}

Example 8-4	 Sphere Map Texture Coordinate Generation

// position is the normalized position coordinate in eye space.
// normal is the normalized normal coordinate in eye space.
// This function returns a vec2 texture coordinate.
vec2 sphere_map (vec3 position, vec3 normal)
{
 reflection = reflect (position, normal);
 m = 2.0 * sqrt (reflection.x * reflection.x +

reflection.y * reflection.y +
(reflection.z + 1.0) * (reflection.z + 1.0));

 return vec2((reflection.x / m + 0.5),
(reflection.y / m + 0.5));

}

The reflection vector will then be used inside a fragment shader as the
texture coordinate to the appropriate cubemap.

Vertex Skinning	 207

Vertex Skinning

Vertex skinning is a commonly used technique whereby the joins
between polygons are smoothed. This is implemented by applying
additional transform matrices with appropriate weights to each vertex.
The multiple matrices used to skin vertices are stored in a matrix palette.
The matrices’ indices per vertex are used to refer to appropriate matrices
in the matrix palette that will be used to skin the vertex. Vertex skinning
is commonly used for character models in 3D games to ensure that they
appear smooth and realistic (as much as possible) without having to use
additional geometry. The number of matrices used to skin a vertex is
typically two to four.

The mathematics of vertex skinning is given by the following equations:

P w M P

N w M N

w i n

i i

i i
T

i

′

′

= ∑ × ×

= ∑ × ×
∑ = =

−1

1 1, to
where

n is the number of matrices that will be used to transform the vertex

P is the vertex position

P' is the transformed (skinned) position

N is the vertex normal

N' is the transformed (skinned) normal

Mi is the matrix associated with the ith matrix per vertex and is
computed as

Mi = matrix_palette [matrix_index[i]]
with n matrix_index values specified per vertex

Mi
–1T is the inverse transpose of matrix Mi

Wi is the weight associated with the matrix

We discuss how to implement vertex skinning with a matrix palette of
32 matrices and up to four matrices per vertex to generate a skinned
vertex. A matrix palette size of 32 matrices is quite common. The
matrices in the matrix palette typically are 4 × 3 column major matrices
(i.e., four vec3 entries per matrix). If the matrices were to be stored
in column-major order, 128 uniform entries with 3 elements of each
uniform entry would be necessary to store a row. The minimum value of

208	 Chapter 8: Vertex Shaders

gl_MaxVertexUniformVectors that is supported by all OpenGL ES 3.0
implementations is 256 vec4 entries. Thus we will have only the fourth
row of these 256 vec4 uniform entries available. This row of floating-
point values can store only uniforms declared to be of type float (as
per the uniform packing rule). There is no room, therefore, to store a
vec2, vec3, or vec4 uniform. It would be better to store the matrices in
the palette in row-major order using three vec4 entries per matrix. If
we did this, then we would use 96 vec4 entries of uniform storage and
the remaining 160 vec4 entries could be used to store other uniforms.
Note that we do not have enough uniform storage to store the inverse
transpose matrices needed to compute the skinned normal. This is
typically not a problem, however: In most cases, the matrices used
are orthonormal and, therefore, can be used to transform the vertex
position and the normal.

Example 8-6 shows the vertex shader code that computes the skinned
normal and position. We assume that the matrix palette contains
32 matrices, and that these matrices are stored in row-major order. The
matrices are also assumed to be orthonormal (i.e., the same matrix can be
used to transform position and normal) and up to four matrices are used
to transform each vertex.

Example 8-6	 �Vertex Skinning Shader with No Check of Whether
Matrix Weight = 0

#version 300 es

#define NUM_MATRICES 32 // 32 matrices in matrix palette

const int c_zero = 0;
const int c_one = 1;
const int c_two = 2;
const int c_three = 3;

// store 32 4 x 3 matrices as an array of floats representing
// each matrix in row-major order (i.e., 3 vec4s)
uniform vec4 matrix_palette[NUM_MATRICES * 3];

// vertex position and normal attributes
in vec4 a_position;
in vec3 a_normal;

// matrix weights - 4 entries / vertex
in vec4 a_matrixweights;
// matrix palette indices
in vec4 a_matrixindices;

Vertex Skinning	 209

Example 8-6	 �Vertex Skinning Shader with No Check of Whether
Matrix Weight = 0 (continued)

void skin_position (in vec4 position, float m_wt, int m_indx,
out vec4 skinned_position)

{
 vec4 tmp;
 tmp.x = dot (position, matrix_palette[m_indx]);
 tmp.y = dot (position, matrix_palette[m_indx + c_one]);
 tmp.z = dot (position, matrix_palette[m_indx + c_two]);
 tmp.w = position.w;

 skinned_position += m_wt * tmp;
}

void skin_normal (in vec3 normal, float m_wt, int m_indx,
inout vec3 skinned_normal)

{
 vec3 tmp;

 tmp.x = dot (normal, matrix_palette[m_indx].xyz);
 tmp.y = dot (normal, matrix_palette[m_indx + c_one].xyz);
 tmp.z = dot (normal, matrix_palette[m_indx + c_two].xyz);

 skinned_normal += m_wt * tmp;
}

void do_skinning (in vec4 position, in vec3 normal,
out vec4 skinned_position,
out vec3 skinned_normal)

{
 skinned_position = vec4 (float (c_zero));
 skinned_normal = vec3 (float (c_zero));

 // transform position and normal to eye space using matrix
 // palette with four matrices used to transform a vertex

 float m_wt = a_matrixweights[0];
 int m_indx = int (a_matrixindices[0]) * c_three;
 skin_position (position, m_wt, m_indx, skinned_position);
 skin_normal (normal, m_wt, m_indx, skinned_normal);

 m_wt = a_matrixweights[1] ;
 m_indx = int (a_matrixindices[1]) * c_three;
 skin_position (position, m_wt, m_indx, skinned_position);
 skin_normal (normal, m_wt, m_indx, skinned_normal);

 m_wt = a_matrixweights[2];
 m_indx = int (a_matrixindices[2]) * c_three;
 skin_position (position, m_wt, m_indx, skinned_position);
 skin_normal (normal, m_wt, m_indx, skinned_normal);

(continues)

210	 Chapter 8: Vertex Shaders

In Example 8-6, the vertex skinning shader generates a skinned vertex by
transforming a vertex with four matrices and appropriate matrix weights.
It is possible and quite common that some of these matrix weights
may be zero. In Example 8-6, the vertex is transformed using all four
matrices, irrespective of their weights. It might be better, however, to use a
conditional expression to check whether the matrix weight is zero before
calling skin_position and skin_normal. In Example 8-7, the vertex
skinning shader checks for a matrix weight of zero before applying the
matrix transformation.

Example 8-7	 �Vertex Skinning Shader with Checks of Whether
Matrix Weight = 0

void do_skinning (in vec4 position, in vec3 normal,
out vec4 skinned_position,
out vec3 skinned_normal)

{
 skinned_position = vec4 (float (c_zero));
 skinned_normal = vec3 (float(c_zero));

 // transform position and normal to eye space using matrix
 // palette with four matrices used to transform a vertex

 int m_indx = 0;
 float m_wt = a_matrixweights[0];
 if (m_wt > 0.0)
 {

m_indx = int (a_matrixindices[0]) * c_three;
skin_position(position, m_wt, m_indx, skinned_position);
skin_normal (normal, m_wt, m_indx, skinned_normal);

 }

 m_wt = a_matrixweights[1] ;
 if (m_wt > 0.0)

Example 8-6	 �Vertex Skinning Shader with No Check of Whether
Matrix Weight = 0 (continued)

 m_wt = a_matrixweights[3];
 m_indx = int (a_matrixindices[3]) * c_three;
 skin_position (position, m_wt, m_indx, skinned_position);
 skin_normal (normal, m_wt, m_indx, skinned_normal);
}

// add a main function to make this into a valid vertex shader

Transform Feedback	 211

At first glance, we might conclude that the vertex skinning shader in
Example 8-7 offers better performance than the vertex skinning shader
in Example 8-6. This is not necessarily true; indeed, the answer can vary
across GPUs. Such variations occur because in the conditional expression
if (m_wt > 0.0), m_wt is a dynamic value and can be different for
vertices being executed in parallel by the GPU. We now run into divergent
flow control where vertices being executed in parallel may have different
values for m_wt, which in turn can cause execution to serialize. If a GPU
does not implement divergent flow control efficiently, the vertex shader
in Example 8-7 might not be as efficient as the version in Example 8-6.
Applications should, therefore, test performance of divergent flow
control by executing a test shader on the GPU as part of the application
initialization phase to determine which shaders to use.

Transform Feedback

The transform feedback mode allows for capturing the outputs of the
vertex shader into buffer objects. The output buffers then can be used
as sources of the vertex data in a subsequent draw call. This approach is

Example 8-7	 �Vertex Skinning Shader with Checks of Whether
Matrix Weight = 0 (continued)

 {
m_indx = int (a_matrixindices[1]) * c_three;
skin_position(position, m_wt, m_indx, skinned_position);
skin_normal (normal, m_wt, m_indx, skinned_normal);

 }

 m_wt = a_matrixweights[2] ;
 if (m_wt > 0.0)
 {

m_indx = int (a_matrixindices[2]) * c_three;
skin_position(position, m_wt, m_indx, skinned_position);
skin_normal (normal, m_wt, m_indx, skinned_normal);

 }
 m_wt = a_matrixweights[3];
 if (m_wt > 0.0)
 {

m_indx = int (a_matrixindices[3]) * c_three;
skin_position(position, m_wt, m_indx, skinned_position);
skin_normal (normal, m_wt, m_indx, skinned_normal);

 }
}

212	 Chapter 8: Vertex Shaders

After calling glTransformFeedbackVaryings, it is necessary to link the
program object using glLinkProgram. For example, to specify two vertex
attributes to be captured into one transform feedback buffer, the code will
be as follows:

const char* varyings[] = { "v_position", "v_color" };
glTransformFeedbackVarying (programObject, 2, varyings,

GL_INTERLEAVED_ATTRIBS);
glLinkProgram (programObject);

Then, we need to bind one or more buffer objects as the transform
feedback buffers using glBindBuffer with GL_TRANSFORM_FEED
BACK_BUFFER. The buffer is allocated using glBufferData with
GL_TRANSFORM_FEEDBACK_BUFFER and bound to the indexed binding
points using glBindBufferBase or glBindBufferRange. These buffer
APIs are described in more details in Chapter 6, “Vertex Attributes, Vertex
Arrays, and Buffer Objects.”

void	 glTransformFeedbackVaryings(GLuint program,
GLsizei count,
const char** varyings,
GLenum bufferMode)

program specifies the handle to the program object.
count specifies the number of vertex output variables used for

transform feedback.
varyings specifies an array of count zero-terminated strings

specifying the names of the vertex output variables to
use for transform feedback.

bufferMode specifies the mode used to capture the vertex output
variables when transform feedback is active.
Valid values are GL_INTERLEAVED_ATTRIBS, to capture
the vertex output variables into a single buffer, and
GL_SEPARATE_ATTRIBS, to capture each vertex output
variable into its own buffer.

useful for a wide range of techniques that perform animation on the GPU
without any CPU intervention, such as particle animation or physics
simulation using render-to-vertex-buffer.

To specify the set of vertex attributes to be captured during the transform
feedback mode, use the following command:

Transform Feedback	 213

After the transform feedback buffers are bound, we can enter and exit the
transform feedback mode using the following API calls:

Table 8-1	 Transform Feedback Primitive Mode and Allowed Draw Mode

Primitive Mode Allowed Draw Mode

GL_POINTS GL_POINTS

GL_LINES GL_LINES, GL_LINE_LOOP,
GL_LINE_STRIP

GL_TRIANGLES GL_TRIANGLES, GL_TRIANGLE_STRIP,
GL_TRIANGLE_FAN

All draw calls that occur between glBeginTransformFeedback and
glEndTransformFeedback will have their vertex outputs captured into
the transform feedback buffers. Table 8-1 indicates the allowed draw mode
corresponding to the transform feedback primitive mode.

void	 glBeginTransformFeedback(GLenum primitiveMode)
void	 glEndTransformFeedback()

primitiveMode specifies the output type of the primitives that
will be captured into the buffer objects that
are bound for transform feedback. Transform
feedback is limited to non-indexed GL_POINTS,
GL_LINES, and GL_TRIANGLES.

We can retrieve the number of primitives that were successfully
written into the transform buffer objects using glGetQueryObjectuiv
after setting up glBeginQuery and glEndQuery with GL_TRANSFORM_
FEEDBACK_PRIMITIVES_WRITTEN. For example, to begin and end the
transform feedback mode for rendering a set of points and querying the
number of points written, the code will be as follows:

glBeginTransformFeedback (GL_POINTS);
 glBeginQuery (GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN,

queryObject);
glDrawArrays (GL_POINTS, 0, 10);

 glEndQuery (GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN);
glEndTransformFeedback ();

// query the number of primitives written
glGetQueryObjectuiv(queryObject, GL_QUERY_RESULT,

&numPoints);

214	 Chapter 8: Vertex Shaders

We can disable and enable rasterization while capturing in transform
feedback mode using glEnable and glDisable with
GL_RASTERIZER_DISCARD. While GL_RASTERIZER_DISCARD is enabled,
no fragment shader will run.

Note that we describe a full example of using transform feedback in
the Particle System Using Transform Feedback example in Chapter 14,
“Advanced Programming with OpenGL ES 3.0.”

Vertex Textures

OpenGL ES 3.0 supports texture lookup operations in a vertex shader. This
is useful to implement techniques such as displacement mapping, where
you can displace the vertex position along the vertex normal based on
the texture lookup value in the vertex shader. A typical application of the
displacement mapping technique is for rendering terrain or water surfaces.

Performing texture lookup in a vertex shader has some notable
limitations:

•• The level of detail is not implicitly computed.

•• The bias parameter in the texture lookup function is not accepted.

•• The base texture is used for mipmapped texture.

The maximum number of texture image units supported by an
implementation can be queried using glGetIntegerv with
GL_MAX_VERTEX_TEXTURE_UNITS. The minimum number that an
OpenGL ES 3.0 implementation can support is 16.

Example 8-8 is a sample vertex shader that performs displacement
mapping. The process of loading textures on various texture units is
described in more detail in Chapter 9, “Texturing.”

Example 8-8	 Displacement Mapping Vertex Shader

#version 300 es

// uniforms used by the vertex shader
uniform mat4 u_mvpMatrix; // matrix to convert P from

// model space to clip space

uniform sampler2D displacementMap;

// attribute inputs to the vertex shader
layout(location = 0) in vec4 a_position; // input position value

OpenGL ES 1.1 Vertex Pipeline as an ES 3.0 Vertex Shader	 215

We hope that the examples discussed so far have provided a good
understanding of vertex shaders, including how to write them and how to
use them for a wide-ranging array of effects.

OpenGL ES 1.1 Vertex Pipeline as an ES 3.0
Vertex Shader

We now discuss a vertex shader that implements the OpenGL ES 1.1 fixed-
function vertex pipeline without vertex skinning. This is also meant to be
an interesting exercise in figuring out how big a vertex shader can be and
still run across all OpenGL ES 3.0 implementations.

This vertex shader implements the following fixed functions of the
OpenGL ES 1.1 vertex pipeline:

•• Transform the normal and position to eye space, if required (typically
required for lighting). Rescale or normalization of normal is also
performed.

•• Compute the OpenGL ES 1.1 vertex lighting equation for up to eight
directional lights, point lights, or spotlights with two-sided lighting
and color material per vertex.

•• Transform the texture coordinates for up to two texture coordinates
per vertex.

Example 8-8	 Displacement Mapping Vertex Shader (continued)

layout(location = 1) in vec3 a_normal; // input normal value
layout(location = 2) in vec2 a_texcoord; // input texcoord value
layout(location = 3) in vec4 a_color; // input color

// vertex shader output, input to the fragment shader
out vec4 v_color;

void main ()
{
 v_color = a_color;
 float displacement = texture (displacementMap,

a_texcoord).a;

 vec4 displaced_position = a_position +
vec4 (a_normal * displacement, 0.0);

 gl_Position = u_mvpMatrix * displaced_position;
}

216	 Chapter 8: Vertex Shaders

•• Compute the fog factor passed to the fragment shader. The fragment
shader uses the fog factor to interpolate between fog color and vertex
color.

•• Compute the per-vertex user clip plane factor. Only one user clip
plane is supported.

•• Transform the position to clip space.

Example 8-9 is the vertex shader that implements the OpenGL ES 1.1
fixed-function vertex pipeline as already described.

Example 8-9	 OpenGL ES 1.1 Fixed-Function Vertex Pipeline

#version 300 es

//**
//
// OpenGL ES 3.0 vertex shader that implements the following
// OpenGL ES 1.1 fixed-function pipeline
//
// - compute lighting equation for up to eight
// directional/point/spotlights
// - transform position to clip coordinates
// - texture coordinate transforms for up to two texture
// coordinates
// - compute fog factor
// - compute user clip plane dot product (stored as
// v_ucp_factor)
//
//**
#define NUM_TEXTURES 2
#define GLI_FOG_MODE_LINEAR 0
#define GLI_FOG_MODE_EXP 1
#define GLI_FOG_MODE_EXP2 2

struct light
{
 vec4 position; // light position for a point/spotlight or

// normalized dir. for a directional light
 vec4 ambient_color;
 vec4 diffuse_color;
 vec4 specular_color;
 vec3 spot_direction;
 vec3 attenuation_factors;
 float spot_exponent;
 float spot_cutoff_angle;
 bool compute_distance_attenuation;
};

OpenGL ES 1.1 Vertex Pipeline as an ES 3.0 Vertex Shader	 217

Example 8-9	 OpenGL ES 1.1 Fixed-Function Vertex Pipeline (continued)

struct material
{
 vec4 ambient_color;
 vec4 diffuse_color;
 vec4 specular_color;
 vec4 emissive_color;
 float specular_exponent;
};

const float c_zero = 0.0;
const float c_one = 1.0;
const int indx_zero = 0;
const int indx_one = 1;

uniform mat4 mvp_matrix; // combined model-view +
// projection matrix

uniform mat4 modelview_matrix; // model-view matrix
uniform mat3 inv_transpose_modelview_matrix; // inverse

// model-view matrix used
// to transform normal

uniform mat4 tex_matrix[NUM_TEXTURES]; // texture matrices
uniform bool enable_tex[NUM_TEXTURES]; // texture enables
uniform bool enable_tex_matrix[NUM_TEXTURES]; // texture

// matrix enables

uniform material material_state;
uniform vec4 ambient_scene_color;
uniform light light_state[8];
uniform bool light_enable_state[8]; // booleans to indicate

// which of eight
// lights are enabled

uniform int num_lights; // number of lights
// enabled = sum of
// light_enable_state bools
// set to TRUE

uniform bool enable_lighting; // is lighting enabled
uniform bool light_model_two_sided; // is two-sided

// lighting enabled
uniform bool enable_color_material; // is color material

// enabled
uniform bool enable_fog; // is fog enabled
uniform float fog_density;
uniform float fog_start, fog_end;
uniform int fog_mode; // fog mode: linear, exp, or exp2

(continues)

218	 Chapter 8: Vertex Shaders

Example 8-9	 OpenGL ES 1.1 Fixed-Function Vertex Pipeline (continued)

uniform bool xform_eye_p; // xform_eye_p is set if we need
// Peye for user clip plane,
// lighting, or fog

uniform bool rescale_normal; // is rescale normal enabled
uniform bool normalize_normal; // is normalize normal

// enabled
uniform float rescale_normal_factor; // rescale normal

// factor if
// glEnable(GL_RESCALE_NORMAL)

uniform vec4 ucp_eqn; // user clip plane equation;
// one user clip plane specified

uniform bool enable_ucp; // is user clip plane enabled

//**
// vertex attributes: not all of them may be passed in
//**
in vec4 a_position; // this attribute is always specified
in vec4 a_texcoord0; // available if enable_tex[0] is true
in vec4 a_texcoordl; // available if enable_tex[1] is true
in vec4 a_color; // available if !enable_lighting or

     // (enable_lighting && enable_color_material)
in vec3 a_normal; // available if xform_normal is set

// (required for lighting)

//**
// output variables of the vertex shader
//**
out vec4 v_texcoord[NUM_TEXTURES];
out vec4 v_front_color;
out vec4 v_back_color;
out float v_fog_factor;
out float v_ucp_factor;

//**
// temporary variables used by the vertex shader
//**
vec4 p_eye;
vec3 n;
vec4 mat_ambient_color;
vec4 mat_diffuse_color;

OpenGL ES 1.1 Vertex Pipeline as an ES 3.0 Vertex Shader	 219

Example 8-9	 OpenGL ES 1.1 Fixed-Function Vertex Pipeline (continued)

vec4 lighting_equation (int i)
{
 vec4 computed_color = vec4(c_zero, c_zero, c_zero,

c_zero);
 vec3 h_vec;
 float ndotl, ndoth;
 float att_factor;
 vec3 VPpli;

 att_factor = c_one;
 if (light_state[i].position.w != c_zero)
 {

float spot_factor;
vec3 att_dist;

// this is a point or spotlight
// we assume "w" values for PPli and V are the same
VPpli = light_state[i].position.xyz - p_eye.xyz;
if (light_state[i].compute_distance_attenuation)
{

// compute distance attenuation
att_dist.x = c_one;
att_dist.z = dot (VPpli, VPpli);
att_dist.y = sqrt (att_dist.z) ;
att_factor = c_one / dot (att_dist,

light_state[i] .attenuation_factors);
}
VPpli = normalize (VPpli);

if (light_state[i].spot_cutoff_angle < 180.0)
{

// compute spot factor
spot_factor = dot (-VPpli,

light_state[i].spot_direction);
if(spot_factor >= cos (radians (

light_state[i].spot_cutoff_angle)))
spot_factor = pow (spot_factor,

light_state[i].spot_exponent);
else

spot_factor = c_zero;

att_factor *= spot_factor;
}

 }

(continues)

220	 Chapter 8: Vertex Shaders

Example 8-9	 OpenGL ES 1.1 Fixed-Function Vertex Pipeline (continued)

 else
 {

// directional light
VPpli = light_state[i].position.xyz;

 }

 if(att_factor > c_zero)
 {

// process lighting equation --> compute the light color
computed_color += (light_state[i].ambient_color *

mat_ambient_color);
ndotl = max(c_zero, dot(n, VPpli));
computed_color += (ndotl * light_state[i].diffuse_color *

mat_diffuse_color);
h_vec = normalize(VPpli + vec3(c_zero, c_zero, c_one));
ndoth = dot (n, h_vec);
if (ndoth > c_zero)
{

computed_color += (pow (ndoth,
material_state.specular_exponent) *
material_state.specular_color *
light_state[i].specular_color);

}
computed_color *= att_factor; // multiply color with

// computed attenuation
// factor
// * computed spot factor

 }
 return computed_color;
}

float compute_fog()
{
 float f;

 // use eye Z as approximation
 if (fog_mode == GLI_FOG_MODE_LINEAR)
 {

f = (fog_end - p_eye.z) / (fog_end - fog_start);
 }
 else if (fog_mode == GLI_FOG_MODE_EXP)
 {

f = exp(- (p_eye.z * fog_density));
 }

OpenGL ES 1.1 Vertex Pipeline as an ES 3.0 Vertex Shader	 221

Example 8-9	 OpenGL ES 1.1 Fixed-Function Vertex Pipeline (continued)

 else
 {

f = (p_eye.z * fog_density);
f = exp(-(f * f));

 }

 f = clamp (f, c_zero, c_one) ;
 return f;
}

vec4 do_lighting()
{
 vec4 vtx_color;
 int i, j ;

 vtx_color = material_state.emissive_color +
(mat_ambient_color * ambient_scene_color);

 j = int(c_zero);
 for (i=int(c_zero); i<8; i++)
 {

if (j >= num_lights)
break;

if (light_enable_state[i])
{

j++;
vtx_color += lighting_equation(i);

}
 }

 vtx_color.a = mat_diffuse_color.a;

 return vtx_color;
}

void main(void)
{
 int i, j;

 // do we need to transform P
 if (xform_eye_p)

p_eye = modelview_matrix * a_position;

 if (enable_lighting)
 {

n = inv_transpose_modelview_matrix * a_normal;
if (rescale_normal)

n = rescale_normal_factor * n;

(continues)

222	 Chapter 8: Vertex Shaders

Example 8-9	 OpenGL ES 1.1 Fixed-Function Vertex Pipeline (continued)

if (normalize_normal)
n = normalize(n);

mat_ambient_color = enable_color_material ? a_color
: material_state.ambient_color;

mat_diffuse_color = enable_color_material ? a_color
: material_state.diffuse_color;

v_front_color = do_lighting();
v_back_color = v_front_color;

// do two-sided lighting
if (light_model_two_sided)
{

n = -n;
v_back_color = do_lighting();

}
 }
 else
 {

// set the default output color to be the per-vertex /
// per-primitive color
v_front_color = a_color;
v_back_color = a_color;

 }

 // do texture transforms
 v_texcoord[indx_zero] = vec4(c_zero, c_zero, c_zero,

c_one);
 if (enable_tex[indx_zero])
 {

if (enable_tex_matrix[indx_zero])
v_texcoord[indx_zero] = tex_matrix[indx_zero] *

a_texcoord0;
else

v_texcoord[indx_zero] = a_texcoord0;
 }

 v_texcoord[indx_one] = vec4(c_zero, c_zero, c_zero, c_one);
 if (enable_tex[indx_one])
 {

if (enable_tex_matrix[indx_one])
v_texcoord[indx_one] = tex_matrix[indx_one] *

a_texcoordl;
else

v_texcoord[indx_one] = a_texcoordl;
 }

Summary	 223

Example 8-9	 OpenGL ES 1.1 Fixed-Function Vertex Pipeline (continued)

 v_ucp_factor = enable_ucp ? dot (p_eye, ucp_eqn) : c_zero;
 v_fog_factor = enable_fog ? compute_fog() : c_one;

 gl_Position = mvp_matrix * a_position;
}

Summary

In this chapter, we provided a high-level overview of how vertex shaders
fit into the pipeline and how to perform transformation, lighting,
skinning, and displacement mapping in a vertex shader through
some vertex shader examples. In addition, you learned how to use the
transform feedback mode to capture the vertex outputs into buffer objects
and how to implement the fixed-function pipeline using vertex shaders.
Next, before we will discuss fragment shaders, we will cover the texturing
functionality in OpenGL ES 3.0.

This page intentionally left blank

225

Chapter 9

Texturing

Now that we have covered vertex shaders in detail, you should be familiar
with all of the gritty details of transforming vertices and preparing
primitives for rendering. The next step in the pipeline is the fragment
shader, where much of the visual magic of OpenGL ES 3.0 occurs.
A central aspect of fragment shaders is the application of textures to
surfaces. This chapter covers all the details of creating, loading, and
applying textures:

•• Texturing basics

•• Loading textures and mipmapping

•• Texture filtering and wrapping

•• Texture level-of-detail, swizzles, and depth comparison

•• Texture formats

•• Using textures in the fragment shader

•• Texture subimage specification

•• Copying texture data from the framebuffer

•• Compressed textures

•• Sampler objects

•• Immutable textures

•• Pixel unpack buffer objects

226	 Chapter 9: Texturing

Texturing Basics

One of the most fundamental operations used in rendering 3D graphics
is the application of textures to a surface. Textures allow for the
representation of additional detail not available just from the geometry of
a mesh. Textures in OpenGL ES 3.0 come in several forms: 2D textures, 2D
texture arrays, 3D textures, and cubemap textures.

Textures are typically applied to a surface by using texture coordinates,
which can be thought of as indices into texture array data. The following
sections introduce the different texture types in OpenGL ES and explain
how they are loaded and accessed.

2D Textures

A 2D texture is the most basic and common form of texture in OpenGL
ES. A 2D texture is—as you might guess—a two-dimensional array of
image data. The individual data elements of a texture are known as texels
(short for “texture pixels”). Texture image data in OpenGL ES can be
represented in many different basic formats. The basic formats available
for texture data are shown in Table 9-1.

Each texel in the image is specified according to both its basic format
and its data type. Later, we describe in more detail the various data types
that can represent a texel. For now, the important point to understand
is that a 2D texture is a two-dimensional array of image data. When
rendering with a 2D texture, a texture coordinate is used as an index into
the texture image. Generally, a mesh will be authored in a 3D content
authoring program, with each vertex having a texture coordinate.
Texture coordinates for 2D textures are given by a 2D pair of coordinates
(s, t), sometimes also called (u, v) coordinates. These coordinates
represent normalized coordinates used to look up a texture map, as
shown in Figure 9-1.

The lower-left corner of the texture image is specified by the st-coordinates
(0.0, 0.0). The upper-right corner of the texture image is specified by
the st-coordinates (1.0, 1.0). Coordinates outside of the range [0.0, 1.0]
are allowed, and the behavior of texture fetches outside of that range is
defined by the texture wrapping mode (described in the section on texture
filtering and wrapping).

Texturing Basics	 227

Table 9-1	 Texture Base Formats

Base Format Texel Data Description

GL_RED (Red)

GL_RG (Red, Green)

GL_RGB (Red, Green, Blue)

GL_RGBA (Red, Green, Blue, Alpha)

GL_LUMINANCE (Luminance)

GL_LUMINANCE_ALPHA (Luminance, Alpha)

GL_ALPHA (Alpha)

GL_DEPTH_COMPONENT (Depth)

GL_DEPTH_STENCIL (Depth, Stencil)

GL_RED_INTEGER (iRed)

GL_RG_INTEGER (iRed, iGreen)

GL_RGB_INTEGER (iRed, iGreen, iBlue)

GL_RGBA_INTEGER (iRed, iGreen, iBlue, iAlpha)

(0.0, 1.0)

(0.0, 0.0)

(1.0, 1.0)

(1.0, 0.0)

Texture

+s

+t

Figure 9-1	 2D Texture Coordinates

228	 Chapter 9: Texturing

Cubemap Textures

In addition to 2D textures, OpenGL ES 3.0 supports cubemap textures.
At its most basic, a cubemap is a texture made up of six individual 2D
texture faces. Each face of the cubemap represents one of the six sides
of a cube. Although cubemaps have a variety of advanced uses in 3D
rendering, the most common use is for an effect known as environment
mapping. For this effect, the reflection of the environment onto the object
is rendered by using a cubemap to represent the environment. Typically,
a cubemap is generated for environment mapping by placing a camera
in the center of the scene and capturing an image of the scene from each
of the six axis directions (+X, –X, +Y, –Y, +Z, –Z) and storing the result in
each cube face.

Texels are fetched out of a cubemap by using a 3D vector (s, t, r) as the
texture coordinate to look up into the cubemap. The texture coordinates
(s, t, r) represent the (x, y, z) components of the 3D vector. The 3D vector
is used to first select a face of the cubemap to fetch from, and then the
coordinate is projected into a 2D (s, t) coordinate to fetch from the
cubemap face. The actual math for computing the 2D (s, t) coordinate
is outside our scope here, but suffice it to say that a 3D vector is used to
look up into a cubemap. You can visualize the way this process works by
picturing a 3D vector coming from the origin inside of a cube. The point
at which that vector intersects the cube is the texel that would be fetched
from the cubemap. This concept is illustrated in Figure 9-2, where a 3D
vector intersects the cube face.

Figure 9-2	 3D Texture Coordinate for Cubemap

Texturing Basics	 229

3D Texture

+s

+r

+t

Figure 9-3	 3D Texture

The faces of a cubemap are each specified in the same manner as one
would specify a 2D texture. Each of the faces must be square (e.g., the
width and height must be equal), and each must have the same width
and height. The 3D vector that is used for the texture coordinate is not
normally stored directly on a per-vertex basis on the mesh as it is for
2D texturing. Instead, cubemaps are usually fetched from by using the
normal vector as a basis for computing the cubemap texture coordinate.
Typically, the normal vector is used along with a vector from the eye to
compute a reflection vector that is then used to look up into a cubemap.
This computation is described in the environment mapping example in
Chapter 14, “Advanced Programming with OpenGL ES 3.0.”

3D Textures

Another type of texture in OpenGL ES 3.0 is the 3D texture (or volume
texture). 3D textures can be thought of as an array of multiple slices of
2D textures. A 3D texture is accessed with a three-tuple (s, t, r) coordinate,
much like a cubemap. For 3D textures, the r-coordinate selects which slice
of the 3D texture to sample from and the (s, t) coordinate is used to fetch
into the 2D map at each slice. Figure 9-3 shows a 3D texture where each
slice is made up of an individual 2D texture. Each mipmap level in a 3D
texture contains half the number of slices in the texture above it (more on
this later).

230	 Chapter 9: Texturing

2D Texture Arrays

The final type of texture in OpenGL ES 3.0 is a 2D texture array.
The 2D texture array is very similar to a 3D texture, but is used for a
different purpose. For example, 2D texture arrays are often used to
store an animation of a 2D image. Each slice of the array represents
one frame of the texture animation. The difference between 2D texture
arrays and 3D textures is subtle but important. For a 3D texture,
filtering occurs between slices, whereas fetching from a 2D texture array
will sample from only an individual slice. As such, mipmapping is
also different. Each mipmap level in a 2D texture array contains the
same number of slices as the level above it. Each 2D slice is entirely
mipmapped independently from any other slices (unlike the case with
a 3D texture, for which each mipmap level has half as many slices as
above it).

To address a 2D texture array, three texture coordinates (s, t, r) are used
just like with a 3D texture. The r-coordinate selects which slice in the 2D
texture array to use and the (s, t) coordinates are used on the selected slice
in exactly the same way as a 2D texture.

Texture Objects and Loading Textures

The first step in the application of textures is to create a texture object.
A texture object is a container object that holds the texture data needed
for rendering, such as image data, filtering modes, and wrap modes. In
OpenGL ES, a texture object is represented by an unsigned integer that
is a handle to the texture object. The function that is used for generating
texture objects is glGenTextures.

void   glGenTextures(GLsizei n, GLuint *textures)

n

textures

specifies the number of texture objects to generate

an array of unsigned integers that will hold n texture
object IDs

At the point of creation, the texture objects(s) generated by
glGenTextures are an empty container that will be used for loading
texture data and parameters. Texture objects also need to be deleted when
an application no longer needs them. This step is typically done either at
application shutdown or, for example, when changing levels in a game.
It can be accomplished by using glDeleteTextures.

Texturing Basics	 231

Once texture object IDs have been generated with glGenTextures, the
application must bind the texture object to operate on it. Once texture
objects are bound, subsequent operations such as glTexImage2D and
glTexParameter affect the bound texture object. The function used to
bind texture objects is glBindTexture.

void   glDeleteTextures(GLsizei n, GLuint *textures)

n

textures

specifies the number of texture objects to delete

an array of unsigned integers that hold n texture object IDs
to delete

void   glBindTexture(GLenum target, GLuint texture)

target bind the texture object to target GL_TEXTURE_2D,
GL_TEXTURE_3D, GL_TEXTURE_2D_ARRAY, or
GL_TEXTURE_CUBE_MAP

texture the handle to the texture object to bind

void   glTexImage2D(�GLenum target, GLint level,
GLenum internalFormat, GLsizei width,
GLsizei height, GLint border,
GLenum format, GLenum type,
const void* pixels)

target specifies the texture target, either GL_TEXTURE_2D or
one of the cubemap face targets
(GL_TEXTURE_CUBE_MAP_POSITIVE_X,
 GL_TEXTURE_CUBE_MAP_NEGATIVE_X, and so on).

Once a texture is bound to a particular texture target, that texture object
will remain bound to its target until it is deleted. After generating a
texture object and binding it, the next step in using a texture is to actually
load the image data. The basic function that is used for loading 2D and
cubemap textures is glTexImage2D. In addition, several alternative
methods may be used to specify 2D textures in OpenGL ES 3.0, including
using immutable textures (glTexStorage2D) in conjunction with
glTexSubImage2D. We start first with the most basic method—using
glTexImage2D—and describe immutable textures later in the chapter. For
best performance, we recommend using immutable textures.

(continues)

232	 Chapter 9: Texturing

(continued)
level specifies which mip level to load. The first level is

specified by 0, followed by an increasing level for each
successive mipmap.

internalFormat the internal format for the texture storage; can be
either an unsized base internal format or a sized
internal format. The full list of valid internalFormat,
format, and type combinations is provided in
Tables 9-4 through 9-10.
The unsized internal formats can be
GL_RGBA, GL_RGB, GL_LUMINANCE_ALPHA
GL_LUMINANCE, GL_ALPHA

The sized internal formats can be
GL_R8, GL_R8_SNORM, GL_R16F, GL_R32F
GL_R8UI, GL_R16UI, GL_R32UI, GL_R32I
GL_RG8, GL_RG8_SNORM, GL_RG16F, GL_RG32F
GL_RG8UI, GL_RG8I, GL_RG16UI, GL_RG32UI
GL_RG32I, GL_RGB8, GL_SRGB8, GL_RGB565
GL_RGB8_SNORM, GL_R11F_G11F_B10F
GL_RGB9_E5, GL_RGB16F, GL_RGB32F
GL_RGB8UI, GL_RGB16UI, GL_RGB16I, GL_RGB32UI
GL_RGB32I, GL_RGBA8, GL_SRGB8_ALPHA8
GL_RGBA8_SNORM, GL_RGB5_A1, GL_RGBA4
GL_RGB10_A2, GL_RGBA16F, GL_RGBA32F
GL_RGBA8UI, GL_RGBA8I, GL_RGB10_A2UI
GL_RGBA16UI, GL_RGBA16I, GL_RGBA32I
GL_RGBA32UI, GL_DEPTH_COMPONENT16
GL_DEPTH_COMPONENT24, GL_DEPTH_COMPONENT32F
GL_DEPTH24_STENCIL8, GL_DEPTH24F_STENCIL8

width the width of the image in pixels.

height the height of the image in pixels.
border this parameter is ignored in OpenGL ES, but was kept

for compatibility with the desktop OpenGL interface;
should be 0.

format the format of the incoming texture data; can be
GL_RED
GL_RED_INTEGER
GL_RG

Texturing Basics	 233

Example 9-1, from the Simple_Texture2D example, demonstrates
generating a texture object, binding it, and then loading a 2 × 2 2D
texture with RGB image data made from unsigned bytes.

GL_RG_INTEGER
GL_RGB
GL_RGB_INTEGER
GL_RGBA
GL_RGBA_INTEGER
GL_DEPTH_COMPONENT
GL_DEPTH_STENCIL
GL_LUMINANCE_ALPHA
GL_ALPHA

type the type of the incoming pixel data; can be
GL_UNSIGNED_BYTE
GL_BYTE
GL_UNSIGNED_SHORT
GL_SHORT
GL_UNSIGNED_INT
GL_INT
GL_HALF_FLOAT
GL_FLOAT
GL_UNSIGNED_SHORT_5_6_5
GL_UNSIGNED_SHORT_4_4_4_4
GL_UNSIGNED_SHORT_5_5_5_1
GL_UNSIGNED_INT_2_10_10_10_REV
GL_UNSIGNED_INT_10F_11F_11F_REV
GL_UNSIGNED_INT_5_9_9_9_REV
GL_UNSIGNED_INT_24_8
GL_FLOAT_32_UNSIGNED_INT_24_8_REV
GL_UNSIGNED_SHORT_5_6_5

pixels contains the actual pixel data for the image. The
data must contain (width*height) number of
pixels with the appropriate number of bytes per
pixel based on the format and type specification.
The pixel rows must be aligned to the
GL_UNPACK_ALIGNMENT set with
glPixelStorei (defined next).

234	 Chapter 9: Texturing

In the first part of the code, the pixels array is initialized with simple 2 × 2
texture data. The data is composed of unsigned byte RGB triplets that are in
the range [0, 255]. When data is fetched from an 8-bit unsigned byte texture
component in the shader, the values are mapped from the range [0, 255] to
the floating-point range [0.0, 1.0]. Typically, an application would not create
texture data in this simple manner, but rather would load the data from an
image file. This example is provided to demonstrate the use of the API.

Prior to calling glTexImage2D, the application makes a call to
glPixelStorei to set the unpack alignment. When texture data is
uploaded via glTexImage2D, the rows of pixels are assumed to be aligned
to the value set for GL_UNPACK_ALIGNMENT. By default, this value is 4,
meaning that rows of pixels are assumed to begin on 4-byte boundaries.

Example 9-1	 Generating a Texture Object, Binding It, and Loading Image Data

// Texture object handle
GLuint textureId;

// 2 x 2 Image, 3 bytes per pixel (R, G, B)
GLubyte pixels[4 * 3] =

{
 255, 0, 0, // Red
 0, 255, 0, // Green
 0, 0, 255, // Blue
 255, 255, 0 // Yellow
};

// Use tightly packed data
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);

// Generate a texture object
glGenTextures(1, &textureId);

// Bind the texture object
glBindTexture(GL_TEXTURE_2D, textureId);

// Load the texture
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 2, 2, 0, GL_RGB,

GL_UNSIGNED_BYTE, pixels);

// Set the filtering mode
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,

GL_NEAREST);

Texturing Basics	 235

This application sets the unpack alignment to 1, meaning that each row
of pixels begins on a byte boundary (in other words, the data is tightly
packed). The full definition for glPixelStorei is given next.

void   glPixelStorei(GLenum pname, GLint param)

pname specifies the pixel storage type to set. The following options
impact how data is unpacked from memory when calling
glTexImage2D, glTexImage3D, glTexSubImage2D, and
glTexSubImage3D:
GL_UNPACK_ROW_LENGTH, GL_UNPACK_IMAGE_HEIGHT,
GL_UNPACK_SKIP_PIXELS, GL_UNPACK_SKIP_ROWS,
GL_UNPACK_SKIP_IMAGES, GL_UNPACK_ALIGNMENT

The following options impact how data is packed into memory
when calling glReadPixels:
GL_PACK_ROW_LENGTH, GL_PACK_IMAGE_HEIGHT,
GL_PACK_SKIP_PIXELS, GL_PACK_SKIP_ROWS,
GL_PACK_SKIP_IMAGES, GL_PACK_ALIGNMENT

All of these options are described in Table 9-2.
param specifies the integer value for the pack or unpack option.

The GL_PACK_xxxxx arguments to glPixelStorei do not have any impact
on texture image uploading. The pack options are used by glReadPixels,
which is described in Chapter 11, “Fragment Operations.” The pack
and unpack options set by glPixelStorei are global state and are not
stored or associated with a texture object. In practice, it is rare to use any
options other than GL_UNPACK_ALIGNMENT for specifying textures. For
completeness, the full list of pixel storage options is provided in Table 9-2.

Returning to the program in Example 9-1, after defining the image data,
a texture object is generated using glGenTextures and then that object
is bound to the GL_TEXTURE_2D target using glBindTexture. Finally, the
image data is loaded into the texture object using glTexImage2D. The
format is set as GL_RGB, which signifies that the image data is composed
of (R, G, B) triplets. The type is set as GL_UNSIGNED_BYTE, which signifies
that each channel of the data is stored in an 8-bit unsigned byte. There
are a number of other options for loading texture data, including the
different formats described in Table 9-1. All of the texture formats are
described later in this chapter in the Texture Formats section.

236	 Chapter 9: Texturing

The last part of the code uses glTexParameteri to set the minification
and magnification filtering modes to GL_NEAREST. This code is required
because we have not loaded a complete mipmap chain for the texture;
thus we must select a non-mipmapped minification filter. The other
option would have been to use minification and magnification modes of
GL_LINEAR, which provides bilinear non-mipmapped filtering. The details
of texture filtering and mipmapping are explained in the next section.

Table 9-2	 Pixel Storage Options

Pixel Storage Option Initial Value Description

GL_UNPACK_ALIGNMENT
GL_PACK_ALIGNMENT

4 Specifies the alignment of rows in
an image. By default, images begin
at 4-byte boundaries. Setting the
value to 1 means that the image is
tightly packed and rows are aligned
to a byte boundary.

GL_UNPACK_ROW_LENGTH
GL_PACK_ROW_LENGTH

0 If the value is non-zero, gives the
number of pixels in a row of the
image. If the value is zero, then
the row length is the width of the
image (i.e., it is tightly packed).

GL_UNPACK_IMAGE_HEIGHT
GL_PACK_IMAGE_HEIGHT

0 If the value is non-zero, gives the
number of pixels in a column of an
image that is part of a 3D texture.
This option can be used to have
padding of columns in between
slices of a 3D texture. If the value is
zero, then the number of columns
in the image is equal to the height
(i.e., it is tightly packed).

GL_UNPACK_SKIP_PIXELS
GL_PACK_SKIP_PIXELS

0 If the value is non-zero, gives the
number of pixels to skip at the
beginning of a row.

GL_UNPACK_SKIP_ROWS
GL_PACK_SKIP_ROWS

0 If the value is non-zero, gives the
number of rows to skip at the
beginning of the image.

GL_UNPACK_SKIP_IMAGES
GL_PACK_SKIP_IMAGES

0 If the value is non-zero, gives the
number of images in a 3D texture
to skip.

Texturing Basics	 237

Texture Filtering and Mipmapping

So far, we have limited our explanation of 2D textures to single 2D images.
Although this allowed us to explain the concept of texturing, there is
actually a bit more to how textures are specified and used in OpenGL ES.
This complexity relates to the visual artifacts and performance issues that
occur due to using a single texture map. As we have described texturing so
far, the texture coordinate is used to generate a 2D index to fetch from the
texture map. When the minification and magnification filters are set to GL_
NEAREST, this is exactly what will happen: A single texel will be fetched at
the texture coordinate location provided. This is known as point or nearest
sampling.

However, nearest sampling might produce significant visual artifacts.
The artifacts occur because as a triangle becomes smaller in screen space,
the texture coordinates take large jumps when being interpolated from
pixel to pixel. As a result, a small number of samples are taken from a
large texture map, resulting in aliasing artifacts and a potentially large
performance penalty. The solution that is used to resolve this type
of artifact in OpenGL ES is known as mipmapping. The idea behind
mipmapping is to build a chain of images known as a mipmap chain.
The mipmap chain begins with the originally specified image and
then continues with each subsequent image being half as large in each
dimension as the one before it. This chain continues until we reach a
single 1 × 1 texture at the bottom of the chain. The mip levels can be
generated programmatically, typically by computing each pixel in a mip
level as an average of the four pixels at the same location in the mip level
above it (box filtering).

In the Chapter_9/MipMap2D sample program, we provide an example
demonstrating how to generate a mipmap chain for a texture using a
box filtering technique. The code to generate the mipmap chain is given
by the GenMipMap2D function. This function takes an RGB8 image as
input and generates the next mipmap level by performing a box filter on
the preceding image. See the source code in the example for details on
how the box filtering is done. The mipmap chain is then loaded using
glTexImage2D, as shown in Example 9-2.

With a mipmap chain loaded, we can then set up the filtering mode to
use mipmaps. The result is that we achieve a better ratio between screen
pixels and texture pixels, thereby reducing aliasing artifacts. Aliasing is
also reduced because each image in the mipmap chain is successively
filtered so that high-frequency elements are attenuated more and more as
we move down the chain.

238	 Chapter 9: Texturing

Two types of filtering occur when texturing: minification and magnification.
Minification is what happens when the size of the projected polygon on
the screen is smaller than the size of the texture. Magnification is what
happens when the size of the projected polygon on screen is larger than the
size of the texture. The determination of which filter type to use is handled
automatically by the hardware, but the API provides control over which type
of filtering to use in each case. For magnification, mipmapping is not relevant,
because we will always be sampling from the largest level available. For
minification, a variety of sampling modes can be used. The choice of which
mode to use is based on which level of visual quality you need to achieve and
how much performance you are willing to give up for texture filtering.

Example 9-2	 Loading a 2D Mipmap Chain

// Load mipmap level 0
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height,

0, GL_RGB, GL_UNSIGNED_BYTE, pixels);

level = 1;
prevImage = &pixels[0];

while(width > 1 && height > 1)
{
 int newWidth,

newHeight;

 // Generate the next mipmap level
 GenMipMap2D(�prevImage, &newImage, width, height, &newWidth,

&newHeight);

 // Load the mipmap level
 glTexImage2D(GL_TEXTURE_2D, level, GL_RGB,

newWidth, newHeight, 0, GL_RGB,
GL_UNSIGNED_BYTE, newImage);

 // Free the previous image
 free(prevImage);

 // Set the previous image for the next iteration
 prevImage = newImage;
 level++;

 // Half the width and height
 width = newWidth;
 height = newHeight;
}

free(newlmage);

Texturing Basics	 239

The filtering modes are specified (along with many other texture
options) with glTexParameter[i|f][v]. The texture filtering modes are
described next, and the remaining options are described in subsequent
sections.

void   glTexParameteri(�GLenum target, GLenum pname,
GLint param)

void   glTexParameteriv(�GLenum target, GLenum pname,
const GLint *params)

void   glTexParameterf(�GLenum target, GLenum pname,
GLfloat param)

void   glTexParameterfv(�GLenum target, GLenum pname,
const GLfloat *params)

target the texture target can be GL_TEXTURE_2D, GL_TEXTURE_3D,
GL_TEXTURE_2D_ARRAY, or GL_TEXTURE_CUBE_MAP

pname the parameter to set; one of
GL_TEXTURE_BASE_LEVEL
GL_TEXTURE_COMPARE_FUNC
GL_TEXTURE_COMPARE_MODE
GL_TEXTURE_MIN_FILTER
GL_TEXTURE_MAG_FILTER
GL_TEXTURE_MIN_LOD
GL_TEXTURE_MAX_LOD
GL_TEXTURE_MAX_LEVEL
GL_TEXTURE_SWIZZLE_R
GL_TEXTURE_SWIZZLE_G
GL_TEXTURE_SWIZZLE_B
GL_TEXTURE_SWIZZLE_A
GL_TEXTURE_WRAP_S
GL_TEXTURE_WRAP_T
GL_TEXTURE_WRAP_R

params the value (or array of values for the “v” entrypoints) to set the
texture parameter to

If pname is GL_TEXTURE_MAG_FILTER, then param can be
GL_NEAREST or GL_LINEAR

If pname is GL_TEXTURE_MIN_FILTER, then param can be
GL_NEAREST, GL_LINEAR, GL_NEAREST_MIPMAP_NEAREST,
GL_NEAREST_MIPMAP_LINEAR, GL_LINEAR_MIPMAP_NEAREST,
or GL_LINEAR_MIPMAP_LINEAR

(continues)

240	 Chapter 9: Texturing

The magnification filter can be either GL_NEAREST or GL_LINEAR.
In GL_NEAREST magnification filtering, a single point sample will be
taken from the texture nearest to the texture coordinate. In GL_LINEAR
magnification filtering, a bilinear (average of four samples) will be taken
from the texture about the texture coordinate.

The minification filter can be set to any of the following values:

•• GL_NEAREST—Takes a single point sample from the texture nearest to
the texture coordinate.

•• GL_LINEAR—Takes a bilinear sample from the texture nearest to the
texture coordinate.

•• GL_NEAREST_MIPMAP_NEAREST—Takes a single point sample from the
closest mip level chosen.

•• GL_NEAREST_MIPMAP_LINEAR—Takes a sample from the two closest
mip levels and interpolates between those samples.

•• GL_LINEAR_MIPMAP_NEAREST—Takes a bilinear fetch from the closest
mip level chosen.

•• GL_LINEAR_MIPMAP_LINEAR—Takes a bilinear fetch from each of the
two closest mip levels and then interpolates between them. This last
mode, which is typically referred to as trilinear filtering, produces the
best quality of all modes.

Note:	 GL_NEAREST and GL_LINEAR are the only texture minification
modes that do not require a complete mipmap chain to be specified

(continued)
If pname is GL_TEXTURE_WRAP_S, GL_TEXTURE_WRAP_R, or
GL_TEXTURE_WRAP_T, then param can be
GL_REPEAT, GL_CLAMP_TO_EDGE, or GL_MIRRORED_REPEAT

If pname is GL_TEXTURE_COMPARE_FUNC, then param can be
GL_LEQUAL, GL_EQUAL, GL_LESS, GL_GREATER, GL_EQUAL,
GL_NOTEQUAL, GL_ALWAYS, or GL_NEVER

If pname is GL_TEXTURE_COMPARE_MODE, then param can be
GL_COMPARE_REF_TO_TEXTURE or GL_NONE

If pname is GL_TEXTURE_SWIZZLE_R, GL_TEXTURE_SWIZZLE_G,
GL_TEXTURE_SWIZZLE_B, or GL_TEXTURE_SWIZZLE_A, then
param can be
GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_ZERO, or GL_ONE

Texturing Basics	 241

for the texture. All of the other modes require that a complete
mipmap chain exists for the texture.

The MipMap2D example in Figure 9-4 shows the difference between a
polygon drawn with GL_NEAREST versus GL_LINEAR_MIPMAP_LINEAR
filtering.

Figure 9-4	 MipMap2D: Nearest Versus Trilinear Filtering

It is worth mentioning some performance implications for the texture
filtering mode that you choose. If minification occurs and performance
is a concern, using a mipmap filtering mode is usually the best choice
on most hardware. You tend to get very poor texture cache utilization
without mipmaps because fetches happen at sparse locations throughout
a map. However, the higher the filtering mode you use, the greater the
performance cost in the hardware. For example, on most hardware,
doing bilinear filtering is less costly than doing trilinear filtering. You
should choose a mode that gives you the quality desired without unduly
negatively impacting performance. On some hardware, you might get
high-quality filtering virtually for free, particularly if the cost of the texture
filtering is not your bottleneck. This is something that needs to be tuned for
the application and hardware on which you plan to run your application.

Seamless Cubemap Filtering

One change with respect to filtering that is new to OpenGL ES 3.0 relates
to how cubemaps are filtered. In OpenGL ES 2.0, when a linear filter
kernel fell on the edge of a cubemap border, the filtering would happen
on only a single cubemap face. This would result in artifacts at the borders
between cubemap faces. In OpenGL ES 3.0, cubemap filtering is now
seamless—if the filter kernel spans more than one cubemap face, the
kernel will fetch samples from all of the faces it covers. Seamless filtering
results in smoother filtering along cubemap face borders. In OpenGL
ES 3.0, there is nothing you need to do to enable seamless cubemap
filtering; all linear filter kernels will use it automatically.

242	 Chapter 9: Texturing

Automatic Mipmap Generation

In the MipMap2D example in the previous section, the application
created an image for level zero of the mipmap chain. It then generated
the rest of the mipmap chain by performing a box filter on each image
and successively halving the width and height. This is one way to
generate mipmaps, but OpenGL ES 3.0 also provides a mechanism for
automatically generating mipmaps using glGenerateMipmap.

void   glGenerateMipmap(GLenum target)

target the texture target to generate mipmaps for; can be
GL_TEXTURE_2D, GL_TEXTURE_3D, GL_TEXTURE_2D_ARRAY, or
GL_TEXTURE_CUBE_MAP

When calling glGenerateMipmap on a bound texture object, this function
will generate the entire mipmap chain from the contents of the image
in level zero. For a 2D texture, the contents of texture level zero will be
successively filtered and used for each of the subsequent levels. For a
cubemap, each of the cube faces will be generated from the level zero in
each cube face. Of course, to use this function with cubemaps, you must
have specified level zero for each cube face and each face must have a
matching internal format, width, and height. For a 2D texture array, each
slice of the array will be filtered as it would be for a 2D texture. Finally,
for a 3D texture, the entire volume will be mipmapped by performing
filtering across slices.

OpenGL ES 3.0 does not mandate that a particular filtering algorithm be
used for generating mipmaps (although the specification recommends
box filtering, implementations have latitude in choosing which algorithm
they use). If you require a particular filtering method, then you will still
need to generate the mipmaps on your own.

Automatic mipmap generation becomes particularly important when
you start to use framebuffer objects for rendering to a texture. When
rendering to a texture, we don’t want to have to read back the contents of
the texture to the CPU to generate mipmaps. Instead, glGenerateMipmap
can be used and the graphics hardware can then potentially generate the
mipmaps without ever having to read the data back to the CPU. When
we cover framebuffer objects in more detail in Chapter 12, “Framebuffer
Objects,” this point should become clear.

Texturing Basics	 243

Texture Coordinate Wrapping

Texture wrap modes are used to specify the behavior that occurs when
a texture coordinate is outside of the range [0.0, 1.0]. The texture wrap
modes are set using glTexParameter[i|f][v]. Such modes can be
set independently for the s-coordinate, t-coordinate, and r-coordinate.
The GL_TEXTURE_WRAP_S mode defines what the behavior is when the
s-coordinate is outside of the range [0.0, 1.0], GL_TEXTURE_WRAP_T sets the
behavior for the t-coordinate, and GL_TEXTURE_WRAP_R sets the behavior
for the r-coordinate (the r-coordinate wrapping is used only for 3D
textures and 2D texture arrays). In OpenGL ES, there are three wrap modes
to choose from, as described in Table 9-3.

Table 9-3	 Texture Wrap Modes

Texture Wrap Mode Description

GL_REPEAT Repeat the texture

GL_CLAMP_TO_EDGE Clamp fetches to the edge of the texture

GL_MIRRORED_REPEAT Repeat the texture and mirror

Figure 9-5	 �GL_REPEAT, GL_CLAMP_TO_EDGE, and GL_MIRRORED_REPEAT
Modes

Note that the texture wrap modes also affect the behavior of filtering. For
example, when a texture coordinate is at the edge of a texture, the bilinear
filter kernel might span beyond the edge of the texture. In this case, the
wrap mode will determine which texels are fetched for the portion of the
kernel that lies outside the texture edge. You should use GL_CLAMP_TO_EDGE
whenever you do not want any form of repeating.

In Chapter_9/TextureWrap, there is an example that draws a quad
with each of the three different texture wrap modes. The quads have
a checkerboard image applied to them and are rendered with texture
coordinates in the range from [–1.0, 2.0]. The results are shown in
Figure 9-5.

244	 Chapter 9: Texturing

The three quads are rendered using the following setup code for the
texture wrap modes:

// Draw left quad with repeat wrap mode
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glUniformlf(userData->offsetLoc, -0.7f);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, indices);

// Draw middle quad with clamp to edge wrap mode
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,

GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,

GL_CLAMP_TO_EDGE);
glUniformlf(userData->offsetLoc, 0.0f);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, indices);

// Draw right quad with mirrored repeat
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,

GL_MIRRORED_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,

GL_MIRRORED_REPEAT);
glUniformlf(userData->offsetLoc, 0.7f);
glDrawElements GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, indices);

In Figure 9-5, the quad on the far left is rendered using GL_REPEAT
mode. In this mode, the texture simply repeats outside of the range
[0, 1], resulting in a tiling pattern of the image. The quad in the center
is rendered with GL_CLAMP_TO_EDGE mode. As you can see, when the
texture coordinates go outside the range [0, 1], the texture coordinates are
clamped to sample from the edge of the texture. The quad on the right is
rendered with GL_MIRRORED_REPEAT, which mirrors and then repeats the
image when the texture coordinates are outside the range [0, 1].

Texture Swizzles

Texture swizzles control how color components in the input R, RG,
RGB, or RGBA texture map to components when fetched from in the
shader. For example, an application might want a GL_RED texture to
map to (0, 0, 0, R) or (R, R, R, 1) as opposed to the default mapping
of (R, 0, 0, 1). The texture component that each R, G, B, and A value
maps to can be independently controlled using texture swizzles set
using glTexParameter[i|f][v]. The component to control is set by
using GL_TEXTURE_SWIZZLE_R, GL_TEXTURE_SWIZZLE_G, GL_TEXTURE_
SWIZZLE_B, or GL_TEXTURE_SWIZZLE_A. The texture value that will be the

Texturing Basics	 245

source for that component can be either GL_RED, GL_GREEN, GL_BLUE,
or GL_ALPHA to fetch from the R, G, B, or A component, respectively.
Additionally, the application can set the value to be the constant 0 or 1
using GL_ZERO or GL_ONE, respectively.

Texture Level of Detail

In some applications, it is useful to be able to start displaying a scene
before all of the texture mipmap levels are available. For example, a GPS
application that is downloading texture images over a data connection
might start with the lowest-level mipmaps and display the higher levels
when they become available. In OpenGL ES 3.0, this can be accomplished
by using several of the arguments to glTexParameter[i|f][v]. The
GL_TEXTURE_BASE_LEVEL sets the largest mipmap level that will be used for
a texture. By default, this has a value of 0, but it can be set to a higher value
if mipmap levels are not yet available. Likewise, GL_TEXTURE_MAX_LEVEL
sets the smallest mipmap level that will be used. By default, it has a value of
1000 (beyond the largest level any texture could have), but it can be set to
a lower number to control the smallest mipmap level to use for a texture.

To select which mipmap level to use for rendering, OpenGL ES
automatically computes a level of detail (LOD) value. This floating-
point value determines which mipmap level to filter from (and in
trilinear filtering, controls how much of each mipmap is used). An
application can also control the minimum and maximum LOD values
with GL_TEXTURE_MIN_LOD and GL_TEXTURE_MAX_LOD. One reason it
is useful to be able to control the LOD clamp separately from the base
and maximum mipmap levels is to provide smooth transitioning when
new mipmap levels become available. Setting just the texture base and
maximum level might result in a popping artifact when new mipmap
levels are available, whereas interpolating the LOD can make this
transition look smoother.

Depth Texture Compare (Percentage Closest Filtering)

The last texture parameters to discuss are GL_TEXTURE_COMPARE_FUNC and
GL_TEXTURE_COMPARE_MODE. These texture parameters were introduced
to provide a feature known as percentage closest filtering (PCF). When
performing the shadowing technique known as shadow mapping, the
fragment shader needs to compare the current depth value of a fragment
to the depth value in a depth texture to determine whether a fragment
is within or outside of the shadow. To achieve smoother-looking shadow
edges, it is useful to be able to perform bilinear filtering on the depth

246	 Chapter 9: Texturing

texture. However, when filtering a depth texture, we want the filtering to
occur after we sample the depth value and compare to the current depth
(or reference value). If filtering were to occur before comparison, then we
would be averaging values in the depth texture, which does not provide
the correct result. PCF provides the correct filtering, such that each depth
value sampled is compared to the reference depth and then the results of
those comparisons (0 or 1) are averaged together.

The GL_TEXTURE_COMPARE_MODE defaults to GL_NONE, but when it is
set to GL_COMPARE_REF_TO_TEXTURE, the r-coordinate in the (s, t, r)
texture coordinate will be compared with the value of the depth texture.
The result of this comparison then becomes the result of the shadow
texture fetch (either a value of 0 or 1, or an averaging of these values
if texture filtering is enabled). The comparison function is set using
GL_TEXTURE_COMPARE_FUNC, which can set the comparison function to
GL_LEQUAL, GL_EQUAL, GL_LESS, GL_GREATER, GL_EQUAL, GL_NOTEQUAL,
GL_ALWAYS, or GL_NEVER. More details on shadow mapping are covered
in Chapter 14, “Advanced Programming with OpenGL ES 3.0.”

Texture Formats

OpenGL ES 3.0 offers a wide range of data formats for textures. In fact, the
number of formats has greatly increased from OpenGL ES 2.0. This section
details the texture formats available in OpenGL ES 3.0.

As described in the previous section Texture Objects and Loading Textures,
a 2D texture can be uploaded with either an unsized or sized internal
format using glTexImage2D. If the texture is specified with an unsized
format, the OpenGL ES implementation is free to choose the actual
internal representation in which the texture data is stored. If the texture is
specified with a sized format, then OpenGL ES will choose a format with
at least as many bits as is specified.

Table 9-4 lists the valid combinations for specifying a texture with an
unsized internal format.

If the application wants more control over how the data is stored internally,
then it can use a sized internal format. The valid combinations for sized
internal formats with glTexImage2D are listed in Tables 9-5 to 9-10. In the last
two columns, “R” means renderable and “F” means filterable. OpenGL ES 3.0
mandates only that certain formats be available for rendering to or filtering
from. Further, some formats can be specified with input data containing more
bits than the internal format. In this case, the implementation may choose to
convert to lesser bits or use a format with more bits.

Texturing Basics	 247

To explain the large variety of texture formats in OpenGL ES 3.0, we have
organized them into the following categories: normalized texture formats,
floating-point textures, integer textures, shared exponent textures, sRGB
textures, and depth textures.

Normalized Texture Formats

Table 9-5 lists the set of internal format combinations that can be used
to specify normalized texture formats. By “normalized,” we mean that
the results when fetched from the texture in the fragment shader will
be in the [0.0, 1.0] range (or [–1.0, 1.0] range in the case of *_SNORM
formats). For example, a GL_R8 image specified with GL_UNSIGNED_BYTE
data will take each 8-bit unsigned byte value in the range from [0, 255]
and map it to [0.0, 1.0] when fetched in the fragment shader. A
GL_R8_SNORM image specified with GL_BYTE data will take each 8-bit
signed byte value in the range from [–128, 127] and map it to [–1.0, 1.0]
when fetched.

The normalized formats can be specified with between one and four
components per texel (R, RG, RGB, or RGBA). OpenGL ES 3.0 also
introduces GL_RGB10_A2, which allows the specification of texture
image data with 10 bits for each (R, G, B) value and 2 bits for each alpha
value.

Table 9-4	 Valid Unsized Internal Format Combinations for glTexImage2D

internalFormat format type Input Data

GL_RGB GL_RGB GL_UNSIGNED_BYTE 8/8/8 RGB 24-bit

GL_RGB GL_RGB GL_UNSIGNED_SHORT_5_6_5 5/6/5 RGB 16-bit

GL_RGBA GL_RGBA GL_UNSIGNED_BYTE 8/8/8/8 RGBA 32-bit

GL_RGBA GL_RGBA GL_UNSIGNED_SHORT_4_4_4_4 4/4/4/4 RGBA 16-bit

GL_RGBA GL_RGBA GL_UNSIGNED_SHORT_5_5_5_1 5/5/5/1 RGBA 16-bit

GL_
LUMINANCE_
ALPHA

GL_
LUMINANCE_
ALPHA

GL_UNSIGNED_BYTE 8/8 LA 16-bit

GL_
LUMINANCE

GL_LUMINANCE GL_UNSIGNED_BYTE 8L 8-bit

GL_ALPHA GL_ALPHA GL_UNSIGNED_BYTE 8A 8-bit

248	 Chapter 9: Texturing

Table 9-5	 �Normalized Sized Internal Format Combinations for glTexImage2D

internalFormat format Type Input Data R1 F2

GL_R8 GL_RED GL_UNSIGNED_BYTE 8-bit Red X X

GL_R8_SNORM GL_RED GL_BYTE 8-bit Red
(signed)

X

GL_RG8 GL_RG GL_UNSIGNED_BYTE 8/8 RG X X

GL_RG8_SNORM GL_RG GL_BYTE 8/8 RG (signed) X

GL_RGB8 GL_RGB GL_UNSIGNED_BYTE 8/8/8 RGB X X

GL_RGB8_SNORM GL_RGB GL_BYTE 8/8/8 RGB
(signed)

X

GL_RGB565 GL_RGB GL_UNSIGNED_BYTE 8/8/8 RGB X X

GL_RGB565 GL_RGB GL_UNSIGNED_SHORT_565 5/6/5 RGB X X

GL_RGBA8 GL_RGBA GL_UNSIGNED_BYTE 8/8/8/8 RGBA X X

GL_RGBA8_SNORM GL_RGBA GL_BYTE 8/8/8/8 RGBA
(signed)

X

GL_RGB5_A1 GL_RGBA GL_UNSIGNED_BYTE 8/8/8/8 RGBA X X

GL_RGB5_A1 GL_RGBA GL_UNSIGNED_
SHORT_5_5_5_1

5/5/5/1 RGBA X X

GL_RGB5_A1 GL_RGBA GL_UNSIGNED_
SHORT_2_10_10_10_ REV

10/1010/2 RGBA X X

GL_RGBA4 GL_RGBA GL_UNSIGNED_BYTE 8/8/8/8 RGBA X X

GL_RGBA4 GL_RGBA GL_UNSIGNED_
SHORT_4_4_4_4

4/4/4/4 RGBA X X

GL_RGB10_A2 GL_RGBA GL_UNSIGNED_
INT_2_10_10_10_REV

10/10/10/2
RGBA

X X

1. R = format is renderable.
2. F = format is filterable.

Texturing Basics	 249

Floating-Point Texture Formats

OpenGL ES 3.0 also introduces floating-point texture formats. The
majority of the floating-point formats are backed by either 16-bit
half-floating-point data (described in detail in Appendix A) or 32-bit
floating-point data. Floating-point texture formats can have one to four
components, just like normalized texture formats (R, RG, RGB, RGBA).
OpenGL ES 3.0 does not mandate that floating-point formats be used as
render targets, and only 16-bit half-floating-point data is mandated to be
filterable.

In addition to 16-bit and 32-bit floating-point data, OpenGL ES 3.0
introduces the 11/11/10 GL_R11F_G11F_B10F floating-point format. The
motivation for this format is to provide higher-precision, three-channel
textures while still keeping the storage of each texel at 32 bits. The use of
this format may lead to higher performance than a 16/16/16 GL_RGB16F
or 32/32/32 GL_RGB32F texture. This format has 11 bits for the Red and
Green channel and 10 bits for the Blue channel. For the 11-bit Red and
Green values, there are 6 bits of mantissa and 5 bits of exponent; the
10-bit Blue value has 5 bits of mantissa and 5 bits of exponent. The
11/11/10 format can be used only to represent positive values because
there is no sign bit for any of the components. The largest value that
can be represented in the 11-bit and 10-bit formats is 6.5 × 104 and the
smallest value is 6.1 × 10−5. The 11-bit format has 2.5 decimal digits of
precision, and the 10-bit format has 2.32 decimal digits of precision.

Table 9-6	 �Valid Sized Floating-Point Internal Format Combinations for glTexImage2D

internalFormat format type Input Data R F

GL_R16F GL_RED GL_HALF_FLOAT 16-bit Red (half-float) X

GL_R16F GL_RED GL_FLOAT 32-bit Red (float) X

GL_R32F GL_RED GL_FLOAT 32-bit Red (float)

GL_RG16F GL_RG GL_HALF_FLOAT 16/16 RG (half-float) X

GL_RG16F GL_RG GL_FLOAT 32/32 RG (float) X

GL_RG32F GL_RG GL_FLOAT 32/32 RG (float)

GL_RGB16F GL_RGB GL_HALF_FLOAT 16/16/16 RGB (half-
float)

X

(continues)

250	 Chapter 9: Texturing

Integer Texture Formats

Integer texture formats allow the specification of textures that can
be fetched as integers in the fragment shader. That is, as opposed to
normalized texture formats where the data are converted from their
integer representation to a normalized floating-point value upon fetch
in the fragment shader, the values in integer textures remain as integers
when fetched in the fragment shader.

Integer texture formats are not filterable, but the R, RG, and RGBA
variants can be used as a color attachment to render to in a framebuffer
object. When using an integer texture as a color attachment, the alpha
blend state is ignored (no blending is possible with integer render targets).
The fragment shader used to fetch from integer textures and to output to
an integer render target should use the appropriate signed or unsigned
integer type that corresponds with the format.

Table 9-6	 �Valid Sized Floating-Point Internal Format Combinations for glTexImage2D
(continued)

internalFormat format type Input Data R F

GL_RGB16F GL_RG GL_FLOAT 16/16 RGB (float) X

GL_RGB32F GL_RG GL_FLOAT 32/32/32 RGB (float)

GL_R11F_G11F_B10F GL_RGB GL_UNSIGNED_
INT_10F_11F_
11F_REV

10/11/11 (float) X

GL_R11F_G11F_B10F GL_RGB GL_HALF_FLOAT 16/16/16 RGB (half-
float)

X

GL_R11F_G11F_B10F GL_RGB GL_FLOAT 32/32/32 RGB (half
float)

X

GL_RGBA16F GL_RGBA GL_HALF_FLOAT 16/16/16/16 RGBA
(half-float)

X

GL_RGBA16F GL_RGBA GL_FLOAT 32/32/32/32 RGBA
(float)

X

GL_RGBA32F GL_RGBA GL_FLOAT 32/32/32/32 RGBA
(float)

Texturing Basics	 251

Table 9-7	 �Valid Sized Internal Integer Texture Format Combinations for glTexImage2D

internalFormat format type Input Data R F

GL_R8UI GL_RED_INTEGER GL_UNSIGNED_BYTE 8-bit Red
(unsigned int)

X

GL_R8I GL_RED_INTEGER GL_BYTE 8-bit Red (signed
int)

X

GL_R16UI GL_RED_INTEGER GL_UNSIGNED_
SHORT

16-bit Red
(unsigned int)

X

GL_R16I GL_RED_INTEGER GL_SHORT 16-bit Red (signed
int)

X

GL_R32UI GL_RED_INTEGER GL_UNSIGNED_INT 32-bit Red
(unsigned int)

X

GL_R32I GL_RED_INTEGER GL_INT 32-bit Red (signed
int)

X

GL_RG8UI GL_RG_INTEGER GL_UNSIGNED_BYTE 8/8 RG (unsigned
int)

X

GL_RG8I GL_RG_INTEGER GL_BYTE 8/8 RG (signed int) X

GL_RG16UI GL_RG_INTEGER GL_UNSIGNED_
SHORT

16/16 RG
(unsigned int)

X

GL_RG16I GL_RG_INTEGER GL_SHORT 16/16 RG (signed
int)

X

GL_RG32UI GL_RG_INTEGER GL_UNSIGNED_INT 32/32 RG
(unsigned int)

X

GL_RG32I GL_RG_INTEGER GL_INT 32/32 RG (signed
int)

X

GL_RGBAUI GL_RGBA_INTEGER GL_UNSIGNED_BYTE 8/8/8/8 RGBA
(unsigned int)

X

GL_RGBAI GL_RGBA_INTEGER GL_BYTE 8/8/8/8 RGBA
(signed int)

X

GL_RGB8UI GL_RGB_INTEGER GL_UNSIGNED_BYTE 8/8/8 RGB
(unsigned int)

GL_RGB8I GL_RGB_INTEGER GL_BYTE 8/8/8 RGB (signed
int)

(continues)

252	 Chapter 9: Texturing

Shared Exponent Texture Formats

Shared exponent textures provide a way to store RGB textures that have a
large range without requiring as much bit depth as used by floating-point
textures. Shared exponent textures are typically used for high dynamic
range (HDR) images where half- or full-floating-point data are not required.
The shared exponent texture format in OpenGL ES 3.0 is GL_RGB9_E5. In
this format, one 5-bit exponent is shared by all three RGB components.
The 5-bit exponent is implicitly biased by the value 15. Each of the 9-bit
values for RGB store the mantissa without a sign bit (and thus must be
positive).

Table 9-7	� Valid Sized Internal Integer Texture Format Combinations for glTexImage2D
(continued)

internalFormat format type Input Data R F

GL_RGB16UI GL_RGB_INTEGER GL_UNSIGNED_
SHORT

16/16/16 RGB
(unsigned int)

GL_RGB16I GL_RGB_INTEGER GL_SHORT 16/16/16 RGB
(signed int)

GL_RGB32UI GL_RGB_INTEGER GL_UNSIGNED_INT 32/32/32 RGB
(unsigned int)

GL_RGB32I GL_RGB_INTEGER GL_INT 32/32/32 RG
(signed int)

GL_RG32I GL_RG_INTEGER GL_INT 32/32 RG (signed
int)

X

GL_RGB10_
A2_UI

GL_RGBA_INTEGER GL_UNSIGNED_
INT_2_10_10_
10_REV

10/10/10/2 RGBA
(unsigned int)

X

GL_
RGBA16UI

GL_RGBA_INTEGER GL_UNSIGNED_
SHORT

16/16/16/16 RGBA
(unsigned int)

X

GL_RGBA16I GL_RGBA_INTEGER GL_SHORT 16/16/16/16 RGBA
(signed int)

X

GL_
RGBA32UI

GL_RGBA_INTEGER GL_UNSIGNED_INT 32/32/32/32
R/G/B/A (unsigned
int)

X

GL_RGBA32I GL_RGBA_INTEGER GL_INT 32/32/32/32
R/G/B/A (signed
int)

X

Texturing Basics	 253

Upon fetch, the three RGB values are derived from the texture using the
following equations:

R = R *2

G = G *2

B = B *2

out in
(EXP – 15)

out in
(EXP – 15)

out in
(EXP – 15)

If the input texture is specified in 16-bit half-float or 32-bit float, then
the OpenGL ES implementation will automatically convert to the shared
exponent format. The conversion is done by first determining the
maximum color value:

MAX = max(R,G,B)c

The shared exponent is then computed using the following formula:

EXP = max (–16, floor(log (MAX))) + 162 c

Finally, the 9-bit mantissa values for RGB are computed as follows:

()
()
()

= +

= +

= +

+

+

+

R floor R/(2) 0.5

G floor G/(2) 0.5

B floor B/(2) 0.5

s
(EXP – 15 9)

s
(EXP – 15 9)

s
(EXP – 15 9)

An application could use these conversion formulas to derive the 5-bit EXP
and 9-bit RGB values from incoming data, or it can simply pass in the 16-bit
half-float or 32-bit float data to OpenGL ES and let it perform the conversion.

Table 9-8	 �Valid Shared Exponent Sized Internal Format Combinations for
glTexImage2D

internalFormat format type Input Data R F

GL_RGB9_E5 GL_RGB GL_UNSIGNED_
INT_5_9_9_9_
REV

9/9/9/ RGB with
shared 5-bit
exponent

X

GL_RGB9_E5 GL_RGB GL_HALF_FLOAT 16/16/16 RGB
(half-float)

X

GL_RGB9_E5 GL_RGB GL_FLOAT 32/32/32 RGB
(half-float)

X

254	 Chapter 9: Texturing

sRGB Texture Formats

Another texture format introduced in OpenGL ES 3.0 is sRGB textures.
sRGB is a nonlinear colorspace that approximately follows a power
function. Most images are actually stored in the sRGB colorspace, as the
nonlinearity accounts for the fact that humans can differentiate color
better at different brightness levels.

If the images used for textures are authored in the sRGB colorspace but are
fetched without using sRGB textures, all of the lighting calculations that
occur in the shader happen in a nonlinear colorspace. That is, the textures
created in standard authoring packages are stored in sRGB and remain in
sRGB when fetched from in the shader. The lighting calculations then are
occurring in the nonlinear sRGB space. While many applications make
this mistake, it is not correct and actually results in discernibly different
(and incorrect) output image.

To properly account for sRGB images, an application should use an sRGB
texture format that will be converted from sRGB into a linear colorspace
on fetch in the shader. Then, all calculations in the shader are done
in linear colorspace. Finally, by rendering to a sRGB render target, the
image will be correctly converted back to sRGB on write. It is possible
to approximate sRGB → linear conversion using a shader instruction
pow(value, 2.2) and then to approximate the linear → sRGB conversion
using pow(value, 1/2.2). However, it is preferable to use a sRGB texture
where possible because it reduces the shader instructions and provides a
more correct sRGB conversion.

Depth Texture Formats

The final texture format type in OpenGL ES 3.0 is depth textures. Depth
textures allow the application to fetch the depth (and optionally, stencil)
value from the depth attachment of a framebuffer object. This is useful in
a variety of advanced rendering algorithms, including shadow mapping.
Table 9-10 lists the valid depth texture formats in OpenGL ES 3.0.

Table 9-9	 �Valid sRGB Sized Internal Format Combinations for
glTexImage2D

internalFormat format type Input Data R F

GL_SRGB8 GL_RGB GL_UNSIGNED_BYTE 8/8/8 SRGB X

GL_SRGB8_ALPHA8 GL_RGBA GL_UNSIGNED_BYTE 8/8/8/8 RGBA X X

Texturing Basics	 255

Using Textures in a Shader

Now that we have covered the basics of setting up texturing, let’s look at
some sample shader code. The vertex–fragment shader pair in Example 9-3
from the Simple_Texture2D sample demonstrates the basics of how 2D
texturing is done in a shader.

Table 9-10	 �Valid Depth Sized Internal Format Combinations for glTexImage2D

internalFormat format type

GL_DEPTH_COMPONENT16 GL_DEPTH_COMPONENT GL_UNSIGNED_SHORT

GL_DEPTH_COMPONENT16 GL_DEPTH_COMPONENT GL_UNSIGNED_INT

GL_DEPTH_COMPONENT24 GL_DEPTH_COMPONENT GL_UNSIGNED_INT

GL_DEPTH_COMPONENT32F GL_DEPTH_COMPONENT GL_FLOAT

GL_DEPTH24_STENCIL8 GL_DEPTH_STENCIL GL_UNSIGNED_INT_24_8

GL_DEPTH32F_STENCIL8 GL_DEPTH_STENCIL GL_FLOAT_32_UNSIGNED_
INT_24_8_REV

Example 9-3	 Vertex and Fragment Shaders for Performing 2D Texturing

// Vertex shader
#version 300 es
layout(location = 0) in vec4 a_position;
layout(location = 1) in vec2 a_texCoord;
out vec2 v_texCoord;
void main()
{
 gl_Position = a_position;
 v_texCoord = a_texCoord;
}

// Fragment shader
#version 300 es
precision mediump float;
in vec2 v_texCoord;
layout(location = 0) out vec4 outColor;
uniform sampler2D s_texture;
void main()
{
 outColor = texture(s_texture, v_texCoord);
}

256	 Chapter 9: Texturing

The vertex shader takes in a two-component texture coordinate as a vertex
input and passes it as an output to the fragment shader. The fragment
shader consumes that texture coordinate and uses it for the texture fetch.
The fragment shader declares a uniform variable of type sampler2D called
s_texture. A sampler is a special type of uniform variable that is used to
fetch from a texture map. The sampler uniform will be loaded with a value
specifying the texture unit to which the texture is bound; for example,
specifying that a sampler with a value of 0 says to fetch from unit
GL_TEXTURE0, specifying a value of 1 says to fetch from GL_TEXTURE1, and
so on. Textures are bound to texture units in the OpenGL ES 3.0 API by
using the glActiveTexture function.

void	 glActiveTexture(GLenum texture)

texture the texture unit to make active: GL_TEXTURE0, GL_TEXTURE1,
… , GL_TEXTURE31

The function glActiveTexture sets the current texture unit so
that subsequent calls to glBindTexture will bind the texture to the
currently active unit. The number of texture units available to the
fragment shader on an implementation of OpenGL ES can be queried
for by using glGetintegerv with the parameter GL_MAX_TEXTURE_
IMAGE_UNITS. The number of texture units available to the vertex
shader can be queried for by using glGetIntegerv with the parameter
GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS.

The following example code from the Simple_Texture2D example shows
how the sampler and texture are bound to the texture unit.

// Get the sampler locations
userData->samplerLoc = glGetUniformLocation(

userData->programObject,
“s_texture”);

//    ...
// Bind the texture
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, userData->textureId);

// Set the sampler texture unit to 0
glUniformli(userData->samplerLoc, 0);

At this point, we have the texture loaded, the texture bound to texture
unit 0, and the sampler set to use texture unit 0. Going back to the
fragment shader in the Simple_Texture2D example, we see that the

Texturing Basics	 257

shader code then uses the built-in function texture to fetch from the
texture map. The texture built-in function takes the form shown here:

vec4	 texture(sampler2D sampler, vec2 coord[,
float bias])

sampler a sampler bound to a texture unit specifying the texture from
which to fetch.

coord a 2D texture coordinate used to fetch from the texture map.

bias an optional parameter that provides a mipmap bias used for
the texture fetch. This allows the shader to explicitly bias the
computed LOD value used for mipmap selection.

The texture function returns a vec4 representing the color fetched from
the texture map. The way the texture data is mapped into the channels
of this color depends on the base format of the texture. Table 9-11 shows
the way in which texture formats are mapped to vec4 colors. The texture
swizzle (described in the Texture Swizzles section earlier in this chapter)
determines how the values from each of these components map to
components in the shader.

Table 9-11	 Mapping of Texture Formats to Colors

Base Format Texel Data Description

GL_RED (R, 0.0, 0.0, 1.0)

GL_RG (R, G, 0.0, 1.0)

GL_RGB (R, G, B, 1.0)

GL_RGBA (R, G, B, A)

GL_LUMINANCE (L, L, L, 1.0)

GL_LUMINANCE_ALPHA (L, L, L, A)

GL_ALPHA (0.0, 0.0, 0.0, A)

In the case of the Simple_Texture2D example, the texture was loaded
as GL_RGB and the texture swizzles were left at the default values, so the
result of the texture fetch will be a vec4 with values (R, G, B, 1.0).

258	 Chapter 9: Texturing

Example of Using a Cubemap Texture

Using a cubemap texture is very similar to using a 2D texture. The example
Simple_TextureCubemap demonstrates drawing a sphere with a simple
cubemap. The cubemap contains six 1 × 1 faces, each with a different
color. The code in Example 9-4 is used to load the cubemap texture.

Example 9-4	 Loading a Cubemap Texture

GLuint CreateSimpleTextureCubemap()
{
 GLuint textureId;
 // Six l x l RGB faces
 GLubyte cubePixels[6][3] =
 {

// Face 0 - Red
255, 0, 0,
// Face 1 - Green,
0, 255, 0,
// Face 2 - Blue
0, 0, 255,
// Face 3 - Yellow
255, 255, 0,
// Face 4 - Purple
255, 0, 255,
// Face 5 - White
255, 255, 255

 };

 // Generate a texture object
 glGenTextures(1, &textureId);

 // Bind the texture object
 glBindTexture(GL_TEXTURE_CUBE_MAP, textureId);

 // Load the cube face - Positive X
 glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X, 0, GL_RGB, 1, 1,

0, GL_RGB, GL_UNSIGNED_BYTE, &cubePixels[0]);

 // Load the cube face - Negative X
 glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_X, 0, GL_RGB, 1, 1,

0, GL_RGB, GL_UNSIGNED_BYTE, &cubePixels[1]);

 // Load the cube face - Positive Y
 glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Y, 0, GL_RGB, 1, 1,

0, GL_RGB, GL_UNSIGNED_BYTE, &cubePixels[2]);

 // Load the cube face - Negative Y
 glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Y, 0, GL_RGB, 1, 1,

0, GL_RGB, GL_UNSIGNED_BYTE, &cubePixels[3]);

Texturing Basics	 259

This code loads each individual cubemap face with l × l RGB pixel data by
calling glTexImage2D for each cubemap face. The shader code to render
the sphere with a cubemap is provided in Example 9-5.

Example 9-5	 Vertex and Fragment Shader Pair for Cubemap Texturing

// Vertex shader
#version 300 es
layout(location = 0) in vec4 a_position;
layout(location = 1) in vec3 a_normal;
out vec3 v_normal;
void main()
{
 gl_Position = a_position;
 v_normal = a_normal;
}

// Fragment shader
#version 300 es
precision mediump float;
in vec3 v_normal;
layout(location = 0) out vec4 outColor;
uniform samplerCube s_texture;
void main()
{
 outColor = texture(s_texture, v_normal);
}

 // Load the cube face - Positive Z
 glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_Z, 0, GL_RGB, 1, 1,

0, GL_RGB, GL_UNSIGNED_BYTE, &cubePixels[4]);

 // Load the cube face - Negative Z
 glTexImage2D(GL_TEXTURE_CUBE_MAP_NEGATIVE_Z, 0, GL_RGB, 1, 1,

0, GL_RGB, GL_UNSIGNED_BYTE, &cubePixels[5]);

 // Set the filtering mode
 glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER,

GL_NEAREST);
 glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER,

GL_NEAREST);
 return textureId;
}

Example 9-4	 Loading a Cubemap Texture (continued)

260	 Chapter 9: Texturing

The vertex shader takes in a position and a normal as vertex inputs.
A normal is stored at each vertex of the sphere that will be used as a
texture coordinate. The normal is passed to the fragment shader. The
fragment shader then uses the built-in function texture to fetch from the
cubemap using the normal as a texture coordinate. The texture built-in
function for cubemaps takes the form shown here:

vec4	 texture(samplerCube sampler, vec3 coord[,
float bias])

sampler the sampler is bound to a texture unit specifying the texture
from which to fetch.

coord a 3D texture coordinate used to fetch from the cubemap.
bias an optional parameter that provides a mipmap bias used for

the texture fetch. This allows the shader to explicitly bias the
computed LOD value used for mipmap selection.

void	 glTexImage3D(GLenum target, GLint level,
GLenum internalFormat,
GLsizei width, GLsizei height,
GLsizei depth, GLint border,
GLenum format, GLenum type,
const void* pixels)

target specifies the texture target; should be
GL_TEXTURE_3D or GL_TEXTURE_2D_ARRAY.

The function for fetching a cubemap is very similar to a 2D texture. The
only difference is that the texture coordinate has three components
instead of two and the sampler type must be samplerCube. The same
method is used to bind the cubemap texture and load the sampler as is
used for the Simple_Texture2D example.

Loading 3D Textures and 2D Texture Arrays

As discussed earlier in the chapter, in addition to 2D textures and
cubemaps, OpenGL ES 3.0 includes 3D textures and 2D texture arrays.
The function to load 3D textures and 2D texture arrays is glTexImage3D,
which is very similar to glTexImage2D.

Texturing Basics	 261

level specifies which mip level to load. The base level is
specified by 0, followed by an increasing level for each
successive mipmap.

internal
Format

the internal format for the texture storage; can be either
an unsized base internal format or a sized internal
format. The full valid internalFormat, format, and
type combinations are provided in Tables 9-4
through 9-10.

width the width of the image in pixels.

height the height of the image in pixels.

depth the number of slices of the 3D texture.

border this parameter is ignored in OpenGL ES. It was kept
for compatibility with the desktop OpenGL interface.
Should be 0.

format the format of the incoming texture data; can be
GL_RED
GL_RED_INTEGER
GL_RG
GL_RG_INTEGER
GL_RGB
GL_RGB_INTEGER
GL_RGBA
GL_RGBA_INTEGER
GL_DEPTH_COMPONENT
GL_DEPTH_STENCIL
GL_LUMINANCE_ALPHA
GL_ALPHA

type the type of the incoming pixel data; can be
GL_UNSIGNED_BYTE
GL_BYTE
GL_UNSIGNED_SHORT
GL_SHORT
GL_UNSIGNED_INT
GL_INT
GL_HALF_FLOAT
GL_FLOAT

pixels contains the actual pixel data for the image. The data must
contain (width * height * depth) number of pixels with
the appropriate number of bytes per pixel based on the
format and type specification. The image data should be
stored as a sequence of 2D texture slices.

262	 Chapter 9: Texturing

Once a 3D texture or 2D texture array has been loaded using
glTexImage3D, the texture can be fetched in the shader using the
texture built-in function.

vec4	 texture(sampler3D sampler, vec3 coord[,
float bias])

vec4	 texture(sampler2DArray sampler, vec3 coord[,
float bias])

sampler a sampler bound to a texture unit specifying the texture to
fetch from.

coord a 3D texture coordinate used to fetch from the texture map.

bias an optional parameter that provides a mipmap bias use for
the texture fetch. This allows the shader to explicitly bias the
computed LOD value used for mipmap selection.

Note that the r-coordinate is a floating-point value. For 3D textures,
depending on the filtering mode set, the texture fetch might span two
slices of the volume.

Compressed Textures

Thus far, we have been dealing with textures that were loaded with
uncompressed texture image data. OpenGL ES 3.0 also supports the
loading of compressed texture image data. There are several reasons why
compressing textures is desirable. The first and obvious reason to compress
textures is to reduce the memory footprint of the textures on the device.
A second, less obvious reason to compress textures is that a memory
bandwidth savings occurs when you fetch from compressed textures
in a shader. Finally, compressed textures might allow you to reduce the
download size of your application by reducing the amount of image data
that must be stored.

In OpenGL ES 2.0, the core specification did not define any compressed
texture image formats. That is, the OpenGL ES 2.0 core simply defined a
mechanism whereby compressed texture image data could be loaded, but
no compressed formats were defined. As a result, many vendors, including
Qualcomm, ARM, Imagination Technologies, and NVIDIA, provided
hardware-specific texture compression extensions. In turn, developers of
OpenGL ES 2.0 applications had to support different texture compression
formats on different platforms and hardware.

Compressed Textures	 263

OpenGL ES 3.0 has improved this situation by introducing standard
texture compression formats that all vendors must support. Ericsson
Texture Compression (ETC2 and EAC) was offered as a royalty-free
standard to Khronos, and it was adopted as the standard texture
compression format for OpenGL ES 3.0. There are variants of EAC
for compressing one- and two-channel data as well as variants of
ETC2 for compressing three- and four-channel data. The function
used to load compressed image data for 2D textures and cubemaps
is glCompressedTexImage2D; the corresponding function for 2D
texture arrays is glCompressedTexImage3D. Note that ETC2/EAC is not
supported for 3D textures (only 2D textures and 2D texture arrays), but
glCompressedTexImage3D can be used to potentially load vendor-specific
3D texture compression formats.

void	 glCompressedTexImage2D(�GLenum target, GLint level,
GLenum internalFormat,
GLsizei width,
GLsizei height,
GLint border,
GLsizei imageSize,
const void *data)

void	 glCompressedTexImage3D(�GLenum target, GLint level,
GLenum internalFormat,
GLsizei width,
GLsizei height,
GLsizei depth,
GLint border,
GLsizei imageSize,
const void *data)

target specifies the texture target; should be GL_
TEXTURE_2D or either the GL_TEXTURE_CUBE_MAP_*
(for glCompressedTexImage2D) or GL_TEXTURE_3D
or GL_TEXTURE_2D_ARRAY (for
glCompressedTexImage3D).

level specifies which mip level to load. The base level is
specified by 0, followed by an increasing level for
each successive mipmap.

internalFormat the internal format for the texture storage. The
standard compressed texture formats in OpenGL ES
3.0 are described in Table 9-12.

(continues)

264	 Chapter 9: Texturing

The standard ETC compressed texture formats supported by OpenGL ES
3.0 are listed in Table 9-12. All of the ETC formats store compressed image
data in 4 × 4 blocks. Table 9-12 lists the number of bits per pixel in each
of the ETC formats. The size of an individual ETC image can be computed
from the bits-per-pixel (bpp) ratio as follows:

sizeInBytes = max(width, 4) * max(height, 4) * bpp/8

Table 9-12	 Standard Texture Compression Formats

internalFormat
Size (bits
per pixel) Description

GL_COMPRESSED_R11_EAC 4 Single-channel unsigned
compressed GL_RED format

GL_COMPRESSED_SIGNED_R11_EAC 4 Single-channel signed compressed
GL_RED format

GL_COMPRESSED_RG11_EAC 8 Two-channel unsigned compressed
GL_RG format

GL_COMPRESSED_SIGNED_ RG11_EAC 8 Two-channel signed compressed
GL_RG format

GL_COMPRESSED_RGB8_ETC2 4 Three-channel unsigned
compressed GL_RGB format

GL_COMPRESSED_SRGB8_ETC2 4 Three-channel unsigned
compressed GL_RGB format in
sRGB colorspace

(continued)
width the width of the image in pixels.

height the height of the image in pixels.

depth (glCompressedTexImage3D only) the depth of the
image in pixels (or number of slices for a 2D texture
array).

border this parameter is ignored in OpenGL ES; it was
kept for compatibility with the desktop OpenGL
interface. Should be 0.

imageSize the size of the image in bytes.

data contains the actual compressed pixel data for the
image; must hold imageSize number of bytes.

Compressed Textures	 265

Once a texture has been loaded as a compressed texture, it can be used for
texturing in exactly the same way as an uncompressed texture. The details
of the ETC2/EAC formats are beyond our scope here, and most developers
will never write their own compressors. Freely available tools for generating
ETC images include the open-source libKTX library from Khronos (http://
khronos.org/opengles/sdk/tools/KTX/), the rg_etc project (https://code
.google.com/p/rg-etc1/), the ARM Mali Texture Compression Tool, Qualcomm
TexCompress (included in the Adreno SDK), and Imagination Technologies
PVRTexTool. We would encourage readers to evaluate the available tools and
choose the one that fits best with their development environment/platform.

Note that all implementations of OpenGL ES 3.0 will support the formats
listed in Table 9-12. In addition, some implementations may support vendor-
specific compressed formats not listed in Table 9-12. If you attempt to use a
texture compression format on an OpenGL ES 3.0 implementation that does
not support it, a GL_INVALID_ENUM error will be generated. It is important
that you check that the OpenGL ES 3.0 implementation exports the
extension string for any vendor-specific texture compression format you use.
If it does not, you must fall back to using an uncompressed texture format.

In addition to checking extension strings, there is another method
you can use to determine which texture compression formats
are supported by an implementation. That is, you can query for
GL_NUM_COMPRESSED_TEXTURE_FORMATS using glGetIntegerv to determine
the number of compressed image formats supported. You can then query
for GL_COMPRESSED_TEXTURE_FORMATS using glGetIntegerv, which will
return an array of GLenum values. Each GLenum value in the array will be a
compressed texture format that is supported by the implementation.

internalFormat
Size (bits
per pixel) Description

GL_COMPRESSED_RGB8_
PUNCHTHROUGH_ALPHA1_ETC2

4 Four-channel unsigned compressed
GL_RGBA format with 1-bit alpha

GL_COMPRESSED_SRGB8_
PUNCHTHROUGH_ALPHA1_ETC2

4 Four-channel unsigned compressed
GL_RGBA format with 1-bit alpha
in sRGB colorspace

GL_COMPRESSED_RGBA8_ ETC2_EAC 8 Four-channel unsigned compressed
GL_RGBA format

GL_COMPRESSED_SRGBA8_ ETC2_EAC 8 Four-channel unsigned compressed
GL_RGBA format in sRGB
colorspace

Table 9-12	 Standard Texture Compression Formats (continued)

http://khronos.org/opengles/sdk/tools/KTX/
http://khronos.org/opengles/sdk/tools/KTX/
https://code.google.com/p/rg-etc1/
https://code.google.com/p/rg-etc1/

266	 Chapter 9: Texturing

Texture Subimage Specification

After uploading a texture image using glTexImage2D, it is possible to
update portions of the image. This ability would be useful if you wanted
to update just a subregion of an image. The function to load a portion of a
2D texture image is glTexSubImage2D.

void	 glTexSubImage2D(�GLenum target, GLint level,
GLint xoffset, GLint yoffset,
GLsizei width, GLsizei height,
GLenum format, GLenum type,
const void* pixels)

target specifies the texture target, either GL_TEXTURE_2D or one of
the cubemap face targets
(GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X, and so on)

level specifies which mip level to update

xoffset the x index of the texel to start updating from

yoffset the y index of the texel to start updating from
width the width of the subregion of the image to update

height the height of the subregion of the image to update

format the format of the incoming texture data; can be
GL_RED, GL_RED_INTEGER, GL_RG, GL_RG_INTEGER,
GL_GL_RGB, GL_RGB_INTEGER, GL_RGBA,
GL_RGBA_INTEGER, GL_DEPTH_COMPONENT,
GL_DEPTH_STENCIL, GL_LUMINANCE_ALPHA,
GL_LUMINANCE, or GL_ALPHA

type the type of the incoming pixel data; can be
GL_UNSIGNED_BYTE, GL_BYTE, GL_UNSIGNED_SHORT,
GL_SHORT, GL_UNSIGNED_INT, GL_INT, GL_HALF_FLOAT,
GL_FLOAT, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_5_5_5_l,
GL_UNSIGNED_INT_2_10_10_10_REV,
GL_UNSIGNED_INT_10F_11F_11F_REV,
GL_UNSIGNED_INT_5_9_9_9_REV,
GL_UNSIGNED_INT_24_8, or
GL_FLOAT_32_UNSIGNED_INT_24_8_REV

pixels contains the actual pixel data for the subregion of the image

Texture Subimage Specification	 267

This function will update the region of texels in the range (xoffset, yoffset)
to (xoffset + width – 1, yoffset + height – 1). Note that to use this function,
the texture must already be fully specified. The range of the subimage
must be within the bounds of the previously specified texture image. The
data in the pixels array must be aligned to the alignment that is specified
by GL_UNPACK_ALIGNMENT with glPixelStorei.

There is also a function for updating a subregion of a compressed 2D
texture image—that is, glCompressedTexSubImage2D. The definition for
this function is more or less the same as that for glTexImage2D.

void	 glCompressedTexSubImage2D(�GLenum target,
GLint level, GLint xoffset,
GLint yoffset, GLsizei width,
GLsizei height,
GLenum format,
GLenum imageSize,
const void* pixels)

target specifies the texture target, either GL_TEXTURE_2D or one of
the cubemap face targets
(GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X, and so on)

level specifies which mip level to update

xoffset the x index of the texel to start updating from

yoffset the y index of the texel to start updating from
width the width of the subregion of the image to update

height the height of the subregion of the image to update

format the compressed texture format to use; must be
the format with which the image was originally specified

pixels contains the actual pixel data for the subregion of the image

void	 glTexSubImage3D(�GLenum target, GLint level,
GLint xoffset, GLint yoffset,
GLint zoffset, GLsizei width,
GLsizei height, GLsizei depth,
GLenum format, GLenum type,
const void* pixels)

In addition, as with 2D textures, it is possible to update just a subregion of
an existing 3D texture and 2D texture arrays using glTexSubImage3D.

(continues)

268	 Chapter 9: Texturing

glTexSubImage3D behaves just like glTexSubImage2D, with the only
difference being that the subregion contains a zoffset and a depth
for specifying the subregion within the depth slices to update. For
compressed 2D texture arrays, it is also possible to update a subregion of
the texture using glCompressedTexSubImage3D. For 3D textures, this
function can be used only with vendor-specific 3D compressed texture
formats, because ETC2/EAC are supported only for 2D textures and 2D
texture arrays.

(continued)

target specifies the texture target, either GL_TEXTURE_3D or
GL_TEXTURE_2D_ARRAY

level specifies which mip level to update

xoffset the x index of the texel to start updating from

yoffset the y index of the texel to start updating from

zoffset the z index of the texel to start updating from

width the width of the subregion of the image to update

height the height of the subregion of the image to update

depth the depth of the subregion of the image to update

format the format of the incoming texture data; can be
GL_RED, GL_RED_INTEGER, GL_RG, GL_RG_INTEGER,
GL_GL_RGB, GL_RGB_INTEGER, GL_RGBA,
GL_RGBA_INTEGER, GL_DEPTH_COMPONENT,
GL_DEPTH_STENCIL, GL_LUMINANCE_ALPHA,
GL_LUMINANCE, or GL_ALPHA

type the type of the incoming pixel data; can be
GL_UNSIGNED_BYTE, GL_BYTE, GL_UNSIGNED_SHORT,
GL_SHORT, GL_UNSIGNED_INT, GL_INT, GL_HALF_FLOAT,
GL_FLOAT, GL_UNSIGNED_SHORT_5_6_5,
GL_UNSIGNED_SHORT_4_4_4_4, GL_UNSIGNED_SHORT_5_5_5_l,
GL_UNSIGNED_INT_2_10_10_10_REV,
GL_UNSIGNED_INT_10F_11F_11F_REV,
GL_UNSIGNED_INT_5_9_9_9_REV,
GL_UNSIGNED_INT_24_8, or
GL_FLOAT_32_UNSIGNED_INT_24_8_REV

pixels contains the actual pixel data for the subregion of the image

Copying Texture Data from the Color Buffer	 269

Copying Texture Data from the Color Buffer

An additional texturing feature that is supported in OpenGL ES 3.0 is the
ability to copy data from a color buffer to a texture. This can be useful
if you want to use the results of rendering as an image in a texture.
Framebuffer objects (Chapter 12) provide a fast method for doing render-
to-texture and are a faster method than copying image data. However, if
performance is not a concern, the ability to copy image data out of the
color buffer can be a useful feature.

The color buffer from which to copy image data from can be set using the
function glReadBuffer. If the application is rendering to a double-buffered
EGL displayable surface, then glReadBuffer must be set to GL_BACK (the
back buffer—the default state). Recall that OpenGL ES 3.0 supports only
double-buffered EGL displayable surfaces. As a consequence, all OpenGL

void	 glCompressedTexSubImage3D(�GLenum target,
GLint level,
GLint xoffset,
GLint yoffset,
GLint zoffset,
GLsizei width,
GLsizei height,
GLsizei depth,
GLenum format,
GLenum imageSize,
const void* data)

target specifies the texture target, either GL_TEXTURE_2D or
GL_TEXTURE_2D_ARRAY)

level specifies which mip level to update

xoffset the x index of the texel to start updating from

yoffset the y index of the texel to start updating from

zoffset the z index of the texel to start updating from

width the width of the subregion of the image to update

height the height of the subregion of the image to update

depth the depth of the subregion of the image to update

format the compressed texture format to use; must be
the format with which the image was originally specified

pixels contains the actual pixel data for the subregion of the image

270	 Chapter 9: Texturing

The functions to copy data from the color buffer to a texture are
glCopyTexImage2D, glCopyTexSubImage2D, and glCopyTexSubImage3D.

void	 glCopyTexImage2D(GLenum target, GLint level,
GLenum internalFormat, GLint x,
GLint y, GLsizei width,
GLsizei height, Glint border)

target specifies the texture target, either GL_TEXTURE_2D or
one of the cubemap face targets
(GL_TEXTURE_CUBE_MAP_POSITIVE_X,
  GL_TEXTURE_CUBE_MAP_NEGATIVE_X, and so on)

level specifies which mip level to load
internalFormat the internal format of the image; can be

GL_ALPHA, GL_LUMINANCE, GL_LUMINANCE_ALPHA,
GL_RGB, GL_RGBA, GL_R8, GL_RG8, GL_RGB565,
GL_RGB8, GL_RGBA4, GL_RGB5_A1, GL_RGBA8,
GL_RGB10_A2, GL_SRGB8, GL_SRGB8_ALPHA8,

ES 3.0 applications that draw to the display will have a color buffer for both
the front and back buffers. The buffer that is currently the front or back
is determined by the most recent call to eglSwapBuffers (described in
Chapter 3, “An Introduction to EGL”). When you copy image data out of
the color buffer from a displayable EGL surface, you will always be copying
the contents of the back buffer. If you are rendering to an EGL pbuffer, then
copying will occur from the pbuffer surface. Finally, if you are rendering to
a framebuffer object, then the framebuffer object color attachment to copy
from is set by calling glReadBuffer with GL_COLOR_ATTACHMENTi.

void	 glReadBuffer(GLenum mode)

mode specifies the color buffer to read from. This will

set the source color buffer for future calls to

	 glReadPixels, glCopyTexImage2D,

	 glCopyTexSubImage2D, and

	 glCopyTexSubImage3D. The value can be either

	 GL_BACK, GL_COLOR_ATTACHMENTi, or

	 GL_NONE.

Copying Texture Data from the Color Buffer	 271

void	 glCopyTexSubImage2D(GLenum target,
GLint level, GLint xoffset,
GLint yoffset, GLint x, GLint y,
GLsizei width, GLsizei height)

target specifies the texture target, either GL_TEXTURE_2D or one of
the cubemap face targets
(GL_TEXTURE_CUBE_MAP_POSITIVE_X,
  GL_TEXTURE_CUBE_MAP_NEGATIVE_X, and so on)

level specifies which mip level to update

xoffset the x index of the texel to start updating from

yoffset the y index of the texel to start updating from

x the x window-coordinate of the lower-left rectangle in the
framebuffer to read from

y the y window-coordinate of the lower-left rectangle in the
framebuffer to read from

GL_R8I, GL_R8UI, GL_R16I, GL_R16UI, GL_R32I,
GL_R32UI, GL_RG8I, GL_RG8UI, GL_RG16I,
GL_RG16UI, GL_RG32I, GL_RG32UI, GL_RGBA8I,
GL_RGBA8UI, GL_RGB10_A2UI, GL_RGBA16I,
GL_RGBA16UI, GL_RGBA32I, or GL_RGBA32UI

x the x window-coordinate of the lower-left rectangle
in the framebuffer to read from

y the y window-coordinate of the lower-left rectangle
in the framebuffer to read from

width the width in pixels of the region to read

height the height in pixels of the region to read

border borders are not supported in OpenGL ES 3.0, so this
parameter must be 0

Calling this function will cause the texture image to be loaded with the
pixels in the color buffer from region (x, y) to (x + width – 1, y + height – 1).
This width and height of the texture image will be the size of the region
copied from the color buffer. You should use this information to fill the
entire contents of the texture.

In addition, you can update just the subregion of an already-specified
image using glCopyTexSubImage2D.

(continues)

272	 Chapter 9: Texturing

This function will update the subregion of the image starting at (xoffset,
yoffset) to (xoffset + width – 1, yoffset + height – 1) with the pixels in the
color buffer from (x, y) to (x + width – 1, y + height – 1).

Finally, you can also copy the contents of the color buffer into a slice (or
subregion of a slice) of a previously specified 3D texture or 2D texture
array using glCopyTexSubImage3D.

void  glCopyTexSubImage3D(�GLenum target, GLint level,
GLint xoffset, GLint yoffset,
GLint zoffset, GLint x, GLint y,
GLsizei width, GLsizei height)

target specifies the texture target, either GL_TEXTURE_3D
or GL_TEXTURE_2D_ARRAY

level specifies which mip level to update

xoffset the x index of the texel to start updating from

yoffset the y index of the texel to start updating from

zoffset the z index of the texel to start updating from

x the x window-coordinate of the lower-left rectangle in the
framebuffer to read from

y the y window-coordinate of the lower-left rectangle in the
framebuffer to read from

width the width in pixels of the region to read

height the height in pixels of the region to read

One thing to keep in mind with glCopyTexImage2D,
glCopyTexSubImage2D, and glCopyTexSubImage3D is that the texture
image format cannot have more components than the color buffer. In
other words, when copying data out of the color buffer, it is possible
to convert to a format with fewer components, but not with more.
Table 9-13 shows the valid format conversions when doing a texture
copy. For example, you can copy an RGBA image into any of the possible
formats, but you cannot copy an RGB into an RGBA image because no
alpha component exists in the color buffer.

(continued)
width the width in pixels of the region to read
height the height in pixels of the region to read

Sampler Objects	 273

Sampler Objects

Previously in the chapter, we covered how to set texture parameters
such as filter modes, texture coordinate wrap modes, and LOD
settings using glTexParameter[i|f][v]. The issue with using
glTexParameter[i|f][v] is that it can result in a significant amount
of unnecessary API overhead. Very often, an application will use the
same texture settings for a large number of textures. In such a case,
having to set the sampler state with glTexParameter[i|f][v] for
every texture object can result in a lot of extra overhead. To mitigate
this problem, OpenGL ES 3.0 introduces sampler objects that separate
sampler state from texture state. In short, all of the settings that can
be set with glTexParameter[i|f][v] can be set for a sampler object
and can be bound for use with a texture unit in a single function call.
Sampler objects can be used across many textures and, therefore, reduce
API overhead.

The function used to generate sampler objects is glGenSamplers.

Table 9-13	 Valid Format Conversions for glCopyTex*Image*

(To) Texture Format

Color Format
(From)

A L LA R RG RGB RGBA

R N Y N Y N N N

RG N Y N Y Y N N

RGB N Y N Y Y Y N

RGBA Y Y Y Y Y Y Y

void	 glGenSamplers(GLsizei n, GLuint *samplers)

n specifies the number of sampler objects to generate

samplers an array of unsigned integers that will hold n sampler
object IDs

Sampler objects also need to be deleted when an application no longer
needs them. This can be done using glDeleteSamplers.

274	 Chapter 9: Texturing

Once sampler object IDs have been generated with glGenSamplers,
the application must bind the sampler object to use its state. Sampler
objects are bound to texture units. Binding the sampler object to the
texture unit supersedes any of the state set in the texture object using
glTexParameter[i|f][v]. The function used to bind a sampler object is
glBindSampler.

void	 glDeleteSamplers(GLsizei n, const GLuint *samplers)

n specifies the number of sampler objects to delete

samplers an array of unsigned integers that hold n sampler object
IDs to delete

void	 glBindSampler(GLenum unit, GLuint sampler)

unit specifies the texture unit to bind the sampler object to

sampler the handle to the sampler object to bind

void	 glSamplerParameteri(�GLuint sampler, GLenum pname,
GLint param)

void	 glSamplerParameteriv(�GLuint sampler, GLenum pname,
const GLint *params)

void	 glSamplerParameterf(�GLuint sampler, GLenum pname,
GLfloat param)

void	 glSamplerParameterfv(�GLuint sampler, GLenum pname,
const GLfloat *params)

If the sampler passed to glBindSampler is 0 (the default sampler),
then the state set for the texture object will be used. The sampler object
state can be set using glSamplerParameter[f|i][v]. The parameters
that can be set by glSamplerParameter[f|i][v] are the exact
same ones that are set by using glTexParameter[i|f][v]. The only
difference is that the state is set to the sampler object rather than the
texture object.

Sampler Objects	 275

sampler the sampler object to set
pname the parameter to set; one of

GL_TEXTURE_BASE_LEVEL
GL_TEXTURE_COMPARE_FUNC
GL_TEXTURE_COMPARE_MODE
GL_TEXTURE_MIN_FILTER
GL_TEXTURE_MAG_FILTER
GL_TEXTURE_MIN_LOD
GL_TEXTURE_MAX_LOD
GL_TEXTURE_MAX_LEVEL
GL_TEXTURE_SWIZZLE_R
GL_TEXTURE_SWIZZLE_G
GL_TEXTURE_SWIZZLE_B
GL_TEXTURE_SWIZZLE_A
GL_TEXTURE_WRAP_S
GL_TEXTURE_WRAP_T
GL_TEXTURE_WRAP_R

params the value (or array of values for the “v” entrypoints) to set the
texture parameter to

If pname is GL_TEXTURE_MAG_FILTER, then param can be
GL_NEAREST or GL_LINEAR

If pname is GL_TEXTURE_MIN_FILTER, then param can be
GL_NEAREST, GL_LINEAR, GL_NEAREST_MIPMAP_NEAREST,
GL_NEAREST_MIPMAP_LINEAR, GL_LINEAR_MIPMAP_NEAREST, or
GL_LINEAR_MIPMAP_LINEAR

If pname is GL_TEXTURE_WRAP_S, GL_TEXTURE_WRAP_R, or
GL_TEXTURE_WRAP_T, then param can be
GL_REPEAT, GL_CLAMP_TO_EDGE, or GL_MIRRORED_REPEAT

If pname is GL_TEXTURE_COMPARE_FUNC, then param can be
GL_LEQUAL, GL_EQUAL, GL_LESS, GL_GREATER, GL_EQUAL,
GL_NOTEQUAL, GL_ALWAYS, or GL_NEVER

If pname is GL_TEXTURE_COMPARE_MODE, then param can be
GL_COMPARE_REF_TO_TEXTURE or GL_NONE

If pname is GL_TEXTURE_SWIZZLE_R, GL_TEXTURE_SWIZZLE_G,
GL_TEXTURE_SWIZZLE_B, or GL_TEXTURE_SWIZZLE_A, then
param can be
GL_RED, GL_GREEN, GL_BLUE, GL_ALPHA, GL_ZERO, or
GL_ONE

276	 Chapter 9: Texturing

Immutable Textures

Another feature introduced in OpenGL ES 3.0 to help improve application
performance is immutable textures. As discussed earlier in this chapter, an
application specifies each mipmap level of a texture independently using
functions such as glTexImage2D and glTexImage3D. The problem this
creates for the OpenGL ES driver is that it cannot determine until draw time
whether a texture has been fully specified. That is, it has to check whether
each mipmap level or subimage has matching formats, whether each level has
the correct dimensions, and whether there is sufficient memory. This draw
time check can be costly and can be avoided by using immutable textures.

The idea behind immutable textures is simple: The application specifies the
format and size of a texture before loading it with data. In doing so, the
texture format becomes immutable and the OpenGL ES driver can perform
all consistency and memory checks up-front. Once a texture has become
immutable, its format and dimensions cannot change. However, the
application can still load it with image data by using glTexSubImage2D,
glTexSubImage3D, or glGenerateMipMap, or by rendering to the texture.

To create an immutable texture, an application would bind the texture
using glBindTexture and then allocate its immutable storage using
glTexStorage2D or glTexStorage3D.

void	 glTexStorage2D(�GLenum target, GLsizei levels,
GLenum internalFormat, GLsizei width,
GLsizei height)

void	 glTexStorage3D(�GLenum target, GLsizei levels,
GLenum internalFormat, GLsizei width,
GLsizei height, GLsizei depth)

target specifies the texture target, either GL_TEXTURE_2D or
one of the cubemap face targets
(GL_TEXTURE_CUBE_MAP_POSITIVE_X,
GL_TEXTURE_CUBE_MAP_NEGATIVE_X, and so on) for
glTexStorage2D, or GL_TEXTURE_3D or
GL_TEXTURE_2D_ARRAY for glTexStorage3D

levels specifies the number of mipmap levels

internalFormat the sized internal format for the texture storage;
the full list of valid internalFormat values is the
same as the valid sized internalFormat values for
glTexImage2D provided in the Texture Objects and
Loading Textures section earlier in this chapter.

Pixel Unpack Buffer Objects	 277

Once the immutable texture is created, it is invalid to call glTexImage*,
glCompressedTexImage*, glCopyTexImage*, or glTexStorage* on
the texture object. Doing so will result in a GL_INVALID_OPERATION
error being generated. To fill the immutable texture with image data,
the application needs to use glTexSubImage2D, glTexSubImage3D, or
glGenerateMipMap, or else render to the image as a texture (by using it as
an attachment to a framebuffer object).

Internally, when glTexStorage* is used, OpenGL ES marks the texture
object as being immutable by setting GL_TEXTURE_IMMUTABLE_FORMAT to
GL_TRUE and GL_TEXTURE_IMMUTABLE_LEVELS to the number of levels
passed to glTexStorage*. The application can query for these values by
using glGetTexParameter[i|f][v], although it cannot set them directly.
The glTexStorage* function must be used to set up the immutable
texture parameters.

Pixel Unpack Buffer Objects

In Chapter 6, “Vertex Attributes, Vertex Arrays, and Buffer Objects,” we
introduced buffer objects, concentrating the discussion on vertex buffer
objects (VBOs) and copy buffer objects. As you will recall, buffer objects
allow the storage of data in server-side (or GPU) memory as opposed to
client-side (or host) memory. The advantage of using buffer objects is
that they reduce the transfer of data from CPU to GPU and, therefore,
can improve performance (as well as reduce memory utilization).
OpenGL ES 3.0 also introduces pixel unpack buffer objects that are bound
and specified with the GL_PIXEL_UNPACK_BUFFER target. The functions
that operate on pixel unpack buffer objects are described in Chapter 6.
Pixel unpack buffer objects allow the specification of texture data that
resides in server-side memory. As a consequence, the pixel unpack
operations glTexImage*, glTexSubImage*, glCompressedTexImage*,
and glCompressedTexSubImage* can come directly from a buffer object.
Much like VBOs with glVertexAttribPointer, if a pixel unpack buffer
object is bound during one of those calls, the data pointer is an offset into
the pixel unpack buffer rather than a pointer to client memory.

width the width of the base image in pixels

height the height of the base image in pixels

depth (glTexStorage3D only) the depth of the base image
in pixels

278	 Chapter 9: Texturing

Pixel unpack buffer objects can be used to stream texture data to the GPU.
The application could allocate a pixel unpack buffer and then map regions
of the buffer for updates. When the calls to load the data to OpenGL are
made (e.g., glTexSubImage*), these functions can return immediately
because the data already resides in the GPU (or can be copied at a later
time, but an immediate copy does not need to be made as it does with
client-side data). We recommend using pixel unpack buffer objects in
situations where the performance/memory utilization of texture upload
operations is important for the application.

Summary

This chapter covered how to use textures in OpenGL ES 3.0. We
introduced the various types of textures: 2D, 3D, cubemaps, and 2D
texture arrays. For each texture type, we showed how the texture can be
loaded with data either in full, in subimages, or by copying data from
the framebuffer. We detailed the wide range of texture formats available
in OpenGL ES 3.0, which include normalized texture formats, floating-
point textures, integer textures, shared exponent textures, sRGB textures,
and depth textures. We covered all of the texture parameters that can be
set for texture objects, including filter modes, wrap modes, depth texture
comparison, and level-of-detail settings. We explored how to set texture
parameters using the more efficient sampler objects. Finally, we showed
how to create immutable textures that can help reduce the draw-time
overhead of using textures. We also saw how textures can be read in the
fragment shader with several example programs. With all this information
under your belt, you are well on your way toward using OpenGL ES 3.0
for many advanced rendering effects. Next, we cover more details of the
fragment shader that will help you further understand how textures can
be used to achieve a wide range of rendering techniques.

279

Chapter 10

Fragment Shaders

Chapter 9, “Texturing,” introduced you to the basics of creating and
applying textures in the fragment shader. In this chapter, we provide
more details on the fragment shader and describe some of its uses. In
particular, we focus on how to implement fixed-function techniques
using the fragment shader. The topics we cover in this chapter include
the following:

•• Fixed function fragment shaders

•• Programmable fragment shader overview

•• Multitexturing

•• Fog

•• Alpha test

•• User clip planes

In Figure 10-1, we have previously covered the vertex shader, primitive
assembly, and rasterization stages of the programmable pipeline. We have
talked about using textures in the fragment shader. Now, we focus on the
fragment shader portion of the pipeline and fill in the remaining details
on writing fragment shaders.

280	 Chapter 10: Fragment Shaders

Fixed-Function Fragment Shaders

Readers who are new to the programmable fragment pipeline but have
worked with OpenGL ES 1.x (or earlier versions of desktop OpenGL) are
probably familiar with the fixed-function fragment pipeline. Before diving
into details of the fragment shader, we think it is worthwhile to briefly
review the old fixed-function fragment pipeline. This will give you an
understanding of how the old fixed-function pipeline maps into fragment
shaders. It’s a good way to start before moving into more advanced
fragment programming techniques.

In OpenGL ES 1.1 (and fixed-function desktop OpenGL), you had a
limited set of equations that could be used to determine how to combine
the various inputs to the fragment shader. In the fixed-function pipeline,
you essentially had three inputs you could use: the interpolated vertex
color, the texture color, and the constant color. The vertex color would
typically hold either a precomputed color or the result of the vertex
lighting computation. The texture color came from fetching from
whichever texture was bound using the primitive’s texture coordinates
and the constant color could be set for each texture unit.

Vertex Buffer/
Array Objects

Transform
FeedbackArray Objects

Vertex Shader

Fragment
Shader

Feedback

r Primitive
Assembly Rasterization

Per-Fragment
Operations

Framebuffer

API

Fragment

Textures

Figure 10-1	 OpenGL ES 3.0 Programmable Pipeline

Fixed-Function Fragment Shaders	 281

The set of equations you could use to combine these inputs together was
quite limited. For example, in OpenGL ES 1.1, the equations listed in
Table 10-1 were available. The inputs A, B, and C to these equations could
come from the vertex color, texture color, or constant color.

Table 10-1	 OpenGL ES 1.1 RGB Combine Functions

RGB Combine Function Equation

REPLACE A

MODULATE A × B

ADD A + B

ADD_SIGNED A + B – 0.5

INTERPOLATE A × C + B × (1 – C)

SUBTRACT A – B

DOT3_RGB (and DOT3_RGBA) 4 × ((A.r – 0.5) × (B.r – 0.5) + (A.g – 0.5) ×
(B.g – 0.5) + (A.b – 0.5) × (B.b × 0.5))

There actually was a great number of interesting effects one could achieve,
even with this limited set of equations. However, this was far from
programmable, as the fragment pipeline could be configured only in a
very fixed set of ways.

So why are we reviewing this history here? It helps give an understanding
of how traditional fixed-function techniques can be achieved with
shaders. For example, suppose we had configured the fixed-function
pipeline with a single base texture map that we wanted to modulate
(multiply) by the vertex color. In fixed-function OpenGL ES (or OpenGL),
we would enable a single texture unit, choose a combine equation of
MODULATE, and set up the inputs to the equation to come from the vertex
color and texture color. The code to do this in OpenGL ES 1.1 is provided
here for reference:

glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_COMBINE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_RGB, GL_MODULATE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_RGB, GL_PRIMARY_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCEl_RGB, GL_TEXTURE);
glTexEnvi(GL_TEXTURE_ENV, GL_COMBINE_ALPHA, GL_MODULATE);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCE0_ALPHA, GL_PRIMARY_COLOR);
glTexEnvi(GL_TEXTURE_ENV, GL_SOURCEl_ALPHA, GL_TEXTURE);

282	 Chapter 10: Fragment Shaders

This code configures the fixed-function pipeline to perform a modulate
(A × B) between the primary color (the vertex color) and the texture color.
If this code doesn’t make sense to you, don’t worry, as none of it exists
in OpenGL ES 3.0. Rather, we are simply trying to show how this would
map to a fragment shader. In a fragment shader, this same modulate
computation could be accomplished as follows:

#version 300 es
precision mediump float;
uniform sampler2D s_tex0;
in vec2 v_texCoord;
in vec4 v_primaryColor;
layout(location = 0) out vec4 outColor;
void main()
{
 outColor = texture(s_tex0, v_texCoord) * v_primaryColor;
}

The fragment shader performs the exact same operations that would be
performed by the fixed-function setup. The texture value is fetched from
a sampler (that is bound to texture unit 0) and a 2D texture coordinate
is used to look up that value. Then, the result of that texture fetch is
multiplied by v_primaryColor, an input value that is passed in from the
vertex shader. In this case, the vertex shader would have passed the color
to the fragment shader.

It is possible to write a fragment shader that would perform the equivalent
computation as any possible fixed-function texture combine setup. It is
also possible, of course, to write shaders with much more complex and
varied computations than just fixed functions would allow. However, the
point of this section was just to drive home how we have transitioned
from fixed-function to programmable shaders. Now, we begin to look at
some specifics of fragment shaders.

Fragment Shader Overview

The fragment shader provides a general-purpose programmable method
for operating on fragments. The inputs to the fragment shader consist of
the following:

•• Inputs (or varyings)—Interpolated data produced by the vertex shader.
The outputs of the vertex shader are interpolated across the primitive
and passed to the fragment shader as inputs.

•• Uniforms—State used by the fragment shader. These are constant
values that do not vary per fragment.

Fragment Shader Overview	 283

•• Samplers—Used to access texture images in the shader.

•• Code—Fragment shader source or binary that describes the operations
that will be performed on the fragment.

The output of the fragment shader is one or more fragment colors
that get passed on to the per-fragment operations portion of the pipeline
(the number of output colors depends on how many color attachments
are being used). The inputs and outputs to the fragment shader are
illustrated in Figure 10-2.

Built-In Special Variables

OpenGL ES 3.0 has built-in special variables that are output by the
fragment shader or are input to the fragment shader. The following
built-in special variables are available to the fragment shader:

•• gl_FragCoord—A read-only variable that is available in the fragment
shader. This variable holds the window relative coordinates (x, y, z, 1/w)

Uniformss Samplers

Fragment Shader

Output color 0

Output color 1Output color 1

Output color N

gl_FragDepth

…

…

Un

Input (Varying) 0

Input (Varying) 1

Input (Varying) 2

Input (Varying) 3

Input (Varying) 4

gl_FragCoord

gl_FrontFacing

gl_PointCoord

…

Input (Varying) 4

gl_FragCoord

l F F i

Input (Varying) N

Figure 10-2	 OpenGL ES 3.0 Fragment Shader

284	 Chapter 10: Fragment Shaders

of the fragment. There are a number of algorithms where it can be
useful to know the window coordinates of the current fragment. For
example, you can use the window coordinates as offsets into a texture
fetch into a random noise map whose value is used to rotate a filter
kernel on a shadow map. This technique is used to reduce shadow map
aliasing.

•• gl_FrontFacing—A read-only variable that is available in the
fragment shader. This boolean variable has a value of true if the
fragment is part of a front-facing primitive and false otherwise.

•• gl_PointCoord—A read-only variable that can be used when rendering
point sprites. It holds the texture coordinate for the point sprite that is
automatically generated in the [0, 1] range during point rasterization.
In Chapter 14, “Advanced Programming with OpenGL ES 3.0,” there is
an example of rendering point sprites that uses this variable.

•• gl_FragDepth—A write-only output variable that, when written
to in the fragment shader, overrides the fragment’s fixed-function
depth value. This functionality should be used sparingly (and only
when necessary) because it can disable depth optimization in many
GPUs. For example, many GPUs have a feature called Early-Z where
the depth test is performed ahead of executing the fragment shader.
The benefit of using Early-Z is that fragments that fail the depth
test are never shaded (thus saving performance). However, when
gl_FragDepth is used, this feature must be disabled because the GPU
does not know the depth value ahead of executing the fragment
shader.

Built-In Constants

The following built-in constants are also relevant to the fragment shader:

const mediump int gl_MaxFragmentInputVectors = 15;
const mediump int gl_MaxTextureImageUnits = 16;
const mediump int gl_MaxFragmentUniformVectors = 224;
const mediump int gl_MaxDrawBuffers = 4;
const mediump int gl_MinProgramTexelOffset = -8;
const mediump int gl_MaxProgramTexelOffset = 7;

The built-in constants describe the following maximum terms:

•• gl_MaxFragmentInputVectors—The maximum number of fragment
shader inputs (or varyings). The minimum value supported by all
ES 3.0 implementations is 15.

Fragment Shader Overview	 285

•• gl_MaxTextureImageUnits—The maximum number of texture image
units that are available. The minimum value supported by all ES 3.0
implementations is 16.

•• gl_MaxFragmentUniformVectors—The maximum number of
vec4 uniform entries that can be used inside a fragment shader.
The minimum value supported by all ES 3.0 implementations is
224. The number of vec4 uniform entries that can actually be used
by a developer can vary from implementation to implementation
and from one fragment shader to another. This issue is described in
Chapter 8, “Vertex Shaders,” and the same issue applies to fragment
shaders.

•• gl_MaxDrawBuffers—The maximum number of multiple render
targets (MRTs) supported. The minimum value supported by all ES 3.0
implementations is 4.

•• gl_MinProgramTexelOffset/gl_MaxProgramTexelOffset—The
minimum and maximum offsets supported by the offset parameter to
the texture*Offset() built-in ESSL functions.

The values specified for each built-in constant are the minimum values
that must be supported by all OpenGL ES 3.0 implementations. It is
possible that implementations may support values greater than the
minimum values described. The actual hardware-dependent values
for fragment shader built-in values can also be queried from API
code. The following code shows how you would query the values of
gl_MaxTextureImageUnits and gl_MaxFragmentUniformVectors:

GLint maxTextureImageUnits, maxFragmentUniformVectors;

glGetIntegerv(GL_MAX_TEXTURE_IMAGE_UNITS,
&maxTextureImageUnits);

glGetIntegerv(GL_MAX_FRAGMENT_UNIFORM_VECTORS
&maxFragmentUniformVectors);

Precision Qualifiers

Precision qualifiers were briefly introduced in Chapter 5, “OpenGL ES
Shading Language” and were covered in detail in Chapter 8, “Vertex
Shaders.” Please review those sections for full details on precision
qualifiers. We remind you here that there is no default precision for
fragment shaders. As a consequence, every fragment shader must
declare a default precision (or provide precision qualifiers for all variable
declarations).

286	 Chapter 10: Fragment Shaders

Implementing Fixed-Function Techniques
Using Shaders

Now that we have given an overview of fragment shaders, we will
demonstrate how to implement several fixed-function techniques using
shaders. The fixed-function pipeline in OpenGL ES l.x and desktop
OpenGL provided APIs to perform multitexturing, fog, alpha test, and
user clip planes. Although none of these techniques is provided explicitly
in OpenGL ES 3.0, all of them can still be implemented using shaders.
This section reviews each of these fixed-function processes and provides
example fragment shaders that demonstrate each technique.

Multitexturing

We start with multitexturing, which is a very common operation in
fragment shaders used for combining multiple texture maps. For example,
a technique that has been used in many games, such as Quake III, is to store
precomputed lighting from radiosity calculations in a texture map. That
map is then combined with the base texture map in the fragment shader to
represent static lighting. Many other examples of using multiple textures
exist, some of which we cover in Chapter 14, “Advanced Programming
with OpenGL ES 3.0.” For example, often a texture map is used to store
a specular exponent and mask to attenuate and mask specular lighting
contributions. Many games also use normal maps, which are textures that
store normal information at a higher level of detail than per-vertex normals
so that lighting can be computed in the fragment shader.

The point of mentioning this information here is to highlight that you have
now learned about all of the parts of the API that are needed to accomplish
multitexturing techniques. In Chapter 9, “Texturing,” you learned how to
load textures on various texture units and fetch from them in the fragment
shader. Combining the textures in various ways in the fragment shader is
simply a matter of employing the many operators and built-in functions
that exist in the shading language. Using these techniques, you can easily
achieve all of the effects that were made possible with the fixed-function
fragment pipeline in previous versions of OpenGL ES.

An example of using multiple textures is provided in the Chapter_10/
MultiTexture example, which renders the image in Figure 10-3.

This example loads a base texture map and light map texture and
combines them in the fragment shader on a single quad. The fragment
shader for the sample program is provided in Example 10-1.

Implementing Fixed-Function Techniques Using Shaders	 287

Example 10-1	 Multitexture Fragment Shader

#version 300 es
precision mediump float;
in vec2 v_texCoord;
layout(location = 0) out vec4 outColor;
uniform sampler2D s_baseMap;
uniform sampler2D s_lightMap;
void main()
{
 vec4 baseColor;
 vec4 lightColor;

 baseColor = texture(s_baseMap, v_texCoord);
 lightColor = texture(s_lightMap, v_texCoord);
 // Add a 0.25 ambient light to the texture light color
 outColor = baseColor * (lightColor + 0.25);
}

The fragment shader has two samplers, one for each of the textures. The
relevant code for setting up the texture units and samplers follows.

// Bind the base map
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, userData->baseMapTexId);
// Set the base map sampler to texture unit 0
glUniformli(userData->baseMapLoc, 0);

Figure 10-3	 Multitextured Quad

288	 Chapter 10: Fragment Shaders

// Bind the light map
glActiveTexture(GL_TEXTUREl);
glBindTexture(GL_TEXTURE_2D, userData->lightMapTexId);
// Set the light map sampler to texture unit 1
glUniformli(userData->lightMapLoc, 1);

As you can see, this code binds each of the individual texture objects
to textures units 0 and 1. The samplers are set with values to bind the
samplers to the respective texture units. In this example, a single texture
coordinate is used to fetch from both of the maps. In typical light
mapping, there would be a separate set of texture coordinates for the base
map and light map. The light maps are typically paged into a single large
texture and the texture coordinates can be generated using offline tools.

Fog

A common technique that is used in rendering 3D scenes is the
application of fog. In OpenGL ES 1.1, fog was provided as a fixed-function
operation. One of the reasons fog is such a prevalent technique is that it
can be used to reduce draw distances and remove “popping” of geometry
as it comes in closer to the viewer.

There are a number of possible ways to compute fog, and with programmable
fragment shaders you are not limited to any particular equation. Here we
show how you would go about computing linear fog with a fragment shader.
To compute any type of fog, we will need two inputs: the distance of the
pixel to the eye and the color of the fog. To compute linear fog, we also need
the minimum and maximum distance range that the fog should cover.

The equation for the linear fog factor

computes a linear fog factor to multiply the fog color by. This color gets
clamped in the [0.0, 1.0] range and then is linear interpolated with the
overall color of a fragment to compute the final color. The distance to
the eye is best computed in the vertex shader and interpolated across the
primitive using a varying variable.

A PVRShaman (.POD) workspace is provided as an example in the
Chapter_10/PVR_LinearFog folder that demonstrates the fog
computation. Figure 10-4 is a screenshot of the workspace. PVRShaman is
a shader development integrated development environment (IDE) that is
part of the Imagination Technologies PowerVR SDK downloadable from
http://powervrinsider.com/. Several subsequent examples in the book use
PVRShaman to demonstrate various shading techniques.

=
−
−

F
MaxDist EyeDist
MaxDist MinDist

http://powervrinsider.com/

Implementing Fixed-Function Techniques Using Shaders	 289

Figure 10-4	 Linear Fog on Torus in PVRShaman

Example 10-2	 Vertex Shader for Computing Distance to Eye

#version 300 es
uniform mat4 u_matViewProjection;
uniform mat4 u_matView;
uniform vec4 u_eyePos;

in vec4 a_vertex;
in vec2 a_texCoord0;

out vec2 v_texCoord;
out float v_eyeDist;

void main(void)
{
 // Transform vertex to view space
 vec4 vViewPos = u_matView * a_vertex;
 // Compute the distance to eye
 v_eyeDist = sqrt((vViewPos.x - u_eyePos.x) *

(vViewPos.x - u_eyePos.x) +
(vViewPos.y - u_eyePos.y) *
(vViewPos.y - u_eyePos.y) +
(vViewPos.z - u_eyePos.z) *
(vViewPos.z - u_eyePos.z));

 gl_Position = u_matViewProjection * a_vertex;
 v_texCoord = a_texCoord0.xy;
}

Example 10-2 provides the code for the vertex shader that computes the
distance to the eye.

290	 Chapter 10: Fragment Shaders

The important part of this vertex shader is the computation of the
v_eyeDist vertex shader output variable. First, the input vertex is
transformed into view space using the view matrix and stored in
vViewPos. Then, the distance from this point to the u_eyePos uniform
variable is computed. This computation gives us the distance in eye space
from the viewer to the transformed vertex. We can use this value in the
fragment shader to compute the fog factor, as shown in Example 10-3.

Example 10-3	 Fragment Shader for Rendering Linear Fog

#version 300 es
precision mediump float;

uniform vec4 u_fogColor;
uniform float u_fogMaxDist;
uniform float u_fogMinDist;
uniform sampler2D baseMap;

in vec2 v_texCoord;
in float v_eyeDist;

layout(location = 0) out vec4 outColor;

float computeLinearFogFactor()
{
 float factor;
 // Compute linear fog equation
 factor = (u_fogMaxDist − v_eyeDist) /

(u_fogMaxDist − u_fogMinDist);

 // Clamp in the [0, 1] range
 factor = clamp(factor, 0.0, 1.0);
 return factor;
}

void main(void)
{
 float fogFactor = computeLinearFogFactor();
 vec4 baseColor = texture(baseMap, v_texCoord);

 // Compute final color as a lerp with fog factor
 outColor = baseColor * fogFactor +

u_fogColor * (1.0 − fogFactor);
}

Implementing Fixed-Function Techniques Using Shaders	 291

In the fragment shader, the computeLinearFogFactor() function
performs the computation for the linear fog equation. The minimum
and maximum fog distances are stored in uniform variables, and the
interpolated eye distance that was computed in the vertex shader is
used to compute the fog factor. The fog factor is then used to perform
a linear interpolation (abbreviated as “lerp” in Example 10-3) between
the base texture color and the fog color. The result is that we now have
linear fog and can easily adjust the distances and colors by changing the
uniform values.

Note that with the flexibility of programmable fragment shaders, it is very
easy to implement other methods to compute fog. For example, you could
easily compute exponential fog by simply changing the fog equation.
Alternatively, rather than compute fog based on distance to the eye, you
could compute fog based on distance to the ground. A number of possible
fog effects can be easily achieved with small modifications to the fog
computations provided here.

Alpha Test (Using Discard)

A common effect used in 3D applications is to draw primitives that are
fully transparent in certain fragments. This is very useful for rendering
something like a chain-link fence. Representing a fence using geometry
would require a significant amount of primitives. However, an alternative
to using geometry is to store a mask value in a texture that specifies which
texels should be transparent. For example, you could store the chain-link
fence in a single RGBA texture, where the RGB values represent the color
of the fence and the A value represents the mask of whether the texture
is transparent. Then you could easily render a fence using just one or two
triangles and masking off pixels in the fragment shader.

In traditional fixed-function rendering, this effect was achieved using
the alpha test. The alpha test allowed you to specify a comparison test
whereby if comparison of an alpha value of a fragment with a reference
value failed, that fragment would be killed. That is, if a fragment failed the
alpha test, the fragment would not be rendered. In OpenGL ES 3.0, there
is no fixed-function alpha test, but the same effect can be achieved in the
fragment shader using the discard keyword.

The PVRShaman example in Chapter_10/PVR_AlphaTest gives a very
simple example of doing the alpha test in the fragment shader, as shown
in Figure 10-5.

292	 Chapter 10: Fragment Shaders

Figure 10-5	 Alpha Test Using Discard

Example 10-4	 Fragment Shader for Alpha Test Using Discard

#version 300 es
precision mediump float;

uniform sampler2D baseMap;

in vec2 v_texCoord;
layout(location = 0) out vec4 outColor;
void main(void)
{
 vec4 baseColor = texture(baseMap, v_texCoord);
 // Discard all fragments with alpha value less than 0.25
 if(baseColor.a < 0.25)
 {

discard;
 }
 else
 {

outColor = baseColor;
 }
}

In this fragment shader, the texture is a four-channel RGBA texture. The
alpha channel is used for the alpha test. The alpha color is compared with
0.25; if it is less than that value, the fragment is killed using discard.

Example 10-4 gives the fragment shader code for this example.

Implementing Fixed-Function Techniques Using Shaders	 293

Otherwise, the fragment is drawn using the texture color. This technique
can be used for implementing the alpha test by simply changing the
comparison or alpha reference value.

User Clip Planes

As described in Chapter 7, “Primitive Assembly and Rasterization,”
all primitives are clipped against the six planes that make up the view
frustum. However, sometimes a user might want to clip against one or
more additional user clip planes. There are a number of reasons why you
might want to clip against user clip planes. For example, when rendering
reflections, you need to flip the geometry about the reflection plane and
then render it into an off-screen texture. When rendering into the texture,
you need to clip the geometry against the reflection plane, which requires
a user clip plane.

In OpenGL ES 1.1, user clip planes could be provided to the API via
a plane equation and the clipping would be handheld automatically.
In OpenGL ES 3.0, you can still accomplish this same effect, but now
you need to do it yourself in the shader. The key to implementing user
clip planes is using the discard keyword, which was introduced in the
previous section.

Before showing you how to implement user clip planes, let’s review the
basics of the mathematics. A plane is specified by the equation

Ax + By + Cz + D = 0

The vector (A, B, C) represents the normal of the plane and the value D
is the distance of the plane along that vector from the origin. To figure
out whether a point should or should not be clipped against a plane,
we need to evaluate the distance from a point P to a plane with the
equation

Dist = (A × P·x) + (B × P·y) + (C × P·z) + D

If the distance is less than 0, we know the point is behind the plane
and should be clipped. If the distance is greater than or equal to 0, it
should not be clipped. Note that the plane equation and P must be in
the same coordinate space. A PVRShaman example is provided in the
Chapter_10/PVR_ClipPlane workspace and illustrated in Figure 10-6.
In the example, a teapot is rendered and clipped against a user
clip plane.

294	 Chapter 10: Fragment Shaders

The first thing the shader needs to do is compute the distance to the
plane, as mentioned earlier. This could be done in either the vertex shader
(and passed into a varying) or the fragment shader. It is cheaper in terms
of performance to do this computation in the vertex shader rather than
having to compute the distance in every fragment. The vertex shader
listing in Example 10-5 shows the distance-to-plane computation.

Example 10-5	 User Clip Plane Vertex Shader

#version 300 es
uniform vec4 u_clipPlane;
uniform mat4 u_matViewProjection;
in vec4 a_vertex;

out float v_clipDist;

void main(void)
{
 // Compute the distance between the vertex and
 // the clip plane
 v_clipDist = dot(a_vertex.xyz, u_clipPlane.xyz) +

u_clipPlane.w;
 gl_Position = u_matViewProjection * a_vertex;
}

The u_clipPlane uniform variable holds the plane equation for the clip
plane and is passed into the shader using glUniform4f. The v_clipDist
varying variable then stores the computed clip distance. This value is passed
into the fragment shader, which uses the interpolated distance to determine
whether the fragment should be clipped, as shown in Example 10-6.

Figure 10-6	 User Clip Plane Example

Summary	 295

As you can see, if the v_clipDist varying variable is negative, this
means the fragment is behind the clip plane and must be discarded.
Otherwise, the fragment is processed as usual. This simple example just
demonstrates the computations needed to implement user clip planes.
You can easily implement multiple user clip planes by simply computing
multiple clip distances and having multiple discard tests.

Summary

This chapter introduced implementing several rendering techniques
using fragment shaders. We focused on implementing fragment shaders
that accomplish techniques that were part of fixed-function OpenGL
ES 1.1. Specifically, we showed you how to implement multitexturing,
linear fog, alpha test, and user clip planes. The number of shading
techniques that become possible when using programmable fragment
shaders is nearly limitless. This chapter gave you grounding in how to
develop some fragment shaders that you can build on to create more
sophisticated effects.

Now we are just ready to introduce a number of advanced rendering
techniques. The next topics to cover before getting there are what
happens after the fragment shader—namely, per-fragment operations and
framebuffer objects. These topics are covered in the next two chapters.

Example 10-6	 User Clip Plane Fragment Shader

#version 300 es
precision mediump float;
in float v_clipDist;
layout(location = 0) out vec4 outColor;
void main(void)
{
 // Reject fragments behind the clip plane
 if(v_clipDist < 0.0)

discard;
 outColor = vec4(0.5, 0.5, 1.0, 0.0);
}

This page intentionally left blank

297

Scissor
Box

Stencil
Test

Fragment
Shader

Depth
Test Blending Dithering

Figure 11-1	 The Post-Shader Fragment Pipeline

Chapter 11

Fragment Operations

This chapter discusses the operations that can be applied either to the
entire framebuffer or to individual fragments after the execution of the
fragment shader in the OpenGL ES 3.0 fragment pipeline. As you’ll recall,
the output of the fragment shader is the fragment’s colors and depth
value. The following operations occur after fragment shader execution
and can affect the visibility and final color of a pixel:

•• Scissor box testing

•• Stencil buffer testing

•• Depth buffer testing

•• Multisampling

•• Blending

•• Dithering

The tests and operations that a fragment goes through on its way to the
framebuffer are shown in Figure 11-1.

298	 Chapter 11: Fragment Operations

As you might have noticed, there isn’t a stage named “multisampling.”
Multisampling is an anti-aliasing technique that duplicates operations
at a subfragment level. We describe how multisampling affects fragment
processing in more depth later in the chapter.

The chapter concludes with a discussion of methods for reading pixels
from and writing pixels to the framebuffer.

Buffers

OpenGL ES supports three types of buffers, each of which stores different
data for every pixel in the framebuffer:

•• Color buffer (composed of front and back color buffers)

•• Depth buffer

•• Stencil buffer

The size of a buffer—commonly referred to as the “depth of the buffer”
(but not to be confused with the depth buffer)—is measured by the
number of bits that are available for storing information for a single pixel.
The color buffer, for example, will have three components for storing the
red, green, and blue color components, and optional storage for the alpha
component. The depth of the color buffer is the sum of the number of bits
for all of its components. For the depth and stencil buffers, in contrast,
a single value represents the bit depth of a pixel in those buffers. For
example, a depth buffer might have 16 bits per pixel. The overall size of
the buffer is the sum of the bit depths of all of the components. Common
framebuffer depths include 16-bit RGB buffers, with 5 bits for red and
blue, and 6 bits for green (the human visual system is more sensitive to
green than to red or blue), and 32 bits divided equally for an RGBA buffer.

Additionally, the color buffer may be double buffered, such that
it contains two buffers: one that is displayed on the output device
(usually a monitor or LCD display), named the “front” buffer; and
another buffer that is hidden from the viewer, but used for constructing
the next image to be displayed, and called the “back” buffer. In double-
buffered applications, animation is accomplished by drawing into the
back buffer, and then swapping the front and back buffers to display
the new image. This swapping of buffers is usually synchronized with
the refresh cycle of the display device, which will give the illusion of

Buffers	 299

a continuously smooth animation. Recall that double buffering was
discussed in Chapter 3, “An Introduction to EGL.”

Although every EGL configuration will have a color buffer, the depth and
stencil buffers are optional. However, every EGL implementation must
provide at least one configuration that contains all three of the buffers,
with the depth buffer being at least 16 bits deep, and at least 8 bits for
the stencil buffer.

Requesting Additional Buffers

To include a depth or stencil buffer along with your color buffer, you
need to request them when you specify the attributes for your EGL
configuration. As discussed in Chapter 3, you pass a set of attribute–
value pairs into the EGL that specify the type of rendering surface your
application needs. To include a depth buffer in addition to the color
buffer, you would specify EGL_DEPTH_SIZE in the list of attributes
along with the desired bit depth you need. Likewise, you would add
EGL_STENCIL_SIZE along with the number of required bits to obtain
a stencil buffer.

Our convenience library, esUtil, simplifies those operations by merely
allowing you to say that you would like those buffers along with a color
buffer, and it takes care of the rest of the work (requesting a maximally
sized buffer). When using our library, you would add (by means of a bit-
wise or operation) ES_WINDOW_DEPTH and ES_WINDOW_STENCIL in your
call to esCreateWindow. For example,

esCreateWindow (&esContext,   “Application Name”,
window_width,  window_height,
   ES_WINDOW_RGB | ES_WINDOW_DEPTH |
   ES_WINDOW_STENCIL);

Clearing Buffers

OpenGL ES is an interactive rendering system, and it assumes that at
the start of each frame, you’ll want to initialize all of the buffers to their
default value. Buffers are cleared by calling the glClear function, which
takes a bitmask representing the various buffers that should be cleared to
their specified clear values.

300	 Chapter 11: Fragment Operations

void glClearDepthf(GLfloat depth)

depth specifies the depth value (in the range [0, 1]) that all pixels in
the depth buffer should be initialized to when
GL_DEPTH_BUFFER_BIT is present in the bitmask passed
to glClear

void glClearStencil(GLint s)

s specifies the stencil value (in the range [0, 2n – 1], where n is
the number of bits available in the stencil buffer) that all pixels
in the stencil buffer should be initialized to when
GL_STENCIL_BUFFER_BIT is present in the bitmask passed
to glClear

You’re required neither to clear every buffer nor to clear them all at the
same time, but you might obtain the best performance by calling glClear
only once per frame with all the buffers you want simultaneously cleared.

Each buffer has a default value that’s used when you request that buffer be
cleared. For each buffer, you can specify your desired clear value using the
functions shown here:

void glClearColor(�GLfloat red, GLfloat green,
GLfloat blue, GLfloat alpha)	

red, green,	 specifies the color value (in the range [0, 1]) that all

blue,	 pixels in the color buffers should be initialized to when

alpha 	�GL_COLOR_BUFFER_BIT is present in the bitmask passed
to glClear

void glClear(GLbitfield mask)

mask	� specifies the buffers to be cleared, and is composed of the union
of the following bitmasks representing the various OpenGL ES
buffers: GL_COLOR_BUFFER_BIT‚ GL_DEPTH_BUFFER_BIT,
GL_STENCIL_BUFFER_BIT

Buffers	 301

To reduce the number of function calls, you can clear the depth and
stencil buffers at the same time using glClearBufferfi.

void   glClearBufferiv(GLenum buffer, GLint drawBuffer,
const GLint *value)

void   glClearBufferuiv(GLenum buffer, GLint drawBuffer,
 const GLuint *value)

void   glClearBufferfv(GLenum buffer, GLint drawBuffer,
const GLfloat *value)

buffer

drawBuffer

value

specifies the type of buffer to clear. Can be
GL_COLOR, GL_FRONT, GL_BACK, GL_FRONT_AND_BACK,
GL_LEFT, GL_RIGHT, GL_DEPTH (glClearBufferfv only) or
GL_STENCIL (glClearBufferiv only).

specifies the draw buffer name to clear. Must be zero
for depth or stencil buffers. Otherwise, must be less than
GL_MAX_DRAW_BUFFERS for color buffers.

specifies a pointer to a four-element vector (for color
buffers) or to a single value (for depth or stencil buffers)
to clear the buffer to.

If you have multiple draw buffers in a framebuffer object (see the Multiple
Render Targets section), you can clear a specific draw buffer with the
following calls:

void glClearBufferfi(�GLenum buffer, GLint drawBuffer,
GLfloat depth, GLint stencil)

buffer

drawBuffer

depth

stencil

specifies the type of buffer to clear; must be
GL_DEPTH_STENCIL

specifies the draw buffer name to clear; must be zero

specifies the value to clear the depth buffer to
specifies the value to clear the stencil buffer to

Using Masks to Control Writing to Framebuffers

You can also control which buffers, or components, in the case of the
color buffer, are writable by specifying a buffer write mask. Before a pixel’s

302	 Chapter 11: Fragment Operations

Likewise, writing to the depth buffer is controlled by calling
glDepthMask with GL_TRUE or GL_FALSE to specify whether the depth
buffer is writable.

Often, writing to the depth buffer is disabled when rendering translucent
objects. Initially, you would render all of the opaque objects in the scene
with writing to the depth buffer enabled (i.e., set to GL_TRUE). This would
ensure that all of the opaque objects are correctly depth sorted, and the
depth buffer contains the appropriate depth information for the scene.
Then, before rendering the translucent objects, you would disable writing to
the depth buffer by calling glDepthMask (GL_FALSE). While writing to the
depth buffer is disabled, values can still be read from it and used for depth
comparisons. This allows translucent objects that are obscured by opaque
objects to be correctly depth buffered, but does not modify the depth buffer
such that opaque objects would be obscured by translucent ones.

Finally, you can disable writing to the stencil buffer by calling
glStencilMask. Unlike with glColorMask or glDepthMask, you can

void glColorMask(GLboolean red, GLboolean green,
GLboolean blue, GLboolean alpha)

red, green,	 specify whether the particular color component
blue,	 in the color buffer is modifiable while rendering
alpha	

void glDepthMask(GLboolean depth)

depth	 specifies whether the depth buffer is modifiable

value is written into a buffer, the buffer’s mask is used to verify that the
buffer is writable.

For the color buffer, the glColorMask routine specifies which
components in the color buffer will be updated if a pixel is written.
If the mask for a particular component is set to GL_FALSE, that
component will not be updated if written to. By default, all color
components are writable.

Fragment Tests and Operations	 303

specify which bits of the stencil buffer are writable by providing a
mask.

The glStencilMaskSeparate routine allows you to set the stencil mask
based on the face vertex order (sometimes called “facedness”) of the
primitive. This allows different stencil masks for front- and back-facing
primitives. glStencilMaskSeparate(GL_FRONT_AND_BACK, mask) is
identical to calling glStencilMask, which sets the same mask for the
front and back polygon faces.

Fragment Tests and Operations

The following sections describe the various tests that can be applied to
a fragment in OpenGL ES. By default, all fragment tests and operations
are disabled, and fragments become pixels as they are written to the
framebuffer in the order in which they are received. By enabling the
various fragments, operational tests can be applied to choose which
fragments become pixels and affect the final image.

Each fragment test is individually enabled by calling glEnable with the
appropriate token listed in Table 11-1.

void glStencilMaskSeparate(GLenum face, GLuint mask)	

face	 specifies the stencil mask to be applied based on the face vertex
order of the rendered primitive. Valid values are GL_FRONT,
GL_BACK, and GL_FRONT_AND_BACK.

mask	 specifies a bitmask (in the range [0, 2n], where n is the number of
bits in the stencil buffer) of which bits in a pixel in the stencil
buffer are specified by face.

void glStencilMask(GLuint mask)

mask	� specifies a bitmask (in the range [0, 2n – 1], where n is the
number of bits in the stencil buffer) of which bits in a pixel in
the stencil buffer are modifiable.

304	 Chapter 11: Fragment Operations

Using the Scissor Test

The scissor test provides an additional level of clipping by specifying a
rectangular region that further limits which pixels in the framebuffer are
writable. Using the scissor box is a two-step process. First, you need to
specify the rectangular region using the glScissor function.

After specifying the scissor box, you need to enable it by calling
glEnable(GL_SCISSOR_TEST) to employ the additional clipping. All
rendering, including clearing the viewport, is restricted to the scissor box.

Generally, the scissor box is a subregion in the viewport, but the two
regions are not required to actually intersect. When the two regions do
not intersect, the scissoring operation will be performed on pixels that
are rendered outside of the viewport region. Note that the viewport

void glScissor(GLint x, GLint y, GLsizei width,
GLsizei height)

x, y	� specify the lower-left corner of the scissor rectangle in
viewport coordinates

width	 specifies the width of the scissor box (in pixels)

height	 specifies the height of the scissor box (in pixels)

Table 11-1	 Fragment Test Enable Tokens

glEnable Token Description

GL_DEPTH_TEST Control depth testing of fragments

GL_STENCIL_TEST Control stencil testing of fragments

GL_BLEND Control blending of fragments with
colors stored in the color buffer

GL_DITHER Control dithering of fragment colors
before being written in the color buffer

GL_SAMPLE_COVERAGE Control computation of sample
coverage values

GL_SAMPLE_ALPHA_TO_COVERAGE Control use of a sample’s alpha in the
computation of a sample coverage value

Fragment Tests and Operations	 305

transformation happens before the fragment shader stage, while the
scissor test happens after the fragment shader stage.

Stencil Buffer Testing

The next operation that might be applied to a fragment is the stencil test.
The stencil buffer is a per-pixel mask that holds values that can be used to
determine whether a pixel should be updated. The stencil test is enabled
or disabled by the application.

Using the stencil buffer can be considered a two-step operation. The first
step is to initialize the stencil buffer with the per-pixel masks, which is
done by rendering geometry and specifying how the stencil buffer should
be updated. The second step is generally to use those values to control
subsequent rendering into the color buffer. In both cases, you specify how
the parameters are to be used in the stencil test.

The stencil test is essentially a bit test, as you might do in a C program
where you use a mask to determine if a bit is set, for example. The
stencil function, which controls the operator and values of the stencil
test, is controlled by the glStencilFunc or glStencilFuncSeparate
functions.

void glStencilFunc(GLenum func, GLint ref, GLuint mask)
void glStencilFuncSeparate(GLenum face, GLenum func,

GLint ref, GLuint mask)

face	 specifies the face associated with the provided stencil function.
Valid values are GL_FRONT, GL_BACK, and GL_FRONT_AND_BACK
(glStencilFuncSeparate only).

func	 specifies the comparison function for the stencil test. Valid values
are GL_EQUAL, GL_NOTEQUAL, GL_LESS, GL_GREATER,
GL_LEQUAL, GL_GEQUAL, GL_ALWAYS, and GL_NEVER.

ref	 specifies the comparison value for the stencil test.

mask	 specifies the mask that is bit-wise anded with the bits in the
stencil buffer before being compared with the reference value.

To allow finer control of the stencil test, a masking parameter is used to
select which bits of the stencil values should be considered for the test.
After selecting those bits, their value is compared with a reference value

306	 Chapter 11: Fragment Operations

using the operator provided. For example, to specify that the stencil test
passes where the lowest three bits of the stencil buffer are equal to 2, you
would call

glStencilFunc (GL_EQUAL, 2, 0x7);

and enable the stencil test. Note that in binary format, the last three bits
of 0x7 are 111.

With the stencil test configured, you generally also need to let OpenGL
ES 3.0 know what to do with the values in the stencil buffer when the
stencil test passes. In fact, modifying the values in the stencil buffer
relies on more than just the stencil tests, but also incorporates the
results of the depth test (discussed in the next section). Three possible
outcomes can occur for a fragment with the combined stencil and
depth tests:

1. The fragment fails the stencil tests. If this occurs, no further testing
(i.e., the depth test) is applied to that fragment.

2. The fragment passes the stencil test, but fails the depth test.

3. The fragment passes both the stencil and depth tests.

Each of those possible outcomes can be used to affect the value
in the stencil buffer for that pixel location. The glStencilOp and
glStencilOpSeparate functions control the actions done on the stencil
buffer’s value for each of those test outcomes, and the possible operations
on the stencil values are shown in Table 11-2.

Table 11-2	 Stencil Operations

Stencil Function Description

GL_ZERO Set the stencil value to zero

GL_REPLACE Replace the current stencil value with the
reference value specified in glStencilFunc
or glStencilFuncSeparate

GL_INCR, GL_DECR Increment or decrement the stencil value; the
stencil value is clamped to zero or 2n, where n is
the number of bits in the stencil buffer

GL_INCR_WRAP,
GL_DECR_WRAP

Increment or decrement the stencil value, but
“wrap” the value if the stencil value overflows

Fragment Tests and Operations	 307

The following example illustrates using glStencilFunc and glStencilOp
to control rendering in various parts of the viewport:

GLfloat vVertices[] =

 {
 −0.75f, 0.25f, 0.50f, // Quad #0
 −0.25f, 0.25f, 0.50f,
 −0.25f, 0.75f, 0.50f,
 −0.75f, 0.75f, 0.50f,

void glStencilOp(GLenum sfail, GLenum zfail,
GLenum zpass)

void glStencilOpSeparate(GLenum face, GLenum sfail,
GLenum zfail, GLenum zpass)

face	 specifies the face associated with the provided stencil function.
Valid values are GL_FRONT, GL_BACK, and GL_FRONT_AND_BACK
(glStencilOpSeparate only).

sfail	 specifies the operation applied to the stencil bits if the fragment
fails the stencil test. Valid values are GL_KEEP, GL_ZERO,
GL_REPLACE, GL_INCR, GL_DECR, GL_INCR_WRAP,
GL_DECR_WRAP, and GL_INVERT.

zfail 	specifies the operation applied when the fragment passes the
stencil test, but fails the depth test

zpass	 specifies the operation applied when the fragment passes both
the stencil and depth tests

Table 11-2	 Stencil Operations (continued)

Stencil Function Description

(incrementing the maximum value will result
in a new stencil value of zero) or underflows
(decrementing zero will result in the maximum
stencil value)

GL_KEEP Keep the current stencil value, effectively not
modifying the value for that pixel

GL_INVERT Bit-wise invert the value in the stencil buffer

(continues)

308	 Chapter 11: Fragment Operations

0.25f, 0.25f, 0.90f, // Quad #1
0.75f, 0.25f, 0.90f,
0.75f, 0.75f, 0.90f,
0.25f, 0.75f, 0.90f,

 −0.75f, −0.75f, 0.50f, // Quad #2
 −0.25f, −0.75f, 0.50f,
 −0.25f, −0.25f, 0.50f,
 −0.75f, −0.25f, 0.50f,

0.25f, −0.75f, 0.50f, // Quad #3
0.75f, −0.75f, 0.50f,
0.75f, −0.25f, 0.50f,
0.25f, −0.25f, 0.50f,

 −1.00f, −1.00f, 0.00f, // Big Quad
1.00f, −1.00f, 0.00f,
1.00f, 1.00f, 0.00f,

 −1.00f, 1.00f, 0.00f
 };

GLubyte indices[][6] =
{
 { 0, 1, 2, 0, 2, 3 }, // Quad #0
 { 4, 5, 6, 4, 6, 7 }, // Quad #1
 { 8, 9, 10, 8, 10, 11 }, // Quad #2
 { 12, 13, 14, 12, 14, 15 }, // Quad #3
 { 16, 17, 18, 16, 18, 19 } // Big Quad
};

#define NumTests 4
 GLfloat colors[NumTests][4] =
 {

{ 1.0f, 0.0f, 0.0f, 1.0f },
{ 0.0f, 1.0f, 0.0f, 1.0f },
{ 0.0f, 0.0f, 1.0f, 1.0f },
{ 1.0f, 1.0f, 0.0f, 0.0f }

 };

 GLint numStencilBits;
 GLuint stencilValues[NumTests] =
 {

0x7, // Result of test 0
0x0, // Result of test 1
0x2, // Result of test 2
0xff // Result of test 3. We need to fill this

// value in a run-time
 };

 // Set the viewport
 glViewport (0, 0, esContext−>width, esContext−>height);

(continued)

Fragment Tests and Operations	 309

 // Clear the color, depth, and stencil buffers. At this
 // point, the stencil buffer will be 0x1 for all pixels.
 glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT |

GL_STENCIL_BUFFER_BIT);

 // Use the program object
 glUseProgram (userData−>programObject);

 // Load the vertex position
 glVertexAttribPointer (userData−>positionLoc, 3, GL_FLOAT,

GL_FALSE, 0, vVertices);

 glEnableVertexAttribArray (userData−>positionLoc);

 // Test 0:
 //
 // Initialize upper-left region. In this case, the stencil-
 // buffer values will be replaced because the stencil test
 // for the rendered pixels will fail the stencil test,
 // which is
 //
 // ref mask stencil mask
 // (0x7 & 0x3) < (0x1 & 0x7)
 //
 // The value in the stencil buffer for these pixels will
 // be 0x7.
 //
 glStencilFunc (GL_LESS, 0x7, 0x3);
 glStencilOp (GL_REPLACE, GL_DECR, GL_DECR);
 glDrawElements (GL_TRIANGLES, 6, GL_UNSIGNED_BYTE,

indices[0]);

 // Test 1:
 //
 // Initialize the upper-right region. Here, we’ll decrement
 // the stencil-buffer values where the stencil test passes
 // but the depth test fails. The stencil test is
 //
 // 	 ref mask stencil mask
 // 	 (0x3 & 0x3) > (0x1 & 0x3)
 //
 // 	 but where the geometry fails the depth test. The
 // 	 stencil values for these pixels will be 0x0.
 //
 glStencilFunc (GL_GREATER, 0x3, 0x3);
 glStencilOp (GL_KEEP, GL_DECR, GL_KEEP);
 glDrawElements (GL_TRIANGLES, 6, GL_UNSIGNED_BYTE,

indices[1]);

(continues)

310	 Chapter 11: Fragment Operations

 // Test 2:
 //
 // Initialize the lower-left region. Here we’ll increment
 // (with saturation) the stencil value where both the
 // stencil and depth tests pass. The stencil test for
 // these pixels will be
 //
 // 	 ref mask stencil mask
 // 	 (0x1 & 0x3) == (0x1 & 0x3)
 //
 // The stencil values for these pixels will be 0x2.
 //
 glStencilFunc (GL_EQUAL, 0x1, 0x3);
 glStencilOp (GL_KEEP, GL_INCR, GL_INCR);
 glDrawElements (GL_TRIANGLES, 6, GL_UNSIGNED_BYTE,

indices[2]);

 // Test 3:
 //
 // Finally, initialize the lower-right region. We’ll invert
 // the stencil value where the stencil tests fails. The
 // stencil test for these pixels will be
 //
 // 	 ref mask stencil mask
 // 	 (0x2 & 0x1) == (0x1 & 0x1)
 //
 // The stencil value here will be set to ~((2^s−1) & 0x1),
 // (with the 0x1 being from the stencil clear value),
 // where 's' is the number of bits in the stencil buffer.
 //
 glStencilFunc (GL_EQUAL, 0x2, 0x1);
 glStencilOp (GL_INVERT, GL_KEEP, GL_KEEP);
 glDrawElements (GL_TRIANGLES, 6, GL_UNSIGNED_BYTE,indices[3]);

 // As we don’t know at compile-time how many stencil bits are
 // present, we’ll query, and update, the correct value in the
 // stencilValues arrays for the fourth tests. We’ll use this
 // value later in rendering.
 glGetIntegerv (GL_STENCIL_BITS, &numStencilBits);

 stencilValues[3] = ~(((1 << numStencilBits) – 1) & 0x1) &
0xff;

 // Use the stencil buffer for controlling where rendering
 // will occur. We disable writing to the stencil buffer so we
 // can test against them without modifying the values we
 // generated.
 glStencilMask (0x0);

(continued)

Blending	 311

 for (i = 0; i < NumTests; ++i)
 {

glStencilFunc (GL_EQUAL, stencilValues[i], 0xff);
glUniform4fv (userData->colorLoc, 1, colors[i]);
glDrawElements (GL_TRIANGLES, 6, GL_UNSIGNED_BYTE,		

indices[4]);
 }

Depth Buffer Testing

The depth buffer is typically used for hidden-surface removal. It traditionally
keeps the distance value of the closest object to the viewpoint for each pixel
in the rendering surface, and for every new incoming fragment, compares
its distance from the viewpoint with the stored value. By default, if the
incoming fragment’s depth value is less than the value stored in the depth
buffer (meaning it’s closer to the viewer), the incoming fragment’s depth
value replaces the values stored in the depth buffer, and then its color value
replaces the color value in the color buffer. This is the standard method for
depth buffering—and if that’s what you would like to do, you simply need
to request a depth buffer when you create a window, and then enable the
depth test by calling glEnable with GL_DEPTH_TEST. If no depth buffer is
associated with the color buffer, the depth test always passes.

Of course, that’s only one way to use the depth buffer. You can modify the
depth comparison operator by calling glDepthFunc.

void glDepthFunc(GLenum func)

func	 specifies the depth value comparison function, which can be one
of GL_LESS, GL_GREATER, GL_LEQUAL, GL_GEQUAL,
GL_EQUAL, GL_NOTEQUAL, GL_ALWAYS, or GL_NEVER

Blending

This section discusses blending pixel colors. Once a fragment passes all of
the enabled fragment tests, its color can be combined with the color that’s
already present in the fragment’s pixel location. Before the two colors are
combined, they’re multiplied by a scaling factor and combined using the
specified blending operator. The blending equation is

opC f C f Cfinal source source destination destination=

312	 Chapter 11: Fragment Operations

where fsource and Csource are the incoming fragment’s scaling factor and color,
respectively. Likewise, fdestination and Cdestination are the pixel’s scaling factor and
color, and op is the mathematical operator for combining the scaled values.

The scaling factors are specified by calling either glBlendFunc or
glBlendFuncSeparate.

void glBlendFuncSeparate(GLenum srcRGB, GLenum dstRGB,
GLenum srcAlpha, GLenum dstAlpha)

srcRGB	 specifies the blending coefficient for the incoming fragment’s
red, green, and blue components

dstRGB	 specifies the blending coefficient for the destination pixel’s
red, green, and blue components

srcAlpha	 specifies the blending coefficient for the incoming fragment’s
alpha value

dstAlpha	 specifies the blending coefficient for the destination pixel’s
alpha value

Table 11-3	 Blending Functions

Blending Coefficient Enum RGB Blending Factors
Alpha Blending
Factor

GL_ZERO (0, 0, 0) 0

GL_ONE (1, 1, 1) 1

GL_SRC_COLOR (Rs, Gs, Bs) As

GL_ONE_MINUS_SRC_COLOR (1 – Rs, 1 – Gs, 1 – Bs) 1 – As

GL_SRC_ALPHA (As, As, As) As

GL_ONE_MINUS_SRC_ALPHA (1 – As, 1 – As, 1 – As) 1 – As

void glBlendFunc(GLenum sfactor, GLenum dfactor)

sfactor 	 specifies the blending coefficient for the incoming fragment

dfactor	 specifies the blending coefficient for the destination pixel

The possible values for the blending coefficients are shown in Table 11-3.

Blending	 313

In Table 11-3, (Rs, Gs, Bs, As) are the color components associated with the
incoming fragment color, (Rd, Gd, Bd, Ad) are the components associated
with the pixel color already in the color buffer, and (Ra, Gc, Bc, Ac) represent
a constant color that you set by calling glBlendColor. In the case of
GL_SRC_ALHPA_SATURATE, the minimum value computed is applied to the
source color only.

void glBlendColor(GLfloat red, GLfloat green,
GLfloat blue, GLfloat alpha)

red, green,	 specify the component values for the constant
blue,	 blending color
alpha	

Table 11-3	 Blending Functions (continued)

Blending Coefficient Enum RGB Blending Factors
Alpha Blending
Factor

GL_DST_COLOR (Rd, Gd, Bd) Ad

GL_ONE_MINUS_DST_COLOR (1 − Rd, 1 − Gd, 1 − Bd) 1− Ad

GL_DST_ALPHA (Ad, Ad, Ad) Ad

GL_ONE_MINUS_DST_ALPHA (1 − Ad, 1 − Ad, 1 − Ad) 1 − Ad

GL_CONSTANT_COLOR (Rc, Gc, Bc) Ac

GL_ONE_MINUS_CONSTANT_COLOR (1 − Rc, 1 − Gc, 1 − Bc) 1 − Ac

GL_CONSTANT_ALPHA (Ac, Ac, Ac) Ac

GL_ONE_MINUS_CONSTANT_ALPHA (1 − Ac, 1 − Ac, 1 − Ac) 1 − Ac

GL_SRC_ALPHA_SATURATE min(As, 1 − Ad) 1

Once the incoming fragment and pixel color have been multiplied by
their respective scaling factors, they are combined using the operator
specified by glBlendEquation or glBlendEquationSeparate. By
default, blended colors are accumulated using the GL_FUNC_ADD
operator. The GL_FUNC_SUBTRACT operator subtracts the scaled color
from the framebuffer from the incoming fragment’s value. Likewise, the

314	 Chapter 11: Fragment Operations

GL_FUNC_REVERSE_SUBTRACT operator reverses the blending equation,
such that the incoming fragment colors are subtracted from the current
pixel value.

Dithering

On a system where the number of colors available in the framebuffer is
limited due to the number of bits per component in the framebuffer, we
can simulate greater color depth using dithering. Dithering algorithms
arrange colors in such a way that the image appears to have more
available colors than are really present. OpenGL ES 3.0 doesn’t specify
which dithering algorithm is to be used in supporting its dithering stage;
the technique is very implementation dependent.

The only control your application has over dithering is whether it is
applied to the final pixels. This decision is entirely controlled by calling
glEnable or glDisable with GL_DITHER to specify dithering’s use in the
pipeline. Initially, dithering is enabled.

Multisampled Anti-Aliasing

Anti-aliasing is an important technique for improving the quality of
generated images by trying to reduce the visual artifacts of rendering
into discrete pixels. The geometric primitives that OpenGL ES 3.0 renders
are rasterized onto a grid, and their edges may become deformed in that

void glBlendEquationSeparate(GLenum modeRGB,
GLenum modeAlpha)

modeRGB 	 specifies the blending operator for the red, green, and blue
components

modeAlpha	 specifies the alpha component blending operator

void glBlendEquation(GLenum mode)

mode specifies the blending operator. Valid values are GL_FUNC_ADD,
GL_FUNC_SUBTRACT, GL_FUNC_REVERSE_SUBTRACT,
GL_MIN, or GL_MAX.

Multisampled Anti-Aliasing	 315

process. You have almost certainly seen the staircase effect that happens to
lines drawn diagonally across a monitor.

Various techniques can be used to reduce those aliasing effects, and
OpenGL ES 3.0 supports a variant called multisampling. Multisampling
divides every pixel into a set of samples, each of which is treated like a
“mini-pixel” during rasterization. That is, when a geometric primitive
is rendered, it’s like rendering into a framebuffer that has many more
pixels than the real display surface. Each sample has its own color, depth,
and stencil value, and those values are preserved until the image is ready
for display. When it’s time to compose the final image, the samples are
resolved into the final pixel color. What makes this process special is that
in addition to using every sample’s color information, OpenGL ES 3.0 has
even more information about how many samples for a particular pixel
were occupied during rasterization. Each sample for a pixel is assigned a
bit in the sample coverage mask. Using that coverage mask, we can control
how the final pixels are resolved. Every rendering surface created for an
OpenGL ES 3.0 application will be configured for multisampling, even if
only a single sample per pixel is available. Unlike in supersampling, the
fragment shader is executed per pixel rather than per sample.

Multisampling has multiple options that can be turned on and off (using
glEnable and glDisable, respectively) to control the usage of sample
coverage value.

First, you can specify that the sample’s alpha value should be used
to determine the coverage value by enabling GL_SAMPLE_ALPHA_TO_
COVERAGE. In this mode, if the geometric primitive covers a sample, the
alpha value of incoming fragment is used to determine an additional
sample coverage mask computed that is bit-wise anded into the coverage
mask that is computed using the samples of the fragment. This newly
computed coverage value replaces the original one generated directly
from the sample coverage calculation. These sample computations are
implementation dependent.

Additionally, you can specify GL_SAMPLE_COVERAGE or GL_SAMPLE_
COVERAGE_INVERT, which uses the fragment’s (potentially modified by
previous operations) coverage value or its inverted bits, respectively,
and computes the bit-wise and of that value with one specified
using the glSampleCoverage function. The value specified with
glSampleCoverage is used to generate an implementation-specific
coverage mask, and includes an inversion flag, invert, that inverts
the bits in the generated mask. Using this inversion flag, it becomes
possible to create two transparency masks that don’t use entirely
distinct sets of samples.

316	 Chapter 11: Fragment Operations

Centroid Sampling

When rendering with multisampling, the fragment data is picked from a
sample that is closest to a pixel center. This can lead to rendering artifacts
near triangle edges, as the pixel center may sometimes fall outside of the
triangle. In such case, the fragment data can be extrapolated to a point
outside of the triangle. Centroid sampling solves this problem by ensuring
that the fragment data is picked from a sample that falls inside the triangle.

To enable centroid sampling, you can declare the output variables of
the vertex shader (and input variables to the fragment shader) with the
centroid qualifier as follows:

smooth centroid out vec3 v_color;

Note that using centroid sampling can lead to less accurate derivatives for
pixels near the triangle edges.

Reading and Writing Pixels to the Framebuffer

If you want to preserve your rendered image for posterity’s sake, you can read
the pixel values back from the color buffer, but not from the depth or stencil
buffers. When you call glReadPixels, the pixels in the color buffer are
returned to your application in an array that has been previously allocated.

void glReadPixels(GLint x, GLint y, GLsizei width,
GLsizei height, GLenum format,
GLenum type, GLvoid *pixels)

x, y	 specify the viewport coordinates of the lower-left corner of the
pixel rectangle read from the color buffer.

width	 specify the dimensions of the pixel rectangle read from the

height	color buffer.

void glSampleCoverage(GLfloat value, GLboolean invert)

value	 specifies a value in the range [0, 1] that is converted into a
sample mask; the resulting mask should have a proportional
number of bits set corresponding to the value

invert	 specifies that after determining the mask’s value, all of the bits
in the mask should be inverted

Reading and Writing Pixels to the Framebuffer	 317

Aside from the fixed format (GL_RGBA and GL_RGBA_INTEGER) and type
(GL_UNSIGNED_BYTE, GL_UNSIGNED_INT, GL_INT, and GL_FLOAT), notice
that there are implementation-dependent values that should return the
best format and type combination for the implementation you’re using.
The implementation-specific values can be queried as follows:

GLint readType, readFormat;
GLubyte *pixels;

glGetIntegerv (GL_IMPLEMENTATION_COLOR_READ_TYPE, &readType);
glGetIntegerv (GL_IMPLEMENTATION_COLOR_READ_FORMAT,

&readFormat);

unsigned int bytesPerPixel = 0;

switch (readType)
{

case GL_UNSIGNED_BYTE:
case GL_BYTE:
 switch (readFormat)
 {

case GL_RGBA:
bytesPerPixel = 4;
break;

case GL_RGB:
case GL_RGB_INTEGER:

bytesPerPixel = 3;
break;

case GL_RG:
case GL_RG_INTEGER:
case GL_LUMINANCE_ALPHA:

format	specifies the pixel format that you would like returned.
Three formats are available: GL_RGBA, GL_RGBA_INTEGER, and
the value returned by querying GL_IMPLEMENTATION_COLOR_
READ_FORMAT, which is an implementation-specific pixel format.

type	 specifies the data type of the pixels returned. Five types are
available: GL_UNSIGNED_BYTE, GL_UNSIGNED_INT, GL_INT,
GL_FLOAT, and the value returned from querying
GL_IMPLEMENTATION_COLOR_READ_TYPE, which is
an implementation-specific pixel type.

pixels	a contiguous array of bytes that contain the values read from
the color buffer after glReadPixels returns.

(continues)

318	 Chapter 11: Fragment Operations

bytesPerPixel = 2;
break;

case GL_RED:
case GL_RED_INTEGER:
case GL_ALPHA:
case GL_LUMINANCE:
case GL_LUMINANCE_ALPHA:

bytesPerPixel = 1;
break;

default:
// Undetected format/error
break;

}
break;

case GL_FLOAT:
case GL_UNSIGNED_INT:
case GL_INT:

switch (readFormat)
{

case GL_RGBA:
case GL_RGBA_INTEGER:

bytesPerPixel = 16;
break;

case GL_RGB:
case GL_RGB_INTEGER:

bytesPerPixel = 12;
break;

case GL_RG:
case GL_RG_INTEGER:

bytesPerPixel = 8;
break;

case GL_RED:
case GL_RED_INTEGER:
case GL_DEPTH_COMPONENT:

bytesPerPixel = 4;
break;

default:
// Undetected format/error
break;

}
break;

case GL_HALF_FLOAT:
case GL_UNSIGNED_SHORT:

(continued)

Reading and Writing Pixels to the Framebuffer	 319

case GL_SHORT:
switch (readFormat)
{

case GL_RGBA:
case GL_RGBA_INTEGER:

bytesPerPixel = 8;
break;

case GL_RGB:
case GL_RGB_INTEGER:

bytesPerPixel = 6;
break;

case GL_RG:
case GL_RG_INTEGER:

bytesPerPixel = 4;
break;

case GL_RED:
case GL_RED_INTEGER:

bytesPerPixel = 2;
break;

default:
// Undetected format/error
break;

}
break;

case GL_FLOAT_32_UNSIGNED_INT_24_8_REV: // GL_DEPTH_STENCIL
bytesPerPixel = 8;
break;

// GL_RGBA, GL_RGBA_INTEGER format
case GL_UNSIGNED_INT_2_10_10_10_REV:
case GL_UNSIGNED_INT_10F_11F_11F_REV: // GL_RGB format
case GL_UNSIGNED_INT_5_9_9_9_REV: // GL_RGB format
case GL_UNSIGNED_INT_24_8: // GL_DEPTH_STENCIL format

bytesPerPixel = 4;
break;

case GL_UNSIGNED_SHORT_4_4_4_4: // GL_RGBA format
case GL_UNSIGNED_SHORT_5_5_5_1: // GL_RGBA format
case GL_UNSIGNED_SHORT_5_6_5: // GL_RGB format

bytesPerPixel = 2;
break;

default:
 // Undetected type/error

}

(continues)

320	 Chapter 11: Fragment Operations

pixels = (GLubyte*) malloc(width * height * bytesPerPixel);

glReadPixels (0, 0, windowWidth, windowHeight, readFormat,
readType, pixels);

You can read pixels from any currently bound framebuffer, whether it’s
one allocated by the windowing system or from a framebuffer object.
Because each buffer can have a different layout, you’ll probably need to
query the type and format for each buffer you want to read.

OpenGL ES 3.0 provides an efficient mechanism to copy a rectangular
block of pixels into the framebuffer, which will be described in Chapter
12, “Framebuffer Objects.”

Pixel Pack Buffer Objects

When a non-zero buffer object is bound to the GL_PIXEL_PACK_BUFFER
using glBindBuffer, the glReadPixels command can return immediately
and invoke DMA transfer to read pixels from the framebuffer and write the
data into the pixel buffer object (PBO).

To keep the CPU busy, you can schedule some CPU processing after
the glReadPixels call to overlap CPU computations and the DMA
transfer. Depending on the applications, the data may not be available
immediately; in such cases, you can use multiple PBO solutions so that
while the CPU is waiting for the data transfer from one PBO, it can process
the data from an earlier transfer from another PBO.

Multiple Render Targets

Multiple render targets (MRTs) allow the application to render to several
color buffers at one time. With multiple render targets, the fragment
shader outputs several colors (which can be used to store RGBA colors,
normals, depths, or texture coordinates), one for each attached color
buffer. MRTs are used in many advanced rendering algorithms, such as
deferred shading and fast ambient occlusion approximation (SSAO).

In deferred shading, lighting calculations are performed only once
per pixel. This is achieved by separating the geometry and lighting
calculations into two separate rendering passes. The first geometry pass
outputs multiple attributes (such as position, normal, material color,
or texture coordinates) into multiple buffers (using MRTs). The second
lighting pass performs the lighting calculations by sampling the attributes

(continued)

Multiple Render Targets	 321

from each buffer created in the first pass. As the depth testing has been
performed on the first pass, we will perform only one lighting calculation
per pixel.

The following steps show how to set up MRTs:

1. Initialize framebuffer objects (FBOs) using glGenFramebuffers and
glBindFramebuffer commands (described in more detail in
Chapter 12, “Framebuffer Objects”) as shown here:

glGenFramebuffers (1, &fbo);
glBindFramebuffer (GL_FRAMEBUFFER, fbo);

2. Initialize textures using glGenTextures and glBindTexture commands
(described in more detail in Chapter 9, “Texturing”) as shown here:

glBindTexture (GL_TEXTURE_2D, textureId);

glTexImage2D (GL_TEXTURE_2D, 0, GL_RGBA,
textureWidth, textureHeight,
0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);

// Set the filtering mode
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_NEAREST);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,

GL_NEAREST);

3. Bind relevant textures to the FBO using glFramebufferTexture2D or
glFramebufferTextureLayer command (described in more detail in
Chapter 12) as shown here:

glFramebufferTexture2D (GL_DRAW_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D,
textureId, 0);

4. Specify color attachments for rendering using the following
glDrawBuffers command:

void glDrawBuffers(GLsizei n, const GLenum* bufs)

n specifies the number of buffers in bufs

bufs 	� points to an array of symbolic constants specifying the
buffers into which fragment colors or data values will be
written

322	 Chapter 11: Fragment Operations

For example, you can set up a FBO with four color outputs
(attachments) as follows:

const GLenum attachments[4] = { GL_COLOR_ATTACHMENT0,
GL_COLOR_ATTACHMENT1,
GL_COLOR_ATTACHMENT2,
GL_COLOR_ATTACHMENT3 };

glDrawBuffers (4, attachments);

You can query the maximum number of color attachments
by calling glGetIntegerv with the symbolic constant
GL_MAX_COLOR_ATTACHMENTS. The minimum number of color
attachments supported by all OpenGL 3.0 implementations is 4.

5. Declare and use multiple shader outputs in the fragment shader.
For example, the following declaration will copy fragment
shader outputs fragData0 to fragData3 to draw buffers 0–3,
respectively:

layout(location = 0) out vec4 fragData0;
layout(location = 1) out vec4 fragData1;
layout(location = 2) out vec4 fragData2;
layout(location = 3) out vec4 fragData3;

Putting everything together, Example 11-1 (as part of the Chapter_11/
MRTs example) illustrates how to set up four draw buffers for a single
framebuffer object.

Example 11-1	 Setting up Multiple Render Targets

int InitFBO (ESContext *esContext)
{
 UserData *userData = esContext−>userData;
 int i;
 GLint defaultFramebuffer = 0;
 const GLenum attachments[4] =
 {

GL_COLOR_ATTACHMENT0,
GL_COLOR_ATTACHMENT1,
GL_COLOR_ATTACHMENT2,
GL_COLOR_ATTACHMENT3

 };

 glGetIntegerv (GL_FRAMEBUFFER_BINDING, &defaultFramebuffer);

Multiple Render Targets	 323

Example 11-1	 Setting up Multiple Render Targets (continued)

 // Set up fbo
 glGenFramebuffers (1, &userData−>fbo);
 glBindFramebuffer (GL_FRAMEBUFFER, userData−>fbo);

 // Set up four output buffers and attach to fbo
userData−>textureHeight = userData−>textureWidth = 400;

 glGenTextures (4, &userData−>colorTexId[0]);
 for (i = 0; i < 4; ++i)
 {

glBindTexture (GL_TEXTURE_2D, userData−>colorTexId[i]);

glTexImage2D (GL_TEXTURE_2D, 0, GL_RGBA,
userData−>textureWidth,
userData−>textureHeight,
0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);

// Set the filtering mode
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_NEAREST);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,

GL_NEAREST);

glFramebufferTexture2D (GL_DRAW_FRAMEBUFFER,
attachments[i],
GL_TEXTURE_2D,
userData−>colorTexId[i], 0);

 }

 glDrawBuffers (4, attachments);

 if (GL_FRAMEBUFFER_COMPLETE !=
glCheckFramebufferStatus (GL_FRAMEBUFFER))

 {
return FALSE;

 }

 // Restore the original framebuffer
 glBindFramebuffer (GL_FRAMEBUFFER, defaultFramebuffer);

 return TRUE;
}

Example 11-2 (as part of the Chapter_11/MRTs example) illustrates how
to output four colors per fragment in a fragment shader.

324	 Chapter 11: Fragment Operations

Summary

In this chapter, you learned about tests and operations (scissor box testing,
stencil buffer testing, depth buffer testing, multisampling, blending and
dithering) that happen after the fragment shader. This is the final phase
in the OpenGL ES 3.0 pipeline. In the next chapter, you will learn an
efficient method for rendering to a texture or an off-screen surface using
framebuffer objects.

Example 11-2	 Fragment Shader with Multiple Render Targets

#version 300 es
precision mediump float;
layout(location = 0) out vec4 fragData0;
layout(location = 1) out vec4 fragData1;
layout(location = 2) out vec4 fragData2;
layout(location = 3) out vec4 fragData3;
void main()
{
 // first buffer will contain red color
 fragData0 = vec4 (1, 0, 0, 1);

 // second buffer will contain green color
 fragData1 = vec4 (0, 1, 0, 1);

 // third buffer will contain blue color
 fragData2 = vec4 (0, 0, 1, 1);

 // fourth buffer will contain gray color
 fragData3 = vec4 (0.5, 0.5, 0.5, 1);
}

325

Chapter 12

Framebuffer Objects

In this chapter, we describe what framebuffer objects are, how applications
can create them, and how applications can use them for rendering to an
off-screen buffer or rendering to a texture. We start by discussing why we
need framebuffer objects. We then introduce framebuffer objects and new
object types they add to OpenGL ES, and explain how they differ from the
EGL surfaces described in Chapter 3, “An Introduction to EGL.” We go on
to discuss how to create framebuffer objects; explore how to specify color,
depth, and stencil attachments to a framebuffer object; and then provide
examples that demonstrate rendering to a framebuffer object. Last but not
least, we discuss performance tips and tricks that can help ensure good
performance when using framebuffer objects.

Why Framebuffer Objects?

A rendering context and a drawing surface need to be first created and
made current before any OpenGL ES commands can be called by an
application. The rendering context and the drawing surface are usually
provided by the native windowing system through an API such as EGL.
Chapter 3 describes how to create an EGL context and surface and how
to attach them to a rendering thread. The rendering context contains
the appropriate state required for correct operation. The drawing surface
provided by the native windowing system can be a surface that will be
displayed on the screen, referred to as the window system–provided
framebuffer, or it can be an off-screen surface, referred to as a pbuffer.
The calls to create the EGL drawing surfaces let you specify the width and

326	 Chapter 12: Framebuffer Objects

height of the surface in pixels; whether the surface uses color, depth, and
stencil buffers; and the bit depths of these buffers.

By default, OpenGL ES uses the window system–provided framebuffer as
the drawing surface. If the application is drawing only to an on-screen
surface, the window system–provided framebuffer is usually sufficient.
However, many applications need to render to a texture, and for this
purpose using the window system–provided framebuffer as your drawing
surface is usually not an ideal option. Examples of where the render-to-
texture approach is useful are shadow mapping, dynamic reflections and
environment mapping, multipass techniques for depth-of-field, motion
blur effects, and postprocessing effects.

Applications can use either of two techniques to render to a texture:

•• Implement render to texture by drawing to the window system–
provided framebuffer and then copy the appropriate region of the
framebuffer to the texture. This can be implemented using the
glCopyTexImage2D and glCopyTexSubImage2D APIs. As their names
imply, these APIs perform a copy from the framebuffer to the texture
buffer, and this copy operation can often adversely impact performance.
In addition, this approach works only if the dimensions of the texture
are less than or equal to the dimensions of the framebuffer.

•• Implement render to texture by using a pbuffer that is attached
to a texture. We know that a window system–provided surface
must be attached to a rendering context. This can be inefficient
on some implementations that require separate contexts for each
pbuffer and window surface. Additionally, switching between
window system–provided drawables can sometimes require the
implementation to flush all previous rendering prior to the switch.
This can introduce expensive “bubbles” (idling the GPU) into the
rendering pipeline. On such systems, our recommendation is to
avoid using pbuffers to render to textures because of the overhead
associated with context- and window system–provided drawable
switching.

Neither of these two methods is ideal for rendering to a texture or
other off-screen surface. What is needed instead are APIs that allow
applications to directly render to a texture or the ability to create an
off-screen surface within the OpenGL ES API and use it as a rendering
target. Framebuffer objects and renderbuffer objects allow applications
to do exactly this, without requiring additional rendering contexts to
be created. As a consequence, we no longer have to worry about the
overhead of a context and drawable switch that can occur when using

Framebuffer and Renderbuffer Objects	 327

window system–provided drawables. Framebuffer objects, therefore,
provide a better and more efficient method for rendering to a texture or
an off-screen surface.

The framebuffer objects API supports the following operations:

•• Creating framebuffer objects using OpenGL ES commands only

•• Creating and using multiple framebuffer objects within a single
EGL context—that is, without requiring a rendering context per
framebuffer

•• Creating off-screen color, depth, or stencil renderbuffers and textures,
and attaching these to a framebuffer object

•• Sharing color, depth, or stencil buffers across multiple framebuffers

•• Attaching textures directly to a framebuffer as color or depth, thereby
avoiding the need to do a copy operation

•• Copying between framebuffers and invalidating framebuffer contents

Framebuffer and Renderbuffer Objects

In this section, we describe what renderbuffer and framebuffer objects are,
explain how they differ from window system–provided drawables, and
consider when to use a renderbuffer instead of a texture.

A renderbuffer object is a 2D image buffer allocated by the application.
The renderbuffer can be used to allocate and store color, depth, or stencil
values and can be used as a color, depth, or stencil attachment in a
framebuffer object. A renderbuffer is similar to an off-screen window
system–provided drawable surface, such as a pbuffer. A renderbuffer,
however, cannot be directly used as a GL texture.

A framebuffer object (FBO) is a collection of color, depth, and stencil textures
or render targets. Various 2D images can be attached to the color attachment
point in the framebuffer object. These include a renderbuffer object that
stores color values, a mip level of a 2D texture or a cubemap face, a layer of a
2D array textures, or even a mip level of a 2D slice in a 3D texture. Similarly,
various 2D images containing depth values can be attached to the depth
attachment point of an FBO. These can include a renderbuffer, a mip level
of a 2D texture, or a cubemap face that stores depth values. The only 2D
image that can be attached to the stencil attachment point of an FBO is a
renderbuffer object that stores stencil values.

328	 Chapter 12: Framebuffer Objects

Figure 12-1 shows the relationships among framebuffer objects,
renderbuffer objects, and textures. Note that there can be only one color,
depth, and stencil attachment in a framebuffer object.

Color
Attachments

Framebuffer Objects

Color
Attachments

Depth
Attachment

Framebuffer Objects

Depth
Attachment

Stencil
Attachment

Renderbuffer Objects

Depth
Buffer

Renderbuffer Objects

p
Buffer

Stencil
Buffer

Depth

Texture mip Images

Figure 12-1	 Framebuffer Objects, Renderbuffer Objects, and Textures

Choosing a Renderbuffer Versus a Texture as a Framebuffer
Attachment

For render-to-texture use cases, you would attach a texture object to the
framebuffer object. Examples include rendering to a color buffer that will
be used as a color texture, and rendering into a depth buffer that will be
used as a depth texture for shadows.

There are several reasons to use renderbuffers instead of textures:

•• Renderbuffers support multisampling.

•• If the image will not be used as a texture, using a renderbuffer may
deliver a performance advantage. This advantage occurs because the
implementation might be able to store the renderbuffer in a much
more efficient format, better suited for rendering than for texturing.
The implementation can only do so, however, if it knows in advance
that the image will not be used as a texture.

Creating Framebuffer and Renderbuffer Objects	 329

Framebuffer Objects Versus EGL Surfaces

The differences between an FBO and the window system–provided
drawable surface are as follows:

•• Pixel ownership test determines whether the pixel at location (xw, yw)
in the framebuffer is currently owned by OpenGL ES. This test allows
the window system to control which pixels in the framebuffer belong
to the current OpenGL ES context—for example, when a window that
is being rendered into by OpenGL ES is obscured. For an application-
created framebuffer object, the pixel ownership test always succeeds,
as the framebuffer object owns all the pixels.

•• The window system might support only double-buffered surfaces.
Framebuffer objects, in contrast, support only single-buffered
attachments.

•• Sharing of stencil and depth buffers between framebuffers is
possible using framebuffer objects but usually not with the window
system–provided framebuffer. Stencil and depth buffers and their
corresponding state are usually allocated implicitly with the window
system–provided drawable surface and, therefore, cannot be shared
between drawable surfaces. With application-created framebuffer
objects, stencil and depth renderbuffers can be created independently
and then associated with a framebuffer object by attaching these
buffers to appropriate attachment points in multiple framebuffer
objects, if desired.

Creating Framebuffer and Renderbuffer Objects

Creating framebuffer and renderbuffer objects is similar to how texture or
vertex buffer objects are created in OpenGL ES 3.0.

The glGenRenderbuffers API call is used to allocate renderbuffer object
names. This API is described next.

void glGenRenderbuffers(GLsizei n, GLuint *renderbuffers)

n number of renderbuffer object names to return

renderbuffers pointer to an array of n entries, where the allocated
renderbuffer object names are returned

330	 Chapter 12: Framebuffer Objects

glGenRenderbuffers allocates n renderbuffer object names and returns
them in renderbuffers. The renderbuffer object names returned by
glGenRenderbuffers are unsigned integer numbers other than 0. These
names returned are marked in use but do not have any state associated
with them. The value 0 is reserved by OpenGL ES and does not refer to
a renderbuffer object. Applications trying to modify or query the buffer
object state for renderbuffer object 0 will generate an appropriate error.

The glGenFramebuffers API call is used to allocate framebuffer object
names. This API is described here.

glGenFramebuffers allocates n framebuffer object names and returns them
in ids. The framebuffer object names returned by glGenFramebuffers are
unsigned integer numbers other than 0. The framebuffer names returned are
marked in use but do not have any state associated with them. The value 0
is reserved by OpenGL ES and refers to the window system–provided
framebuffer. Applications trying to modify or query the buffer object state for
framebuffer object 0 will generate an appropriate error.

Using Renderbuffer Objects

In this section, we describe how to specify the data storage, format, and
dimensions of the renderbuffer image. To specify this information for
a specific renderbuffer object, we need to make this object the current
renderbuffer object. The glBindRenderbuffer command is used to set
the current renderbuffer object.

void glGenFramebuffers(GLsizei n, GLuint *ids)

n number of framebuffer object names to return

ids pointer to an array of n entries, where allocated framebuffer
object are returned

void glBindRenderbuffer(GLenum target, GLuint renderbuffer)

target must be set to GL_RENDERBUFFER

renderbuffer renderbuffer object name

Using Renderbuffer Objects	 331

Note that glGenRenderbuffers is not required to assign a renderbuffer
object name before it is bound using glBindRenderbuffer. Although
it is a good practice to call glGenRenderbuffers, many applications
specify compile-time constants for their buffers. An application can
specify an unused renderbuffer object name to glBindRenderbuffer.
However, we do recommend that OpenGL ES applications call
glGenRenderbuffers and use renderbuffer object names returned
by glGenRenderbuffers instead of specifying their own buffer
object names.

The first time the renderbuffer object name is bound by calling
glBindRenderbuffer, the renderbuffer object is allocated with the
appropriate default state. If this allocation is successful, the allocated
object will become the newly bound renderbuffer object.

The following state and default values are associated with a renderbuffer
object:

•• Width and height in pixels—The default value is zero.

•• Internal format—This describes the format of the pixels stored in the
renderbuffer. It must be a color-, depth-, or stencil-renderable format.

•• Color bit-depth—This is valid only if the internal format is a color-
renderable format. The default value is zero.

•• Depth bit-depth—This is valid only if the internal format is a depth-
renderable format. The default value is zero.

•• Stencil bit-depth—This is valid only if the internal format is a stencil-
renderable format. The default value is zero.

glBindRenderbuffer can also be used to bind to an existing renderbuffer
object (i.e., an object that has been assigned and used before and,
therefore, has a valid state associated with it). No changes to the state of
the newly bound renderbuffer object are made by the bind command.

Once a renderbuffer object is bound, we can specify the
dimensions and format of the image stored in the renderbuffer. The
glRenderbufferStorage command can be used for this purpose.

glRenderbufferStorage looks very similar to glTexImage2D, except
that no image data is supplied. You can also create a multisample
renderbuffer by using the glRenderbufferStorageMultisample
command. glRenderbufferStorage is equivalent to
glRenderStorageMultisample with samples set to zero. The width
and height of the renderbuffer are specified in pixels and must

332	 Chapter 12: Framebuffer Objects

be values that are smaller than the maximum renderbuffer size
supported by the implementation. The minimum size value that must
be supported by all OpenGL ES implementations is 1. The actual
maximum size supported by the implementation can be queried using
the following code:

GLint maxRenderbufferSize = 0;
glGetIntegerv(GL_MAX_RENDERBUFFER_SIZE, &maxRenderbufferSize);

The internalformat argument specifies the format that the application
would like to use to store pixels in the renderbuffer object. Table 12-1
lists the renderbuffer formats to store a color-renderable buffer, and
Table 12-2 lists the formats to store a depth-renderable or stencil-
renderable buffer.

void glRenderbufferStorage�(�GLenum target,
GLenum internalformat,
GLsizei width, GLsizei height)

void glRenderbufferStorageM�ultisample(GLenum target,
GLsizei samples,
GLenum internalformat,
GLsizei width, GLsizei height)

target  must be set to GL_RENDERBUFFER.

samples 		�number of samples to be used with
the renderbuffer object’s storage.
Must be less than GL_MAX_SAMPLES
(glRenderbufferStorageMultisample only)

internalformat 	� must be a format that can be used as a color
buffer, depth buffer, or stencil buffer.

	�The supported formats are listed in Tables 12-1
and 12-2.

width	  �		 width of the renderbuffer in pixels;
		�must be less than or equal to
GL_MAX_RENDERBUFFER_SIZE.

height  		 height of the renderbuffer in pixels;
 		�must be less than or equal to
GL_MAX_RENDERBUFFER_SIZE.

Using Renderbuffer Objects	 333

The renderbuffer object can be attached to the color, depth, or stencil
attachment of the framebuffer object without the renderbuffer’s storage
format and dimensions being specified. The renderbuffer’s storage format
and dimensions can be specified before or after the renderbuffer object
has been attached to the framebuffer object. This information will,
however, need to be correctly specified before the framebuffer object and
renderbuffer attachment can be used for rendering.

Multisample Renderbuffers

Multisample renderbuffers enable the application to render to off-
screen framebuffers with multisample anti-aliasing. The multisample
renderbuffers cannot be directly bound to textures, but they can be
resolved to single-sample textures using the newly introduced framebuffer
blit (described later in this chapter).

As described in the previous section, to create a multisample renderbuffer,
you use the glRenderbufferStorageMultisample API.

Renderbuffer Formats

Table 12-1 lists the renderbuffer formats to store a color-renderable buffer,
and Table 12-2 lists the renderbuffer formats to store a depth-renderable or
stencil-renderable buffer.

Table 12-1	  Renderbuffer Formats for Color-Renderable Buffer

Internal Format Red Bits Green Bits Blue Bits Alpha Bits

GL_R8 8 — — —

GL_R8UI ui8 — — —

GL_R8I i8 — — —

GL_R16UI ui16 — — —

GL_R16I i16 — — —

GL_R32UI ui32 — — —

GL_R32I i32 — — —
(continues)

334	 Chapter 12: Framebuffer Objects

i denotes an integer; ui denotes an unsigned integer type.

Internal Format Red Bits Green Bits Blue Bits Alpha Bits

GL_RG8 8 8 — —

GL_RG8UI ui8 ui8 — —

GL_RG8I i8 i8 — —

GL_RG16UI ui16 ui16 — —

GL_RG16I i16 i16 — —

GL_RG32UI ui32 ui32 — —

GL_RG32I i32 i32 — —

GL_RGB8 8 8 8 —

GL_RGB565 5 6 5 —

GL_RGBA8 8 8 8 8

GL_SRGB8_ALPHA8 8 8 8 8

GL_RGB5_A1 5 5 5 1

GL_RGBA4 4 4 4 4

GL_RGB10_A2 10 10 10 2

GL_RGBA8UI ui8 ui8 ui8 ui8

GL_RGBA8I i8 i8 i8 i8

GL_RGB10_A2UI ui10 ui10 ui10 ui2

GL_RGBA16UI ui16 ui16 ui16 ui16

GL_RGBA16I i16 i16 i16 i16

GL_RGBA32UI ui32 ui32 ui32 ui32

GL_RGBA32I i32 i32 i32 i32

Table 12-1	 Renderbuffer Formats for Color-Renderable Buffer (continued)

Using Framebuffer Objects	 335

f denotes a float type.

Using Framebuffer Objects

We describe how to use framebuffer objects to render to an off-screen
buffer (i.e., renderbuffer) or to render to a texture. Before we can use a
framebuffer object and specify its attachments, we need to make it the
current framebuffer object. The glBindFramebuffer command is used to
set the current framebuffer object.

Table 12-2	 � Renderbuffer Formats for Depth-Renderable and
Stencil-Renderable Buffer

Internal Format Depth Bits Stencil Bits

GL_DEPTH_COMPONENT16 16 —

GL_DEPTH_COMPONENT24 24 —

GL_DEPTH_COMPONENT32F f32 —

GL_DEPTH24_STENCIL8 24 8

GL_DEPTH32F_STENCIL8 f32 8

GL_STENCIL_INDEX8 — 8

void glBindFramebuffer(GLenum target, GLuint framebuffer)

target must be set to GL_READ_FRAMEBUFFER,
GL_DRAW_FRAMEBUFFER, or GL_FRAMEBUFFER

framebuffer framebuffer object name

Note that glGenFramebuffers is not required to assign a framebuffer
object name before it is bound using glBindFramebuffer. An application
can specify an unused framebuffer object name to glBindFramebuffer.
However, we do recommend that OpenGL ES applications call
glGenFramebuffers and use framebuffer object names returned by
glGenFramebuffers instead of specifying their own buffer object names.

336	 Chapter 12: Framebuffer Objects

On some OpenGL ES 3.0 implementations, the first time a framebuffer
object name is bound by calling glBindFramebuffer, the framebuffer
object is allocated with the appropriate default state. If the allocation is
successful, this allocated object is bound as the current framebuffer object
for the rendering context.

The following state is associated with a framebuffer object:

•• Color attachment point—The attachment point for the color buffer.

•• Depth attachment point—The attachment point for the depth buffer.

•• Stencil attachment point—The attachment point for the stencil buffer.

•• Framebuffer completeness status—Whether the framebuffer is in a
complete state and can be rendered to.

For each attachment point, the following information is specified:

•• Object type—Specifies the type of object that is associated with the
attachment point. This can be GL_RENDERBUFFER if a renderbuffer
object is attached or GL_TEXTURE if a texture object is attached. The
default value is GL_NONE.

•• Object name—Specifies the name of the object attached. This can be
either the renderbuffer object name or the texture object name. The
default value is 0.

•• Texture level—If a texture object is attached, then this specifies the
mip level of the texture associated with the attachment point. The
default value is 0.

•• Texture cubemap face—If a texture object is attached and the texture
is a cubemap, then this specifies which one of the six cubemap faces
is to be used as the attachment point. The default value is
GL_TEXTURE_CUBE_MAP_POSITIVE_X.

•• Texture layer—Specifies the 2D slice of the 3D texture to be used as the
attachment point. The default value is 0.

glBindFramebuffer can also be used to bind to an existing framebuffer
object (i.e., an object that has been assigned and used before and,
therefore, has valid state associated with it). No changes are made to the
state of the newly bound framebuffer object.

Once a framebuffer object has been bound, the color, depth, and stencil
attachments of the currently bound framebuffer object can be set to

Using Framebuffer Objects	 337

a renderbuffer object or a texture. As shown in Figure 12-1, the color
attachment can be set to a renderbuffer that stores color values, or
to a mip level of a 2D texture or a cubemap face, or to a layer of a
2D array textures, or to a mip level of a 2D slice in a 3D texture. The
depth attachment can be set to a renderbuffer that stores depth values
or packed depth and stencil values, to a mip level of a 2D depth texture,
or to a depth cubemap face. The stencil attachment must be set to
a renderbuffer that stores stencil values or packed depth and stencil
values.

Attaching a Renderbuffer as a Framebuffer Attachment

The glFramebufferRenderbuffer command is used to attach a
renderbuffer object to a framebuffer attachment point.

void glFramebufferRenderbuffer�(GLenum target,
 GLenum attachment,
 GLenum renderbuffertarget,
 GLuint renderbuffer)

target must be set to GL_READ_FRAMEBUFFER,
GL_DRAW_FRAMEBUFFER, or GL_FRAMEBUFFER

attachment must be one of the following enums:
GL_COLOR_ATTACHMENTi
GL_DEPTH_ATTACHMENT
GL_STENCIL_ATTACHMENT
GL_DEPTH_STENCIL_ATTACHMENT

renderbuffertarget must be set to GL_RENDERBUFFER
renderbuffer the renderbuffer object that should be used as

attachment; the renderbuffer must be either
zero or the name of an existing renderbuffer
object

If glFramebufferRenderbuffer is called with renderbuffer not equal
to zero, this renderbuffer object will be used as the new color, depth, or
stencil attachment point as specified by the value of the attachment
argument.

338	 Chapter 12: Framebuffer Objects

The attachment point’s state will be modified to

•• Object type = GL_RENDERBUFFER

•• Object name = renderbuffer

•• Texture level and texture layer = 0

•• Texture cubemap face = GL_NONE

The newly attached renderbuffer object’s state or contents of its buffer do
not change.

If glFramebufferRenderbuffer is called with renderbuffer equal to
zero, then the color, depth, or stencil buffer as specified by attachment is
detached and reset to zero.

Attaching a 2D Texture as a Framebuffer Attachment

The glFramebufferTexture2D command is used to attach a mip level of
a 2D texture or a cubemap face to a framebuffer attachment point. It can
be used to attach a texture as a color, depth, or stencil attachment.

void glFramebufferTexture2D(�GLenum target,
GLenum attachment,
GLenum textarget,
GLuint texture,
Glint level)

target must be set to GL_READ_FRAMEBUFFER,
GL_DRAW_FRAMEBUFFER, or GL_FRAMEBUFFER

attachment must be one of the following enums:
GL_COLOR_ATTACHMENTi
GL_DEPTH_ATTACHMENT
GL_STENCIL_ATTACHMENT
GL_DEPTH_STENCIL_ATTACHMENT

textarget specifies the texture target; this is the
value specified in the target argument in
glTexImage2D

texture specifies the texture object
level specifies the mip level of texture image

Using Framebuffer Objects	 339

If glFramebufferTexture2D is called with texture not equal to zero,
then the color, depth, or stencil attachment will be set to texture. If
glFramebufferTexture2D generates an error, no change is made to the
state of the framebuffer.

The attachment point’s state will be modified to

•• Object type = GL_TEXTURE

•• Object name = texture

•• Texture level = level

•• Texture cubemap face = valid if the texture attachment is a cubemap
and is one of the following values:

GL_TEXTURE_CUBE_MAP_POSITIVE_X

GL_TEXTURE_CUBE_MAP_POSITIVE_Y

GL_TEXTURE_CUBE_MAP_POSITIVE_Z

GL_TEXTURE_CUBE_MAP_NEGATIVE_X

GL_TEXTURE_CUBE_MAP_NEGATIVE_Y

GL_TEXTURE_CUBE_MAP_NEGATIVE_Z

•• Texture layer = 0

The newly attached texture object’s state or contents of its image are
not modified by glFramebufferTexture2D. Note that the texture
object’s state and image can be modified after it has been attached to a
framebuffer object.

If glFramebufferTexture2D is called with texture equal to zero, then
the color, depth, or stencil attachment is detached and reset to zero.

Attaching an Image of a 3D Texture as a Framebuffer
Attachment

The glFramebufferTextureLayer command is used to attach a 2D slice
and a specific mip level of a 3D texture or a level of 2D array textures to
a framebuffer attachment point. Refer to Chapter 9, “Texturing,” for a
detailed description of how 3D textures work.

340	 Chapter 12: Framebuffer Objects

The newly attached texture object’s state or contents of its image are
not modified by glFramebufferTextureLayer. Note that the texture
object’s state and image can be modified after it has been attached to a
framebuffer object.

The attachment point’s state will be modified to

•• Object type = GL_TEXTURE

•• Object name = texture

•• Texture level = level

•• Texture cubemap face = GL_NONE

•• Texture layer = 0

If glFramebufferTextureLayer is called with texture equal to zero,
then the attachment is detached and reset to zero.

void glFramebufferTextureLayer�(GLenum target,
 GLenum attachment,
 GLuint texture,
 GLint level,
 GLint layer)

target must be set to GL_READ_FRAMEBUFFER,
GL_DRAW_FRAMEBUFFER, or GL_FRAMEBUFFER.

attachment must be one of the following enums:
GL_COLOR_ATTACHMENTi
GL_DEPTH_ATTACHMENT
GL_STENCIL_ATTACHMENT
GL_DEPTH_STENCIL_ATTACHMENT

texture specifies the texture object.
level specifies the mip level of the texture image.
layer specifies the layer of texture image. If texture is

GL_TEXTURE_3D, then level must be greater than or equal
to zero and less than or equal to log2 of the value of
GL_MAX_3D_TEXTURE_SIZE. If texture is
GL_TEXTURE_2D_ARRAY, then level must be greater than
or equal to zero and no larger than log2 of the value
GL_MAX_TEXTURE_SIZE.

Using Framebuffer Objects	 341

One interesting question arises: What happens if we are rendering into
a texture and at the same time use this texture object as a texture in
a fragment shader? Will the OpenGL ES implementation generate an
error when such a situation arises? In some cases, it is possible for the
OpenGL ES implementation to determine if a texture object is being
used as a texture input and a framebuffer attachment into which we
are currently drawing. glDrawArrays and glDrawElements could then
generate an error. To ensure that glDrawArrays and glDrawElements
can be executed as rapidly as possible, however, these checks are not
performed. Instead of generating an error, in this case rendering results
are undefined. It is the application’s responsibility to make sure that this
situation does not occur.

Checking for Framebuffer Completeness

A framebuffer object needs to be defined as complete before it can be
used as a rendering target. If the currently bound framebuffer object is
not complete, OpenGL ES commands that draw primitives or read pixels
will fail and generate an appropriate error that indicates the reason the
framebuffer is incomplete.

The rules for a framebuffer object to be considered complete are as
follows:

•• Make sure that the color, depth, and stencil attachments are valid. A
color attachment is valid if it is zero (i.e., there is no attachment) or
if it is a color-renderable renderbuffer object or a texture object with
one of the formats listed in Table 12-1. A depth attachment is valid
if it is zero or is a depth-renderable renderbuffer object or a depth
texture with one of the formats listed in Table 12-2 with depth buffer
bits. A stencil attachment is valid if it is zero or is a stencil-renderable
renderbuffer object with one of the formats listed in Table 12-2 with
stencil buffer bits. There is a minimum of one valid attachment.
A framebuffer is not complete if it has no attachments, as there is
nothing to draw into or read from.

•• Valid attachments associated with a framebuffer object must have the
same width and height.

•• If depth and stencil attachments exist, they must be the same image.

•• The value of GL_RENDERBUFFER_SAMPLES is the same for all renderbuffer
attachments. If the attachments are a combination of renderbuffers and
textures, the value of GL_RENDERBUFFER_SAMPLES is zero.

342	 Chapter 12: Framebuffer Objects

The glCheckFramebufferStatus command can be used to verify that a
framebuffer object is complete.

glCheckFramebufferStatus returns zero if target is not equal to
GL_FRAMEBUFFER. If target is equal to GL_FRAMEBUFFER, one of the
following enums is returned:

•• GL_FRAMEBUFFER_COMPLETE—Framebuffer is complete.

•• GL_FRAMEBUFFER_UNDEFINED—If target is the default framebuffer
but it does not exist.

•• GL_FRAMEBUFFER_INCOMPLETE_ATTACHMENT—The framebuffer
attachment points are not complete. This might be due to the fact
that the required attachment is zero or is not a valid texture or
renderbuffer object.

•• GL_FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT—No valid
attachments in the framebuffer.

•• GL_FRAMEBUFFER_UNSUPPORTED—The combination of internal formats
used by attachments in the framebuffer results in a nonrenderable target.

•• GL_FRAMEBUFFER_INCOMPLETE_MULTISAMPLE—
GL_RENDERBUFFER_SAMPLES is not the same for all renderbuffer
attachments or GL_RENDERBUFFER_SAMPLES is non-zero when the
attachments are a combination of renderbuffers and textures.

If the currently bound framebuffer object is not complete, attempts to use
that object for reading and writing pixels will fail. In turn, calls to draw
primitives, such as glDrawArrays and glDrawElements, and commands
that read the framebuffer, such as glReadPixels, glCopyTeximage2D,
glCopyTexSubImage2D, and glCopyTexSubImage3D, will generate a
GL_INVALID_FRAMEBUFFER_OPERATION error.

Framebuffer Blits

Framebuffer blits allow for efficient copying of a rectangle of pixel values
from one framebuffer (i.e., read framebuffer) to another framebuffer (i.e.,
draw framebuffer). One key application of framebuffer blits is to resolve a

GLenum glCheckFramebufferStatus(GLenum target)

target must be set to GL_READ_FRAMEBUFFER,
GL_DRAW_FRAMEBUFFER, or GL_FRAMEBUFFER

Framebuffer Blits	 343

multisample renderbuffer to a texture (with a framebuffer object that has
a texture bound for the color attachment).

You can perform this operation using the following command:

void glBlitFramebuffer(�GLint srcX0, GLint srcY0,
GLint srcX1, GLint srcY1,
GLint dstX0, GLint dstY0,
GLint dstX1, GLint dstY1,
GLbitfield mask, GLenum filter)

srcX0, srcY0, srcX1, srcY1    specify the bound of the source
		  rectangle within the read buffer

dstX0, dstY0, dstX1, dstY1    specify the bound of the
destination rectangle within the write buffer

mask 	�specifies the bit-wise or of the flags indicating which
buffers are to be copied; consists of
GL_COLOR_BUFFER_BIT
GL_DEPTH_BUFFER_BIT
GL_STENCIL_BUFFER_BIT
GL_DEPTH_STENCIL_ATTACHMENT

filter 	�specifies the interpolation to be applied if the image is
stretched; must be GL_NEAREST or GL_LINEAR

Example 12-1 (as part of the Chapter_11/MRTs example) illustrates
how to use framebuffer blits to copy four color buffers from a
framebuffer object into four quadrants of the window for the default
framebuffer.

Example 12-1	 Copying Pixels Using Framebuffer Blits

void BlitTextures (ESContext *esContext)
{
 UserData *userData = esContext->userData;

 // set the default framebuffer for writing
 glBindFramebuffer (GL_DRAW_FRAMEBUFFER,

defaultFramebuffer);

 // set the fbo with four color attachments for reading
 glBindFramebuffer (GL_READ_FRAMEBUFFER, userData->fbo);

(continues)

344	 Chapter 12: Framebuffer Objects

Framebuffer Invalidation

Framebuffer invalidation gives the application a mechanism to inform the
driver that the contents of the framebuffer are no longer needed. This allows
the driver to take several optimization steps: (1) skip unnecessary restoration
of the contents of the tiles in tile-based rendering (TBR) architecture for
further rendering to a framebuffer, (2) skip unnecessary data copying
between GPUs in multi-GPU systems, or (3) skip flushing certain caches in
some implementations to improve performance. This functionality is very
important to achieve peak performance in many applications, especially
those that perform significant amounts of off-screen rendering.

Example 12-1	 Copying Pixels Using Framebuffer Blits (continued)

 // Copy the output red buffer to lower-left quadrant
 glReadBuffer (GL_COLOR_ATTACHMENT0);
 glBlitFramebuffer (0, 0,

esContext->width, esContext->height,
0, 0,
esContext->width/2, esContext->height/2,
GL_COLOR_BUFFER_BIT, GL_LINEAR);

 // Copy the output green buffer to lower-right quadrant
 glReadBuffer (GL_COLOR_ATTACHMENT1);
 glBlitFramebuffer (0, 0,

esContext->width, esContext->height,
esContext->width/2, 0,
esContext->width, esContext->height/2,
GL_COLOR_BUFFER_BIT, GL_LINEAR);

 // Copy the output blue buffer to upper-left quadrant
 glReadBuffer (GL_COLOR_ATTACHMENT2);
 glBlitFramebuffer (0, 0,

esContext->width, esContext->height,
0, esContext->height/2,
esContext->width/2, esContext->height,
GL_COLOR_BUFFER_BIT, GL_LINEAR);

 // Copy the output gray buffer to upper-right quadrant
 glReadBuffer (GL_COLOR_ATTACHMENT3);
 glBlitFramebuffer (0, 0,

esContext->width, esContext->height,
esContext->width/2, esContext->height/2,
esContext->width, esContext->height,
GL_COLOR_BUFFER_BIT, GL_LINEAR);

}

Framebuffer Invalidation	 345

Let us review the design of TBR GPUs to understand why framebuffer
invalidation is important for such GPUs. TBR GPUs are commonly
employed on mobile devices to minimize the amount of data transferred
between the GPU and system memory and thereby reduce one of the
biggest consumers of power, memory bandwidth. This is done by adding
a fast on-chip memory that can hold a small amount of pixel data. The
framebuffer is then divided into many tiles. For each tile, primitives are
rendered into the on-chip memory, and then the results are copied to
the system memory once completed. Because only a minimal amount of
data per pixel (the final pixel result) will be copied to the system memory,
this approach saves memory bandwidth between the GPU and system
memory.

With framebuffer invalidation, the GPU can remove contents of the
framebuffer that are no longer required so as to reduce the amount
of contents to be held per frame. In addition, the GPU may remove
unnecessary data transfer from the on-chip memory to the system memory if
the tile data is no longer valid. Because the memory bandwidth requirement
between the GPU and system memory can be reduced significantly, this
leads to reduced power consumption and improved performance.

The glInvalidateFramebuffer and glInvalidateSubFramebuffer
commands are used to invalidate the entire framebuffer or a pixel
subregion of the framebuffer.

void glInvalidateFrameb�uffer(GLenum target,
GLsizei numAttachments,
const GLenum *attachments)

void glInvalidateSubFra�mebuffer(GLenum target,
GLsizei numAttachments,
const GLenum *attachments,
GLint x, GLint y,
GLsizei width, GLsizei height)

target must be set to GL_READ_FRAMEBUFFER,
GL_DRAW_FRAMEBUFFER, or GL_FRAMEBUFFER

numAttachments

attachments

number of attachments in the attachments list

pointer to an array of numAttachments attachments

x, y specify the lower-left origin of the pixel rectangle to
invalidate (lower-left corner is 0,0)
(glInvalidateSubFramebuffer only)

346	 Chapter 12: Framebuffer Objects

Deleting Framebuffer and Renderbuffer Objects

After the application has finished using renderbuffer objects, they can be
deleted. Deleting renderbuffer and framebuffer objects is very similar to
deleting texture objects.

Renderbuffer objects are deleted using the glDeleteRenderbuffers API.

glDeleteRenderbuffers deletes the renderbuffer objects specified in
renderbuffers. Once a renderbuffer object is deleted, it has no state
associated with it and is marked as unused; it can then later be reused as a
new renderbuffer object. When deleting a renderbuffer object that is also
the currently bound renderbuffer object, the renderbuffer object is deleted
and the current renderbuffer binding is reset to zero. If the renderbuffer
object names specified in renderbuffers are invalid or zero, they are
ignored (i.e., no error will be generated). Further, if the renderbuffer is
attached to the currently bound framebuffer object, it is first detached
from the framebuffer and only then deleted.

Framebuffer objects are deleted using the glDeleteFramebuffers API.

glDeleteFramebuffers deletes the framebuffer objects specified in
framebuffers. Once a framebuffer object is deleted, it has no state

void glDeleteRenderbuffers�(GLsizei n,
 GLuint *renderbuffers)

n number of renderbuffer object names to delete
renderbuffers pointer to an array of n renderbuffer object names

to be deleted

void glDeleteFramebuffers(�GLsizei n,
GLuint *framebuffers)

n number of framebuffer object names to delete
framebuffers pointer to an array of n framebuffer object names

to be deleted

width specifies the width of the pixel rectangle to invalidate
(glInvalidateSubFramebuffer only)

height specifies the height of the pixel rectangle to invalidate
(glInvalidateSubFramebuffer only)

Deleting Framebuffer and Renderbuffer Objects	 347

associated with it and is marked as unused; it can then later be reused as
a new framebuffer object. When deleting a framebuffer object that is also
the currently bound framebuffer object, the framebuffer object is deleted
and the current framebuffer binding is reset to zero. If the framebuffer
object names specified in framebuffers are invalid or zero, they are
ignored and no error will be generated.

Deleting Renderbuffer Objects That Are Used
as Framebuffer Attachments

What happens if a renderbuffer object being deleted is used as an
attachment in a framebuffer object? If the renderbuffer object to be
deleted is used as an attachment in the currently bound framebuffer
object, glDeleteRenderbuffers will reset the attachment to zero. If the
renderbuffer object to be deleted is used as an attachment in framebuffer
objects that are not currently bound, then glDeleteRenderbuffers
will not reset these attachments to zero. It is the responsibility of the
application to detach these deleted renderbuffer objects from the
appropriate framebuffer objects.

Reading Pixels and Framebuffer Objects

The glReadPixels command reads pixels from the color buffer and returns
them in a user-allocated buffer. The color buffer that will be read from
is the color buffer allocated by the window system–provided framebuffer
or the color attachment of the currently bound framebuffer object. When
a non-zero buffer object is bound to GL_PIXEL_PACK_BUFFER using
glBindBuffer, the glReadPixels command can return immediately and
invoke DMA transfer to read pixels from the framebuffer and write the data
into the pixel buffer object.

Several combinations of format and type arguments in glReadPixels
are supported: a format of GL_RGBA, GL_RGBA_INTEGER, or
implementation-specific values returned by querying
GL_IMPLEMENTATION_COLOR_READ_FORMAT; and a type of
GL_UNSIGNED_BYTE, GL_UNSIGNED_INT, GL_INT, GL_FLOAT, or
implementation-specific values returned by querying
GL_IMPLEMENTATION_COLOR_READ_TYPE. The implementation-specific
format and type returned will depend on the format and type of the
currently attached color buffer. These values can change if the currently
bound framebuffer changes. They must be queried whenever the
currently bound framebuffer object changes to determine the correct
implementation-specific format and type values that must be passed to
glReadPixels.

348	 Chapter 12: Framebuffer Objects

Examples

Let’s now look at some examples that demonstrate how to use framebuffer
objects. Example 12-2 demonstrates how to render to texture using
framebuffer objects. In this example, we draw to a texture using a
framebuffer object. We then use this texture to draw a quad to the
window system–provided framebuffer (i.e., the screen). Figure 12-2 shows
the generated image.

Example 12-2	 Render to Texture

GLuint framebuffer;
GLuint depthRenderbuffer;
GLuint texture;
GLint texWidth = 256, texHeight = 256;
GLint maxRenderbufferSize;

glGetIntegerv (GL_MAX_RENDERBUFFER_SIZE, &maxRenderbufferSize);

// check if GL_MAX_RENDERBUFFER_SIZE is >= texWidth and texHeight

if ((maxRenderbufferSize <= texWidth) ||
 (maxRenderbufferSize <= texHeight))
{
 // cannot use framebuffer objects, as we need to create
 // a depth buffer as a renderbuffer object
 // return with appropriate error
}

// generate the framebuffer, renderbuffer, and texture object names
glGenFramebuffers (l, &framebuffer);
glGenRenderbuffers (l, &depthRenderbuffer);
glGenTextures (l, &texture);

// bind texture and load the texture mip level 0
// texels are RGB565
// no texels need to be specified as we are going to draw into
// the texture
glBindTexture (GL_TEXTURE_2D, texture);
glTexImage2D (GL_TEXTURE_2D, O, GL_RGB, texWidth, texHeight, 0,

GL_RGB, GL_UNSIGNED_SHORT_5_6_5, NULL);

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
GL_CLAMP_TO_EDGE);

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,
GL_CLAMP_TO_EDGE);

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_LINEAR);

Examples	 349

Example 12-2	 Render to Texture (continued)

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_LINEAR);

// bind renderbuffer and create a 16-bit depth buffer
// width and height of renderbuffer = width and height of
// the texture
glBindRenderbuffer (GL_RENDERBUFFER, depthRenderbuffer);
glRenderbufferStorage (GL_RENDERBUFFER, GL_DEPTH_COMPONENT16,

texWidth, texHeight);

// bind the framebuffer
glBindFramebuffer (GL_FRAMEBUFFER, framebuffer);

// specify texture as color attachment
glFramebufferTexture2D (GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,

GL_TEXTURE_2D, texture, 0);

// specify depth_renderbuffer as depth attachment
glFramebufferRenderbuffer (GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,

GL_RENDERBUFFER, depthRenderbuffer);

// check for framebuffer complete
status = glCheckFramebufferStatus (GL_FRAMEBUFFER);
if (status == GL_FRAMEBUFFER_COMPLETE)
{
 // render to texture using FBO
 // clear color and depth buffer
 glClearColor (0.0f, 0.0f, 0.0f, 1.0f);
 glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Load uniforms for vertex and fragment shaders
 // used to render to FBO. The vertex shader is the
 // ES 1.1 vertex shader described in Example 8-8 in
 // Chapter 8. The fragment shader outputs the color
 // computed by the vertex shader as fragment color and
 // is described in Example 1-2 in Chapter 1.
 set_fbo_texture_shader_and_uniforms();

 // drawing commands to the framebuffer object draw_teapot();

 // render to window system-provided framebuffer
 glBindFramebuffer (GL_FRAMEBUFFER, 0);
 // Use texture to draw to window system-provided framebuffer.
 // We draw a quad that is the size of the viewport.
 //
 // The vertex shader outputs the vertex position and texture
 // coordinates passed as inputs.

(continues)

350	 Chapter 12: Framebuffer Objects

Example 12-2	 Render to Texture (continued)

 //
 // The fragment shader uses the texture coordinate to sample
 // the texture and uses this as the per-fragment color value.
 set_screen_shader_and_uniforms ();
 draw_screen_quad ();
}

// clean up
glDeleteRenderbuffers (l, &depthRenderbuffer);
glDeleteFramebuffers (l, &framebuffer);
glDeleteTextures (l, &texture);

Figure 12-2	 Render to Color Texture

In Example 12-2, we create the framebuffer, texture, and
depthRenderbuffer objects using the appropriate glGen*** commands.
The framebuffer object uses a color attachment that is a texture
object (texture) and a depth attachment that is a renderbuffer object
(depthRenderbuffer).

Before we create these objects, we query the maximum renderbuffer size
(GL_MAX_RENDERBUFFER_SIZE) to verify that the maximum renderbuffer
size supported by the implementation is less than or equal to the width
and height of texture that will be used as a color attachment. This step
ensures that we can create a depth renderbuffer successfully and use it as
the depth attachment in framebuffer.

Examples	 351

After the objects have been created, we call glBindTexture(texture) to
make the texture the currently bound texture object. The texture mip level
is then specified using glTexImage2D. Note that the pixels argument is
NULL: We are rendering to the entire texture region, so there is no reason
to specify any input data (this data will be overwritten).

The depthRenderbuffer object is bound using glBindRenderbuffer, and
glRenderbufferStorage is called to allocate storage for a 16-bit depth buffer.

The framebuffer object is bound using glBindFramebuffer. texture is
attached as a color attachment to framebuffer, and depthRenderbuffer
is attached as a depth attachment to framebuffer.

We next check the framebuffer status to see if it is complete before we
begin drawing into framebuffer. Once framebuffer rendering is complete,
we reset the currently bound framebuffer to the window system–provided
framebuffer by calling glBindFramebuffer(GL_FRAMEBUFFER, 0). We
can now use texture, which was used as a render target in framebuffer,
to draw to the window system–provided framebuffer.

In Example 12-2, the depth buffer attachment to framebuffer was a
renderbuffer object. In Example 12-3, we consider how to use a depth
texture as a depth buffer attachment to framebuffer. Applications can
render to the depth texture used as a framebuffer attachment from the
light source. The rendered depth texture can then be used as a shadow
map to calculate the percentage in shadow for each fragment. Figure 12-3
shows the generated image.

Example 12-3	 Render to Depth Texture

#define COLOR_TEXTURE 0
#define DEPTH_TEXTURE 1

GLuint framebuffer;
GLuint textures[2];
GLint texWidth = 256, texHeight = 256;

// generate the framebuffer and texture object names
glGenFramebuffers (l, &framebuffer);
glGenTextures (2, textures);

// bind color texture and load the texture mip level 0
// texels are RGB565
// no texels need to specified as we are going to draw into
// the texture

(continues)

352	 Chapter 12: Framebuffer Objects

Example 12-3	 Render to Depth Texture (continued)

glBindTexture (GL_TEXTURE_2D, textures[COLOR_TEXTURE]);
glTexImage2D (GL_TEXTURE_2D, 0, GL_RGB, texWidth, texHeight, 0,

GL_RGB, GL_UNSIGNED_SHORT_5_6_5, NULL);

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
GL_CLAMP_TO_EDGE);

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,
GL_CLAMP_TO_EDGE);

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_LINEAR);

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_LINEAR);

// bind depth texture and load the texture mip level 0
// no texels need to specified as we are going to draw into
// the texture
glBindTexture (GL_TEXTURE_2D, textures[DEPTH_TEXTURE]);
glTexImage2D (GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, texWidth,

texHeight, 0, GL_DEPTH_COMPONENT,
GL_UNSIGNED_SHORT, NULL);

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,
GL_CLAMP_TO_EDGE);

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,
GL_CLAMP_TO_EDGE);

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,
GL_NEAREST);

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,
GL_NEAREST);

// bind the framebuffer
glBindFramebuffer (GL_FRAMEBUFFER, framebuffer);

// specify texture as color attachment
glFramebufferTexture2D (GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0,

GL_TEXTURE_2D, textures[COLOR_TEXTURE],
0);

// specify texture as depth attachment
glFramebufferTexture2D (GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,

GL_TEXTURE_2D, textures[DEPTH_TEXTURE],
0);

// check for framebuffer complete
status = glCheckFramebufferStatus (GL_FRAMEBUFFER);
if (status == GL_FRAMEBUFFER_COMPLETE)
{
 // render to color and depth textures using FBO
 // clear color and depth buffers

Examples	 353

Example 12-3	 Render to Depth Texture (continued)

 glClearColor (0.0f, 0.0f, 0.0f, 1.0f);
 glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Load uniforms for vertex and fragment shaders
 // used to render to FBO. The vertex shader is the
 // ES 1.1 vertex shader described in Example 8-8 in
 // Chapter 8. The fragment shader outputs the color
 // computed by vertex shader as fragment color and
 // is described in Example 1-2 in Chapter 1.
 set_fbo_texture_shader_and_uniforms();

 // drawing commands to the framebuffer object
 draw_teapot();

 // render to window system-provided framebuffer
 glBindFramebuffer (GL_FRAMEBUFFER, 0);

 // Use depth texture to draw to window system framebuffer.
 // We draw a quad that is the size of the viewport.
 //
 // The vertex shader outputs the vertex position and texture
 // coordinates passed as inputs.
 //
 // The fragment shader uses the texture coordinate to sample
 // the texture and uses this as the per-fragment color value.
 set_screen_shader_and_uniforms();
 draw_screen_quad();
}

// clean up
glDeleteFramebuffers (l, &framebuffer);
glDeleteTextures (2, textures);

Figure 12-3	 Render to Depth Texture

354	 Chapter 12: Framebuffer Objects

Note:	 The width and height of the off-screen renderbuffers do not have to
be a power of 2.

Performance Tips and Tricks

Here, we discuss some performance tips that developers should carefully
consider when using framebuffer objects:

•• Avoid frequent switching between rendering to the window system–
provided framebuffer and rendering to framebuffer objects. This is an
issue for handheld OpenGL ES 3.0 implementations, as many of these
implementations use a tile-based rendering architecture. With a tile-based
rendering architecture, dedicated internal memory is used to store the
color, depth, and stencil values for a tile (i.e., region) of the framebuffer.
The internal memory is used as it is much more efficient in terms of
power utilization, and it has better memory latency and bandwidth
compared with going to external memory. After rendering to a tile is
completed, the tile is written out to device (or system) memory. Every
time you switch from one rendering target to another, the appropriate
texture and renderbuffer attachments will need to be rendered, saved,
and restored. This can become quite expensive. The best method would
be to render to the appropriate framebuffers in the scene first, and
then render to the window system–provided framebuffer, followed by
execution of the eglSwapBuffers command to swap the display buffer.

•• Don’t create and destroy framebuffer and renderbuffer objects (or any
other large data objects for that matter) per frame.

•• Try to avoid modifying textures (using glTexImage2D,
glTexSubImage2D, glCopyTeximage2D, and so on) that are
attachments to framebuffer objects used as rendering targets.

•• Set the pixels argument in glTexImage2D and glTexImage3D to
NULL if the entire texture image will be rendered, as the original data
will not be used anyway. Use glInvalidateFramebuffer to clear the
texture image before drawing to the texture if you expect the image to
have any predefined pixel values in it.

•• Share depth and stencil renderbuffers as attachments used by
framebuffer objects wherever possible to keep the memory footprint
requirement to a minimum. We recognize that this recommendation
has limited use, as the width and height of these buffers have to be
the same. In a future version of OpenGL ES, the rule that the width
and height of various attachments of a framebuffer object must be
equal might be relaxed, making sharing easier.

Summary	 355

Summary

In this chapter, you learned about the use of framebuffer objects for
rendering to off-screen surfaces. There are several uses of framebuffer
objects, the most common of which is for rendering to a texture.
You learned how to specify color, depth, and stencil attachments to
a framebuffer object and how to copy and invalidate pixels in the
framebuffer, and then saw some examples that demonstrated rendering
to a framebuffer object. Understanding framebuffer objects is critical for
implementing many advanced effects, such as reflections, shadow maps,
and postprocessing. Next, you will learn about sync objects and fences—
the mechanisms to synchronize the application and GPU execution.

This page intentionally left blank

357

Chapter 13

Sync Objects and Fences

OpenGL ES 3.0 provides a mechanism for the application to wait until
a set of OpenGL ES operations have finished executing on the GPU. You
can synchronize GL operations among multiple graphics contexts and
threads, which can be important in many advanced graphics applications.
For example, you may want to wait for transform feedback results before
using those results in your applications.

In this chapter, we discuss the flush command, the finish command,
and sync objects and fences, including why they are useful and how to
use them to synchronize operations in the graphics pipeline. Finally, we
conclude with an example of using sync objects and fences.

Flush and Finish

The OpenGL ES 3.0 API inherits the OpenGL client–server model.
The application, or client, issues commands, and these commands are
processed by the OpenGL ES implementation or server. In OpenGL, the
client and the server can reside on different machines over a network.
OpenGL ES also allows the client and server to reside on different
machines but because OpenGL ES targets handheld and embedded
platforms, the client and server will typically be on the same device.

In the client–server model, the commands issued by the client do not
necessarily get sent to the server immediately. If the client and server are
operating over a network, it will be very inefficient to send individual
commands over the network. Instead, the commands can be buffered on the
client side and then issued to the server at a later point in time. To support
this approach, a mechanism is needed that lets the client know when

358	 Chapter 13: Sync Objects and Fences

the server has completed execution of previously submitted commands.
Consider another example where multiple OpenGL ES contexts (each current
to a different thread) are sharing objects. To synchronize correctly between
these contexts, it is important that commands from context A be issued to
the server before commands from context B, which depends on OpenGL
ES state modified by context A. The glFlush command is used to flush any
pending commands in the current OpenGL ES context and issue them to the
server. Note that glFlush only issues the commands to the server; it does
not wait for them to complete. If the client requires that the commands be
completed, the glFinish command should be used. We do not recommend
using glFinish unless absolutely necessary. Because glFinish does not
return until all queued commands in the context have been completely
processed by the server, calling glFinish can adversely impact performance
by forcing the client and the server to synchronize their operations.

Why Use a Sync Object?

OpenGL ES 3.0 introduces a new feature, called a fence, that provides a
way for the application to inform the GPU to wait until a set of OpenGL
ES operations have finished executing before queuing up more for
execution. You can insert a fence command into the GL command stream
and associate it with a sync object to be waited on.

If we compare using sync objects to the glFinish command, sync objects
are more efficient, as you can wait on partial completions of the GL
command stream. By comparison, calling the glFinish command may
reduce the performance of your applications, as this command will empty
the graphics pipeline.

Creating and Deleting a Sync Object

To insert a fence command to the GL command stream and create a sync
object, you can call the following function:

GLsync	 glFenceSync(GLenum condition, GLbitfield flags)

condition	� specifies the condition that must be met to signal the sync
object; must be GL_SYNC_GPU_COMMANDS_COMPLETE

flags	� specifies a bit-wise combination of flags to control the
behavior of the sync object; must be zero presently

Waiting for and Signaling a Sync Object	 359

When a sync object is first created, its status is unsignaled. After the
specified condition is satisfied by the fence command, then its status
becomes signaled. Because sync objects cannot be reused, you must create
one sync object for each synchronization operation.

To delete a sync object, you can call the following function:

GLvoid	 glDeleteSync(GLsync sync)

sync	 specifies the sync object to be deleted

GLenum	 glClientWaitSync(GLsync sync, GLbitfield flags,
   GLuint64 timeout)

sync	 specifies the sync object to wait on for its status

flags 	�specifies a bitfield controlling the command flushing
behavior; may be GL_SYNC_FLUSH_COMMANDS_BIT

timeout	� specifies the timeout in nanoseconds to wait for the sync
object to be signaled

The deletion operation does not occur immediately, as the sync object will
be deleted only when no other operation is waiting for it. Thus you can
call the glDeleteSync command right after waiting for the sync object,
which is described next.

Waiting for and Signaling a Sync Object

You can block the client and wait for a sync object to be signaled with the
following call:

If the sync object is already at a signaled state, the glClientWaitSync
command will return immediately. Otherwise, the call will block and wait
up to timeout nanoseconds for the sync object to be signaled.

360	 Chapter 13: Sync Objects and Fences

The glClientWaitSync function can return the following values:

•• GL_ALREADY_SIGNALED: the sync object was already at the signaled
state when the function was called.

•• GL_TIMEOUT_EXPIRED: the sync object did not become signaled after
timeout nanoseconds passed.

•• GL_CONDITION_SATISFIED: the sync object was signaled before the
timeout expired.

•• GL_WAIT_FAILED: an error occurred.

The glWaitSync function is similar to the glClientWaitSync function,
except that the function returns immediately and blocks the GPU until
the sync object is signaled.

void	 glWaitSync(GLsync sync, GLbitfield flags,
GLuint64 timeout)

sync	 specifies the sync object to wait on for its status.

flags	� specifies a bitfield controlling the command flushing
behavior; must be zero.

timeout	� specifies the timeout in nanoseconds that the server should
wait before continuing; must be GL_TIMEOUT_IGNORED.

Example

Example 13-1 shows an example of inserting a fence command after
transform feedback buffers are created (see the EmitParticles function
implementation) and blocking the GPU to wait on the transform feedback
results before drawing them (see the Draw function implementation). The
EmitParticles function and Draw function are executed by two separate
CPU threads.

This code segment is a part of the particle system with transform feedback
example that will be described in more detail in Chapter 14, “Advanced
Programming with OpenGL ES 3.0.”

Summary	 361

Summary

In this chapter, you learned about efficient primitives for synchronizing
within the host application and GPU execution in OpenGL ES 3.0. We
discussed how to use the sync objects and fences. In the next chapter,
you will see many advanced rendering examples that tie together all the
concepts you have learned so far throughout the book.

Example 13-1	 �Inserting a Fence Command and Waiting for Its Result in
Transform Feedback Example

void EmitParticles (ESContext *esContext, float deltaTime)
{
 // Many codes skipped . . .

 // Emit particles using transform feedback
 glBeginTransformFeedback (GL_POINTS);

glDrawArrays (GL_POINTS, 0, NUM_PARTICLES);
 glEndTransformFeedback ();

 // Create a sync object to ensure transform feedback results
 // are completed before the draw that uses them
 userData->emitSync =

glFenceSync (GL_SYNC_GPU_COMMANDS_COMPLETE, 0);

 // Many codes skipped . . .
}

void Draw (ESContext *esContext)
{
 UserData *userData = (UserData*) esContext->userData;

 // Block the GL server until transform feedback results
 // are completed
 glWaitSync (userData->emitSync, 0, GL_TIMEOUT_IGNORED);
 glDeleteSync (userData->emitSync);

 // Many codes skipped . . .

 glDrawArrays (GL_POINTS, 0, NUM_PARTICLES);
}

This page intentionally left blank

363

Chapter 14

Advanced Programming
with OpenGL ES 3.0

In this chapter, we put together many of the techniques you have learned
throughout this book to discuss some advanced uses of OpenGL ES 3.0.
A large number of advanced rendering techniques can be accomplished
with the programmable flexibility of OpenGL ES 3.0. In this chapter, we
cover the following techniques:

•• Per-fragment lighting

•• Environment mapping

•• Particle system with point sprites

•• Particle system with transform feedback

•• Image postprocessing

•• Projective texturing

•• Noise using a 3D texture

•• Procedural textures

•• Terrain rendering with vertex texture fetch

•• Shadows using a depth texture

Per-Fragment Lighting

In Chapter 8, “Vertex Shaders,” we covered the lighting equations that can
be used in the vertex shader to calculate per-vertex lighting. Commonly,
to achieve higher-quality lighting, we seek to evaluate the lighting
equations on a per-fragment basis. In this section, we provide an example

364	 Chapter 14: Advanced Programming with OpenGL ES 3.0

of evaluating ambient, diffuse, and specular lighting on a per-fragment
basis. This example is a PVRShaman workspace that can be found in
Chapter_14/PVR_PerFragmentLighting, as pictured in Figure 14-1.
Several of the examples in this chapter make use of PVRShaman, a shader
development integrated development environment (IDE) that is part
of the Imagination Technologies PowerVR SDK (downloadable from
http://powervrinsider.com/).

Figure 14-1	 Per-Fragment Lighting Example

Lighting with a Normal Map

Before we get into the details of the shaders used in the PVRShaman
workspace, we need to discuss the general approach that is used in the
example. The simplest way to do lighting per-fragment would be to
use the interpolated vertex normal in the fragment shader and then
move the lighting computations into the fragment shader. However, for
the diffuse term, this would really not yield much better results than
doing the lighting on a per-vertex basis. There would be the advantage
that the normal vector could be renormalized, which would remove
artifacts due to linear interpolation, but the overall quality would be
only minimally better. To really take advantage of the ability to do
computations on a per-fragment basis, we need to use a normal map
to store per-texel normals—a technique that can provide significantly
more detail.

A normal map is a 2D texture that stores a normal vector at each texel.
The red channel represents the x component, the green channel the y
component, and the blue channel the z component. For a normal map
stored as GL_RGB8 with GL_UNSIGNED_BYTE data, the values will all be
in the range [0, 1]. To represent a normal, these values need to be scaled
and biased in the shader to remap to [−1, 1]. The following block of

http://powervrinsider.com/

Per-Fragment Lighting	 365

fragment shader code shows how you would go about fetching from a
normal map:

// Fetch the tangent space normal from normal map
vec3 normal = texture(s_bumpMap, v_texcoord).xyz;

// Scale and bias from [0, 1] to [−1, 1] and normalize
normal = normalize(normal * 2.0 − 1.0);

As you can see, this small bit of shader code will fetch the color value from
a texture map and then multiply the results by 2 and subtract 1. The result
is that the values are rescaled into the [−1, 1] range from the [0, 1] range.
We could actually avoid this scale and bias in the shader code by using
a signed texture format such as GL_RGB8_SNORM, but for the purposes of
demonstration we are showing how to use a normal map stored in an
unsigned format. In addition, if the data in your normal map are not
normalized, you will need to normalize the results in the fragment shader.
This step can be skipped if your normal map contains all unit vectors.

The other significant issue to tackle with per-fragment lighting has to
do with the space in which the normals in the texture are stored. To
minimize computations in the fragment shader, we do not want to have
to transform the result of the normal fetched from the normal map. One
way to accomplish this would be to store world-space normals in your
normal map. That is, the normal vectors in the normal map would each
represent a world-space normal vector. Then, the light and direction
vectors could be transformed into world space in the vertex shader and
could be directly used with the value fetched from the normal map.
However, some significant issues arise when storing normal maps in world
space. Most importantly, the object must be assumed to be static because
no transformation can happen on the object. In addition, the same
surface oriented in different directions in space would not be able to share
the same texels in the normal map, which can result in much larger maps.

A better solution than using world-space normal maps is to store normal
maps in tangent space. The idea behind tangent space is that we define a
space for each vertex using three coordinate axes: the normal, binormal,
and tangent. The normals stored in the texture map are then all stored
in this tangent space. Then, when we want to compute any lighting
equations, we transform our incoming lighting vectors into the tangent
space and those light vectors can then be used directly with the values in
the normal map. The tangent space is typically computed as a preprocess
and the binormal and tangent are added to the vertex attribute data. This
work is done automatically by PVRShaman, which computes a tangent
space for any model that has a vertex normal and texture coordinates.

366	 Chapter 14: Advanced Programming with OpenGL ES 3.0

Lighting Shaders

Once we have tangent space normal maps and tangent space vectors set
up, we can proceed with per-fragment lighting. First, let’s look at the
vertex shader in Example 14-1.

Example 14-1	 Per-Fragment Lighting Vertex Shader

#version 300 es
uniform mat4 u_matViewInverse;
uniform mat4 u_matViewProjection;
uniform vec3 u_lightPosition;
uniform vec3 u_eyePosition;

in vec4 a_vertex;
in vec2 a_texcoord0;
in vec3 a_normal;
in vec3 a_binormal;
in vec3 a_tangent;

out vec2 v_texcoord;
out vec3 v_viewDirection;
out vec3 v_lightDirection;

void main(void)
{
 // Transform eye vector into world space
 vec3 eyePositionWorld =

(u_matViewInverse * vec4(u_eyePosition, 1.0)).xyz;

 // Compute world−space direction vector
 vec3 viewDirectionWorld = eyePositionWorld − a_vertex.xyz;

 // Transform light position into world space
 vec3 lightPositionWorld =

(u_matViewInverse * vec4(u_lightPosition, 1.0)).xyz;

 // Compute world−space light direction vector
 vec3 lightDirectionWorld = lightPositionWorld − a_vertex.xyz;

 // Create the tangent matrix
 mat3 tangentMat = mat3(�a_tangent,

 a_binormal,
 a_normal);

 // Transform the view and light vectors into tangent space
 v_viewDirection = viewDirectionWorld * tangentMat;
 v_lightDirection = lightDirectionWorld * tangentMat;

 // Transform output position
 gl_Position = u_matViewProjection * a_vertex;

Per-Fragment Lighting	 367

Note that the vertex shader inputs and uniforms are set up automatically
by PVRShaman by setting semantics in the PerFragmentLighting.pfx
file. We have two uniform matrices that we need as input to the
vertex shader: u_matViewInverse and u_matViewProjection. The
u_matViewInverse matrix contains the inverse of the view matrix. This
matrix is used to transform the light vector and the eye vector (which
are in view space) into world space. The first four statements in main
perform this transformation and compute the light vector and view vector
in world space. The next step in the shader is to create a tangent matrix.
The tangent space for the vertex is stored in three vertex attributes:
a_normal, a_binormal, and a_tangent. These three vectors define the
three coordinate axes of the tangent space for each vertex. We construct a
3 × 3 matrix out of these vectors to form the tangent matrix tangentMat.

The next step is to transform the view and direction vectors into tangent
space by multiplying them by the tangentMat matrix. Remember,
our purpose here is to get the view and direction vectors into the
same space as the normals in the tangent-space normal map. By doing
this transformation in the vertex shader, we avoid performing any
transformations in the fragment shader. Finally, we compute the final
output position and place it in gl_Position and pass the texture
coordinate along to the fragment shader in v_texcoord.

Now we have the view and direction vector in view space and a texture
coordinate passed as out variables to the fragment shader. The next step
is to actually light the fragments using the fragment shader, as shown in
Example 14-2.

Example 14-1	 Per-Fragment Lighting Vertex Shader (continued)

 // Pass through texture coordinate
 v_texcoord = a_texcoord0.xy;

}

Example 14-2	 Per-Fragment Lighting Fragment Shader

#version 300 es
precision mediump float;

uniform vec4 u_ambient;
uniform vec4 u_specular;
uniform vec4 u_diffuse;
uniform float u_specularPower;

(continues)

368	 Chapter 14: Advanced Programming with OpenGL ES 3.0

Example 14-2	 Per-Fragment Lighting Fragment Shader (continued)

uniform sampler2D s_baseMap;
uniform sampler2D s_bumpMap;

in vec2 v_texcoord;
in vec3 v_viewDirection;
in vec3 v_lightDirection;

layout(location = 0) out vec4 fragColor;
void main(void)
{
 // Fetch base map color
 vec4 baseColor = texture(s_baseMap, v_texcoord);

 // Fetch the tangent space normal from normal map
 vec3 normal = texture(s_bumpMap, v_texcoord).xyz;

 // Scale and bias from [0, 1] to [−1, 1] and
 // normalize
 normal = normalize(normal * 2.0 − 1.0);

 // Normalize the light direction and view
 // direction
 vec3 lightDirection = normalize(v_lightDirection);
 vec3 viewDirection = normalize(v_viewDirection);

 // Compute N.L
 float nDotL = dot(normal, lightDirection);

 // Compute reflection vector
 vec3 reflection = (2.0 * normal * nDotL) −
 lightDirection;

 // Compute R.V
 float rDotV =
 max(0.0, dot(reflection, viewDirection));

 // Compute ambient term
 vec4 ambient = u_ambient * baseColor;

 // Compute diffuse term
 vec4 diffuse = u_diffuse * nDotL * baseColor;

 // Compute specular term
 vec4 specular = u_specular *
 pow(rDotV, u_specularPower);

 // Output final color
 fragColor = ambient + diffuse + specular;
}

Per-Fragment Lighting	 369

The first part of the fragment shader consists of a series of uniform declarations
for the ambient, diffuse, and specular colors. These values are stored in the
uniform variables u_ambient, u_diffuse, and u_specular, respectively.
The shader is also configured with two samplers, s_baseMap and s_bumpMap,
which are bound to a base color map and the normal map, respectively.

The first part of the fragment shader fetches the base color from the base
map and the normal values from the normal map. As described earlier,
the normal vector fetched from the texture map is scaled and biased and
then normalized so that it is a unit vector with components in the [−1, 1]
range. Next, the light vector and view vector are normalized and stored
in lightDirection and viewDirection. Normalization is necessary
because of the way fragment shader input variables are interpolated across
a primitive. The fragment shader input variables are linearly interpolated
across the primitive. When linear interpolation is done between two vectors,
the results can become denormalized during interpolation. To compensate
for this artifact, the vectors must be normalized in the fragment shader.

Lighting Equations

At this point in the fragment shader, we now have a normal, light vector,
and direction vector all normalized and in the same space. This gives
us the inputs needed to compute the lighting equations. The lighting
computations performed in this shader are as follows:

Ambient = kAmbient × CBase

Diffuse = kDiffuse × N • L × CBase

Specular = kSpecular × pow(max(R • V, 0.0), kSpecular Power

The k constants for ambient, diffuse, and specular colors come from the
u_ambient, u_diffuse, and u_specular uniform variables. The CBase is
the base color fetched from the base texture map. The dot product of the
light vector and the normal vector, N • L, is computed and stored in the
nDotL variable in the shader. This value is used to compute the diffuse
lighting term. Finally, the specular computation requires R, which is the
reflection vector computed from the equation

R = 2 × N × (N • L) − L

Notice that the reflection vector also requires N • L, so the computation
used for the diffuse lighting term can be reused in the reflection vector
computation. Finally, the lighting terms are stored in the ambient,
diffuse, and specular variables in the shader. These results are summed

370	 Chapter 14: Advanced Programming with OpenGL ES 3.0

and finally stored in the fragColor output variable. The result is a per-
fragment lit object with normal data coming from the normal map.

Many variations are possible on per-fragment lighting. One common
technique is to store the specular exponent in a texture along with a specular
mask value. This allows the specular lighting to vary across a surface.
The main purpose of this example is to give you an idea of the types of
computations that are typically done for per-fragment lighting. The use
of tangent space, along with the computation of the lighting equations in
the fragment shader, is typical of many modern games. Of course, it is also
possible to add more lights, more material information, and much more.

Environment Mapping

The next rendering technique we cover—related to the previous
technique—is performing environment mapping using a cubemap.
The example we cover is the PVRShaman workspace
Chapter_14/PVR_EnvironmentMapping. The results are shown
in Figure 14-2.

Figure 14-2	 Environment Mapping Example

The concept behind environment mapping is to render the reflection of
the environment on an object. In Chapter 9, “Texturing,” we introduced
cubemaps, which are commonly used to store environment maps. In the
PVRShaman example workspace, the environment of a mountain scene
is stored in a cubemap. The way such cubemaps can be generated is by
positioning a camera at the center of a scene and rendering along each of the
positive and negative major axis directions using a 90-degree field of view. For
reflections that change dynamically, we can render such a cubemap using a
framebuffer object dynamically for each frame. For a static environment, this
process can be done as a preprocess and the results stored in a static cubemap.

The vertex shader for the environment mapping example is provided in
Example 14-3.

Environment Mapping	 371

Example 14-3	 Environment Mapping Vertex Shader

#version 300 es
uniform mat4 u_matViewInverse;
uniform mat4 u_matViewProjection;
uniform vec3 u_lightPosition;

in vec4 a_vertex;
in vec2 a_texcoord0;
in vec3 a_normal;
in vec3 a_binormal;
in vec3 a_tangent;

out vec2 v_texcoord;
out vec3 v_lightDirection;
out vec3 v_normal;
out vec3 v_binormal;
out vec3 v_tangent;

void main(void)
{
 // Transform light position into world space
 vec3 lightPositionWorld =

   (u_matViewInverse * vec4(u_lightPosition, 1.0)).xyz;

 // Compute world−space light direction vector
 vec3 lightDirectionWorld = lightPositionWorld − a_vertex.xyz;

 // Pass the world−space light vector to the fragment shader
 v_lightDirection = lightDirectionWorld;

 // Transform output position
 gl_Position = u_matViewProjection * a_vertex;

 // Pass through other attributes
 v_texcoord = a_texcoord0.xy;
 v_normal = a_normal;
 v_binormal = a_binormal;
 v_tangent = a_tangent;
}

The vertex shader in this example is very similar to the previous per-
fragment lighting example. The primary difference is that rather than
transforming the light direction vector into tangent space, we keep the
light vector in world space. The reason we must do this is because we
ultimately want to fetch from the cubemap using a world-space reflection
vector. As such, rather than transforming the light vectors into tangent
space, we will transform the normal vector from tangent space into world

372	 Chapter 14: Advanced Programming with OpenGL ES 3.0

space. To do so, the vertex shader passes the normal, binormal, and
tangent as varyings into the fragment shader so that a tangent matrix can
be constructed.

The fragment shader listing for the environment mapping sample is
provided in Example 14-4.

Example 14-4	 Environment Mapping Fragment Shader

#version 300 es
precision mediump float;

uniform vec4 u_ambient;
uniform vec4 u_specular;
uniform vec4 u_diffuse;
uniform float u_specularPower;

uniform sampler2D s_baseMap;
uniform sampler2D s_bumpMap;
uniform samplerCube s_envMap;

in vec2 v_texcoord;
in vec3 v_lightDirection;
in vec3 v_normal;
in vec3 v_binormal;
in vec3 v_tangent;

layout(location = 0) out vec4 fragColor;

void main(void)
{
 // Fetch base map color
 vec4 baseColor = texture(s_baseMap, v_texcoord);

 // Fetch the tangent space normal from normal map
 vec3 normal = texture(s_bumpMap, v_texcoord).xyz;

 // Scale and bias from [0, 1] to [−1, 1]
 normal = normal * 2.0 − 1.0;

 // Construct a matrix to transform from tangent to
 // world space
 mat3 tangentToWorldMat = mat3(v_tangent,

v_binormal,
v_normal);

 // Transform normal to world space and normalize
 normal = normalize(tangentToWorldMat * normal);

 // Normalize the light direction
 vec3 lightDirection = normalize(v_lightDirection);

Environment Mapping	 373

In the fragment shader, you will notice that the normal vector is fetched
from the normal map in the same way as in the per-fragment lighting
example. The difference in this example is that rather than leaving
the normal vector in tangent space, the fragment shader transforms
the normal vector into world space. This is done by constructing the
tangentToWorld matrix out of the v_tangent, v_binormal, and
v_normal varying vectors and then multiplying the fetched normal
vector by this new matrix. The reflection vector is then calculated using
the light direction vector and normal, both in world space. The result
of the computation is a reflection vector that is in world space, exactly
what we need to fetch from the cubemap as an environment map. This
vector is used to fetch into the environment map using the texture
function with the reflection vector as a texture coordinate. Finally,
the resultant fragColor is written as a combination of the base map
color and the environment map color. The base color is attenuated by
0.25 for the purposes of this example so that the environment map is
clearly visible.

This example demonstrates the basics of environment mapping. The
same basic technique can be used to produce a large variety of effects. For
example, the reflection may be attenuated using a fresnel term to more
accurately model the reflection of light on a given material. As mentioned
earlier, another common technique is to dynamically render a scene into
a cubemap so that the environment reflection varies as an object moves
through a scene and the scene itself changes. Using the basic technique
shown here, you can extend the technique to accomplish more advanced
reflection effects.

Example 14-4	 Environment Mapping Fragment Shader (continued)

 // Compute N.L
 float nDotL = dot(normal, lightDirection);

 // Compute reflection vector
 vec3 reflection = (2.0 * normal * nDotL) − lightDirection;

 // Use the reflection vector to fetch from the environment
 // map
 vec4 envColor = texture(s_envMap, reflection);

 // Output final color
 fragColor = 0.25 * baseColor + envColor;
}

374	 Chapter 14: Advanced Programming with OpenGL ES 3.0

Particle System with Point Sprites

The next example we cover is rendering a particle explosion using point
sprites. This example demonstrates how to animate a particle in a vertex
shader and how to render particles using point sprites. The example we
cover is the sample program in Chapter_14/ParticleSystem, the results
of which are pictured in Figure 14-3.

Particle System Setup

Before diving into the code for this example, it’s helpful to cover at a high
level the approach this sample uses. One of the goals here is to show how
to render a particle explosion without having any dynamic vertex data
modified by the CPU. That is, with the exception of uniform variables,
there are no changes to any of the vertex data as the explosion animates.
To accomplish this goal, a number of inputs are fed into the shaders.

At initialization time, the program initializes the following values in a
vertex array, one for each particle, based on a random value:

•• Lifetime—The lifetime of a particle in seconds.

•• Start position—The start position of a particle in the explosion.

•• End position—The final position of a particle in the explosion (the
particles are animated by linearly interpolating between the start and
end position).

Figure 14-3	 Particle System Sample

Environment Mapping	 375

In addition, each explosion has several global settings that are passed in as
uniforms:

•• Center position—The center of the explosion (the per-vertex
positions are offset from this center).

•• Color—An overall color for the explosion.

•• Time—The current time in seconds.

Particle System Vertex Shader

With this information, the vertex and fragment shaders are completely
responsible for the motion, fading, and rendering of the particles. Let’s
begin by looking at the vertex shader code for the sample in Example 14-5.

Example 14-5	 Particle System Vertex Shader

#version 300 es
uniform float u_time;
uniform vec3 u_centerPosition;
layout(location = 0) in float a_lifetime;
layout(location = 1) in vec3 a_startPosition;
layout(location = 2) in vec3 a_endPosition;
out float v_lifetime;
void main()
{
 if (u_time <= a_lifetime)
 {
 gl_Position.xyz = a_startPosition +

(u_time * a_endPosition);
 gl_Position.xyz += u_centerPosition;
 gl_Position.w = 1.0;
 }
 else
 {
 gl_Position = vec4(−1000, −1000, 0, 0);
 }
 v_lifetime = 1.0 − (u_time / a_lifetime);
 v_lifetime = clamp (v_lifetime, 0.0, 1.0);
 gl_PointSize = (v_lifetime * v_lifetime) * 40.0;
}

The first input to the vertex shader is the uniform variable u_time. This
variable is set to the current elapsed time in seconds by the application.
The value is reset to 0.0 when the time exceeds the length of a single

376	 Chapter 14: Advanced Programming with OpenGL ES 3.0

explosion. The next input to the vertex shader is the uniform variable
u_centerPosition. This variable is set to the center location of the
explosion at the start of a new explosion. The setup code for u_time
and u_centerPosition appears in the Update function in the C code
of the example program, which is provided in Example 14-6.

Example 14-6	 Update Function for Particle System Sample

void Update (ESContext *esContext, float deltaTime)
{
 UserData *userData = esContext−>userData;

 userData−>time += deltaTime;

 glUseProgram (userData−>programObject);

 if(userData−>time >= l.Of)
 {

float centerPos[3];
float color[4] ;

userData−>time = O.Of;

// Pick a new start location and color
centerPos[0] = ((float)(rand() % 10000)/10000.0f)−0.5f;
centerPos[l] = ((float)(rand() % 10000)/10000.0f)−0.5f;
centerPos[2] = ((float)(rand() % 10000)/10000.0f)−0.5f;

glUniform3fv(userData−>centerPositionLoc, 1,
¢erPos[0]);

// Random color
color[0] = ((float)(rand() % 10000) / 20000.Of) + 0.5f;
color[l] = ((float)(rand() % 10000) / 20000.Of) + 0.5f;
color[2] = ((float)(rand() % 10000) / 20000.Of) + 0.5f;
color[3] = 0.5;

glUniform4fv(userData−>colorLoc, 1, &color[0]);
 }
 // Load uniform time variable
 glUniformlf(userData−>timeLoc, userData−>time);
}

As you can see, the Update function resets the time after 1 second elapses
and then sets up a new center location and time for another explosion.
The function also keeps the u_time variable up-to-date in each frame.

The vertex inputs to the vertex shader are the particle lifetime, particle start
position, and end position. These variables are all initialized to randomly

Environment Mapping	 377

seeded values in the Init function in the program. The body of the vertex
shader first checks whether a particle’s lifetime has expired. If so, the
gl_Position variable is set to the value (−1000, −1000), which is just a
quick way of forcing the point to be off the screen. Because the point will
be clipped, all of the subsequent processing for the expired point sprites
can be skipped. If the particle is still alive, its position is set to be a linear
interpolated value between the start and end positions. Next, the vertex
shader passes the remaining lifetime of the particle down into the fragment
shader in the varying variable v_lifetime. The lifetime will be used in the
fragment shader to fade the particle as it ends its life. The final piece of the
vertex shader causes the point size to be based on the remaining lifetime
of the particle by setting the gl_Pointsize built-in variable. This has the
effect of scaling the particles down as they reach the end of their life.

Particle System Fragment Shader

The fragment shader code for the example program is provided in
Example 14-7.

Example 14-7	 Particle System Fragment Shader

#version 300 es
precision mediump float;
uniform vec4 u_color;
in float v_lifetime;
layout(location = 0) out vec4 fragColor;
uniform sampler2D s_texture;
void main()
{
 vec4 texColor;
 texColor = texture(s_texture, gl_PointCoord);
 fragColor = vec4(u_color) * texColor;
 fragColor.a *= v_lifetime;
}

The first input to the fragment shader is the u_color uniform variable,
which is set at the beginning of each explosion by the Update function.
Next, the v_lifetime input variable set by the vertex shader is declared
in the fragment shader. In addition, a sampler is declared to which a 2D
texture image of smoke is bound.

The fragment shader itself is relatively simple. The texture fetch uses the
gl_PointCoord variable as a texture coordinate. This special variable
for point sprites is set to fixed values for the corners of the point sprite
(this process was described in Chapter 7, “Primitive Assembly and

378	 Chapter 14: Advanced Programming with OpenGL ES 3.0

Rasterization,” in the discussion of drawing primitives). One could also
extend the fragment shader to rotate the point sprite coordinates if
rotation of the sprite was required. This requires extra fragment shader
instructions, but increases the flexibility of the point sprite.

The texture color is attenuated by the u_color variable, and the alpha
value is attenuated by the particle lifetime. The application also enables
alpha blending with the following blend function:

glEnable (GL_BLEND);
glBlendFunc (GL_SRC_ALPHA, GL_ONE);

As a consequence of this code, the alpha produced in the fragment shader is
modulated with the fragment color. This value is then added into whatever
values are stored in the destination of the fragment. The result is an additive
blend effect for the particle system. Note that various particle effects will use
different alpha blending modes to accomplish the desired effect.

The code to actually draw the particles is shown in Example 14-8.

Example 14-8	 Draw Function for Particle System Sample

void Draw (ESContext *esContext)
{
 UserData *userData = esContext−>userData;

 // Set the viewport
 glViewport (0, 0, esContext−>width, esContext−>height);

 // Clear the color buffer
 glClear (GL_COLOR_BUFFER_BIT);

 // Use the program object
 glUseProgram (userData−>programObject);

 // Load the vertex attributes
 glVertexAttribPointer (ATTRIBUTE_LIFETIME_LOC, 1,

GL_FLOAT, GL_FALSE,
PARTICLE_SIZE * sizeof(GLfloat),
userData−>particleData);

 glVertexAttribPointer (ATTRIBUTE_ENDPOSITION_LOC, 3,
GL_FLOAT, GL_FALSE,
PARTICLE_SIZE * sizeof(GLfloat),
&userData−>particleData[1]);

 glVertexAttribPointer (ATTRIBUTE_STARTPOSITION_LOC, 3,
GL_FLOAT, GL_FALSE,
PARTICLE_SIZE * sizeof(GLfloat),
&userData−>particleData[4]);

Environment Mapping	 379

The Draw function begins by setting the viewport and clearing the screen.
It then selects the program object to use and loads the vertex data using
glVertexAttribPointer. Note that because the values of the vertex array
never change, this example could have used vertex buffer objects rather
than client-side vertex arrays. In general, this approach is recommended
for any vertex data that does not change because it reduces the vertex
bandwidth used. Vertex buffer objects were not used in this example
merely to keep the code a bit simpler. After setting the vertex arrays, the
function enables the blend function, binds the smoke texture, and then
uses glDrawArrays to draw the particles.

Unlike with triangles, there is no connectivity for point sprites, so using
glDrawElements does not really provide any advantage for rendering
point sprites in this example. However, often particle systems need to
be sorted by depth from back to front to achieve proper alpha blending
results. In such cases, one potential approach is to sort the element array to
modify the draw order. This technique is very efficient, because it requires
minimal bandwidth across the bus per frame (only the index data need be
changed, and they are almost always smaller than the vertex data).

This example has demonstrated a number of techniques that can be useful
in rendering particle systems using point sprites. The particles were animated
entirely on the GPU using the vertex shader. The sizes of the particles were
attenuated based on particle lifetime using the gl_PointSize variable. In
addition, the point sprites were rendered with a texture using the
gl_PointCoord built-in texture coordinate variable. These are the fundamental
elements needed to implement a particle system using OpenGL ES 3.0.

 glEnableVertexAttribArray (ATTRIBUTE_LIFETIME_LOC);
 glEnableVertexAttribArray (ATTRIBUTE_ENDPOSITION_LOC);
 glEnableVertexAttribArray (ATTRIBUTE_STARTPOSITION_LOC);

 // Blend particles
 glEnable (GL_BLEND);
 glBlendFunc (GL_SRC_ALPHA, GL_ONE);

 // Bind the texture
 glActiveTexture (GL_TEXTURE0);
 glBindTexture (GL_TEXTURE_2D, userData−>textureId);

 // Set the sampler texture unit to 0
 glUniform1i (userData−>samplerLoc, 0);

 glDrawArrays(GL_POINTS, 0, NUM_PARTICLES);
}

Example 14-8	 Draw Function for Particle System Sample (continued)

380	 Chapter 14: Advanced Programming with OpenGL ES 3.0

Particle System Using Transform Feedback

The previous example demonstrated one technique for animating a
particle system in the vertex shader. Although it included an efficient
method for animating particles, the result was severely limited compared
to a traditional particle system. In a typical CPU-based particle system,
particles are emitted with different initial parameters such as position,
velocity, and acceleration and the paths are animated over the particle’s
lifetime. In the previous example, all of the particles were emitted
simultaneously and the paths were limited to a linear interpolation
between the start and end positions.

We can build a much more general-purpose GPU-based particle system by
using the transform feedback feature of OpenGL ES 3.0. To review, transform
feedback allows the outputs of the vertex shader to be stored in a buffer
object. As a consequence, we can implement a particle emitter completely
in a vertex shader on the GPU, store its output into a buffer object, and
then use that buffer object with another shader to draw the particles. In
general, transform feedback allows you to implement render to vertex
buffer (sometimes referred to by the shorthand R2VB), which means that a
wide range of algorithms can be moved from the CPU to the GPU.

The example we cover in this section is found in Chapter_14/
ParticleSystemTransformFeedback. It demonstrates emitting particles
for a fountain using transform feedback, as shown in Figure 14-4.

Figure 14-4	 Particle System with Transform Feedback

Particle System Using Transform Feedback	 381

Particle System Rendering Algorithm

This section provides a high-level overview of how the transform
feedback-based particle system works. At initialization time, two buffer
objects are allocated to hold the particle data. The algorithm ping-pongs
(switches back and forth) between the two buffers, each time switching
which buffer is the input or output for particle emission. Each particle
contains the following information: position, velocity, size, current time,
and lifetime.

The particle system is updated with transform feedback and then rendered
in the following steps:

•• In each frame, one of the particle VBOs is selected as the input
and bound as a GL_ARRAY_BUFFER. The output is bound as a
GL_TRANSFORM_FEEDBACK_BUFFER.

•• GL_RASTERIZER_DISCARD is enabled so that no fragments are drawn.

•• The particle emission shader is executed using point primitives (each
particle is one point). The vertex shader outputs new particles to
the transform feedback buffer and copies existing particles to the
transform feedback buffer unchanged.

•• GL_RASTERIZER_DISCARD is disabled, so that the application can draw
the particles.

•• The buffer that was rendered to for transform feedback is now bound
as a GL_ARRAY_BUFFER. Another vertex/fragment shader is bound to
draw the particles.

•• The particles are rendered to the framebuffer.

•• In the next frame, the input/output buffer objects are swapped and
the same process continues.

Particle Emission with Transform Feedback

Example 14-9 shows the vertex shader that is used for emitting particles.
All of the output variables in this shader are written to a transform
feedback buffer object. Whenever a particle’s lifetime has expired, the
shader will make it a potential candidate for emission as a new active
particle. If a new particle is generated, the shader uses a randomValue
function (shown in the vertex shader code in Example 14-9) that generates
a random value to initialize the new particle’s velocity and size. The
random number generation is based on using a 3D noise texture and using
the gl_VertexID built-in variable to select a unique texture coordinate

382	 Chapter 14: Advanced Programming with OpenGL ES 3.0

for each particle. The details of creating and using a 3D Noise texture are
described in the Noise Using a 3D Texture section later in this chapter.

Example 14-9	 Particle Emission Vertex Shader

#version 300 es
#define NUM_PARTICLES 200
#define ATTRIBUTE_POSITION 0
#define ATTRIBUTE_VELOCITY 1
#define ATTRIBUTE_SIZE 2
#define ATTRIBUTE_CURTIME 3
#define ATTRIBUTE_LIFETIME 4

uniform float u_time;
uniform float u_emissionRate;
uniform sampler3D s_noiseTex;

layout(location = ATTRIBUTE_POSITION) in vec2 a_position;
layout(location = ATTRIBUTE_VELOCITY) in vec2 a_velocity;
layout(location = ATTRIBUTE_SIZE) in float a_size;
layout(location = ATTRIBUTE_CURTIME) in float a_curtime;
layout(location = ATTRIBUTE_LIFETIME) in float a_lifetime;

out vec2 v_position;
out vec2 v_velocity;
out float v_size;
out float v_curtime;
out float v_lifetime;

float randomValue(inout float seed)
{
 float vertexId = float(gl_VertexID) /

float(NUM_PARTICLES);
 vec3 texCoord = vec3(u_time, vertexId, seed);
 seed += 0.1;
 return texture(s_noiseTex, texCoord).r;
}

void main()
{
 float seed = u_time;
 float lifetime = a_curtime − u_time;
 if(lifetime <= 0.0 && randomValue(seed) < u_emissionRate)
 {
 // Generate a new particle seeded with random values for
 // velocity and size
 v_position = vec2(0.0, −1.0);
 v_velocity = vec2(randomValue(seed) * 2.0 − 1.00,

randomValue(seed) * 0.4 + 2.0);

Particle System Using Transform Feedback	 383

To use the transform feedback feature with this vertex shader, the output
variables must be tagged as being used for transform feedback before
linking the program object. This is done in the InitEmitParticles
function in the example code, where the following snippet shows how the
program object is set up for transform feedback:

char* feedbackVaryings[5] =
{
 "v_position",
 "v_velocity",
 "v_size",
 "v_curtime",
 "v_lifetime"
};

// Set the vertex shader outputs as transform
// feedback varyings
glTransformFeedbackVaryings (userData−>emitProgramObject, 5,

feedbackVaryings,
GL_INTERLEAVED_ATTRIBS);

// Link program must occur after calling
// glTransformFeedbackVaryings
glLinkProgram(userData−>emitProgramObject);

The call to glTransformFeedbackVaryings ensures that the passed-in
output variables are used for transform feedback. The GL_INTERLEAVED_
ATTRIBS parameter specifies that the output variables will be interleaved
in the output buffer object. The order and layout of the variables must

 v_size = randomValue(seed) * 20.0 + 60.0;
 v_curtime = u_time;
 v_lifetime = 2.0;
 }
 else
 {
 // This particle has not changed; just copy it to the
 // output
 v_position = a_position;
 v_velocity = a_velocity;
 v_size = a_size;
 v_curtime = a_curtime;
 v_lifetime = a_lifetime;
 }
}

Example 14-9	 Particle Emission Vertex Shader (continued)

384	 Chapter 14: Advanced Programming with OpenGL ES 3.0

match the expected layout of the buffer object. In this case, our vertex
structure is defined as follows:

typedef struct
{
 float position[2];
 float velocity[2];
 float size;
 float curtime;
 float lifetime;
} Particle;

This structure definition matches the order and type of the varyings that
are passed in to glTransformFeedbackVaryings.

The code used to emit the particles is provided in the EmitParticles
function shown in Example 14-10.

Example 14-10	 Emit Particles with Transform Feedback

void EmitParticles (ESContext *esContext, float deltaTime)
{
 UserData userData = (UserData) esContext−>userData;

GLuint srcVBO =
 userData−>particleVBOs[userData−>curSrcIndex];

GLuint dstVBO =
 userData−>particleVBOs[(userData−>curSrcIndex+1) % 2];

 glUseProgram(userData−>emitProgramObject);

 // glVertexAttribPointer and glEnableVeretxAttribArray
 // setup
 SetupVertexAttributes(esContext, srcVBO);

 // Set transform feedback buffer
 glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, dstVBO);

 // Turn off rasterization; we are not drawing
 glEnable(GL_RASTERIZER_DISCARD);

 // Set uniforms
 glUniform1f(userData−>emitTimeLoc, userData−>time);
 glUniform1f(userData−>emitEmissionRateLoc, EMISSION_RATE);

 // Bind the 3D noise texture
 glActiveTexture(GL_TEXTURE0);
 glBindTexture(GL_TEXTURE_3D, userData−>noiseTextureId);
 glUniform1i(userData−>emitNoiseSamplerLoc, 0);

Particle System Using Transform Feedback	 385

The destination buffer object is bound to the GL_TRANSFORM_FEEDBACK_
BUFFER target using glBindBufferBase. Rasterization is disabled
by enabling GL_RASTERIZER_DISCARD because we will not actually
draw any fragments; instead, we simply want to execute the vertex
shader and output to the transform feedback buffer. Finally, before
the glDrawArrays call, we enable transform feedback rendering by
calling glBeginTransformFeedback(GL_POINTS). Subsequent calls to
glDrawArrays using GL_POINTS will then be recorded in the transform
feedback buffer until glEndTransformFeedback is called. To ensure
transform feedback results are completed before the draw call that uses
them, we create a sync object and insert a fence command immediately
after the glEndTransformFeedback is called. Prior to the draw call
execution, we will wait on the sync object using the glWaitSync call.
After executing the draw call and restoring state, we ping-pong between
the buffers so that the next time EmitShaders is called, it will use the
previous frame’s transform feedback output as the input.

Rendering the Particles

After emitting the transform feedback buffer, that buffer is bound as
a vertex buffer object from which to render the particles. The vertex
shader used for particle rendering with point sprites is provided in
Example 14-11.

 // Emit particles using transform feedback
 glBeginTransformFeedback(GL_POINTS);

glDrawArrays(GL_POINTS, 0, NUM_PARTICLES);
 glEndTransformFeedback();

 // Create a sync object to ensure transform feedback
 // results are completed before the draw that uses them
 userData−>emitSync = glFenceSync(

GL_SYNC_GPU_COMMANDS_COMPLETE, 0);

 // Restore state
 glDisable(GL_RASTERIZER_DISCARD);
 glUseProgram(0);
 glBindBufferBase(GL_TRANSFORM_FEEDBACK_BUFFER, 0, 0);
 glBindTexture(GL_TEXTURE_3D, 0);

 // Ping−pong the buffers
 userData−>curSrcIndex = (userData−>curSrcIndex + 1) % 2;
}

Example 14-10	 Emit Particles with Transform Feedback (continued)

386	 Chapter 14: Advanced Programming with OpenGL ES 3.0

This vertex shader uses the transform feedback outputs as input variables.
The current age of each particle is computed based on the timestamp that
was stored at particle creation for each particle in the a_curtime attribute.
The particle’s velocity and position are updated based on this time.
Additionally, the size of the particle is attenuated over the particle’s life.

This example has demonstrated how to generate and render a particle
system entirely on the GPU. While the particle emitter and rendering were
relatively simple here, the same basic model can be used to create more
complex particle systems with more involved physics and properties. The
primary takeaway message is that transform feedback allows us to generate
new vertex data on the GPU without the need for any CPU code. This
powerful feature can be used for many algorithms that require generating
vertex data on the GPU.

Example 14-11	 Particle Rendering Vertex Shader

#version 300 es
#define ATTRIBUTE_POSITION 0
#define ATTRIBUTE_VELOCITY 1
#define ATTRIBUTE_SIZE 2
#define ATTRIBUTE_CURTIME 3
#define ATTRIBUTE_LIFETIME 4
layout(location = ATTRIBUTE_POSITION) in vec2 a_position;
layout(location = ATTRIBUTE_VELOCITY) in vec2 a_velocity;
layout(location = ATTRIBUTE_SIZE) in float a_size;
layout(location = ATTRIBUTE_CURTIME) in float a_curtime;
layout(location = ATTRIBUTE_LIFETIME) in float a_lifetime;

uniform float u_time;
uniform vec2 u_acceleration;

void main()
{
 float deltaTime = u_time − a_curtime;
 if (deltaTime <= a_lifetime)
 {
 vec2 velocity = a_velocity + deltaTime * u_acceleration;
 vec2 position = a_position + deltaTime * velocity;
 gl_Position = vec4(position, 0.0, 1.0);
 gl_PointSize = a_size * (1.0 − deltaTime / a_lifetime);
 }
 else
 {
 gl_Position = vec4(−1000, −1000, 0, 0);
 gl_PointSize = 0.0;
 }
}

Image Postprocessing	 387

Image Postprocessing

The next example covered in this chapter involves image postprocessing.
Using a combination of framebuffer objects and shaders, it is possible to
perform a wide variety of image postprocessing techniques. The first example
presented here is the simple blur effect in the PVRShaman workspace in
Chapter_14/PVR_PostProcess, results of which are pictured in Figure 14-5.

Figure 14-5	 Image Postprocessing Example

Render-to-Texture Setup

This example renders a textured knot into a framebuffer object and
then uses the color attachment as a texture in a subsequent pass. A full-
screen quad is drawn to the screen using the rendered texture as a source.
A fragment shader is run over the full-screen quad, which performs a
blur filter. In general, many types of postprocessing techniques can be
accomplished using this pattern:

1. Render the scene into an off-screen framebuffer object (FBO).

2. Bind the FBO texture as a source and render a full-screen quad to the
screen.

3. Execute a fragment shader that performs filtering across the quad.

Some algorithms require performing multiple passes over an image; others
require more complicated inputs. However, the general idea is to use a
fragment shader over a full-screen quad that performs a postprocessing
algorithm.

388	 Chapter 14: Advanced Programming with OpenGL ES 3.0

Blur Fragment Shader

The fragment shader used on the full-screen quad in the blurring example
is provided in Example 14-12.

Example 14-12	 Blur Fragment Shader

#version 300 es
precision mediump float;
uniform sampler2D renderTexture;
uniform float u_blurStep;
in vec2 v_texCoord;
layout(location = 0) out vec4 outColor;
void main(void)
{
 vec4 sample0,

sample1,
sample2,
sample3;

 float fStep = u_blurStep / 100.0;

 sample0 = texture2D (renderTexture,
vec2 (v_texCoord.x − fStep, v_texCoord.y − fStep));

 sample1 = texture2D (renderTexture,
vec2 (v_texCoord.x + fStep, v_texCoord.y + fStep));

 sample2 = texture2D (renderTexture,
vec2 (v_texCoord.x + fStep, v_texCoord.y − fStep));

 sample3 = texture2D (renderTexture,
vec2 (v_texCoord.x − fStep, v_texCoord.y + fStep));

 outColor = (sample0 + sample1 + sample2 + sample3) / 4.0;
}

This shader begins by computing the fStep variable, which is based on
the u_blurstep uniform variable. The fStep variable is used to determine
how much to offset the texture coordinate when fetching samples from
the image. A total of four different samples are taken from the image and
then averaged together at the end of the shader. The fStep variable is used
to offset the texture coordinate in four directions such that four samples
in each diagonal direction from the center are taken. The larger the value
of fStep, the more the image is blurred. One possible optimization to this
shader would be to compute the offset texture coordinates in the vertex
shader and pass them into varyings in the fragment shader. This approach
would reduce the amount of computation done per fragment.

Image Postprocessing	 389

Light Bloom

Now that we have looked at a simple image postprocessing technique, let’s
consider a slightly more complicated one. Using the blurring technique
we introduced in the previous example, we can implement an effect
known as light bloom. Light bloom is what happens when the eye views a
bright light contrasted with a darker surface—that is, the light color bleeds
into the darker surface. As you can see from the screenshot in Figure 14-6,
the car model color bleeds over the background. The algorithm works as
follows:

1. Clear an off-screen render target (rt0) and draw the object in black.

2. Blur the off-screen render target (rt0) into another render target (rtl)
using a blur step of 1.0.

3. Blur the off-screen render target (rt1) back into the original render
target (rt0) using a blur step of 2.0.

Note:	 For more blur, repeat steps 2 and 3 for the amount of blur,
increasing the blur step each time.

4. Render the object to the back buffer.

5. Blend the final render target with the back buffer.

Figure 14-6	 Light Bloom Effect

390	 Chapter 14: Advanced Programming with OpenGL ES 3.0

The process this algorithm uses is illustrated in Figure 14-7, which shows
each of the steps that goes into producing the final image. As you can see
in this figure, the object is first rendered in black to the render target. That
render target is then blurred into a second render target in the next pass.
The blurred render target is then blurred again, with an expanded blur
kernel going back into the original render target. At the end, that blurred
render target is blended with the original scene. The amount of bloom can
be increased by ping-ponging the blur targets over and over. The shader
code for the blur steps is the same as in the previous example; the only
difference is that the blur step is being increased for each pass.

Figure 14-7	 Light Bloom Stages

A large variety of other image postprocessing algorithms can be performed
using a combination of FBOs and shaders. Some other common
techniques include tone mapping, selective blurring, distortion, screen
transitions, and depth of field. Using the techniques shown here, you can
start to implement other postprocessing algorithms using shaders.

Projective Texturing

A technique that is used to produce many effects, such as shadow mapping
and reflections, is projective texturing. To introduce the topic of projective
texturing, we provide an example of rendering a projective spotlight.
Most of the complexity in using projective texturing derives from the
mathematics that goes into calculating the projective texture coordinates.
The method shown here could also be used to produce texture coordinates
for shadow mapping or reflections. The example offered here is found

Projective Texturing	 391

in the projective spotlight PVRShaman workspace in Chapter_14/PVR_
ProjectiveSpotlight, the results of which are pictured in Figure 14-8.

Figure 14-8	 Projective Spotlight Example

vec4 textureProj(sampler2D sampler, vec3 coord
[, float bias])

sampler	� a sampler bound to a texture unit specifying the texture to
fetch from.

coord	� a 3D texture coordinate used to fetch from the texture map.
The (x, y) arguments are divided by (z) such that the fetch
occurs at (x/z, y/z).

bias	 an optional LOD bias to apply.

Projective Texturing Basics

The example uses the 2D texture image pictured in Figure 14-9 and applies
it to the surface of a teapot using projective texturing. Projective spotlights
were a very common technique used to emulate per-pixel spotlight falloff
before shaders were introduced to GPUs. Projective spotlights can still
provide an attractive solution because of their high level of efficiency.
Applying the projective texture takes just a single texture fetch instruction
in the fragment shader and some setup in the vertex shader. In addition,
the 2D texture image that is projected can contain really any picture, so
many different effects can be achieved.

What, exactly, do we mean by projective texturing? At its most basic,
projective texturing is the use of a 3D texture coordinate to look up into a 2D
texture image. The (s, t) coordinates are divided by the (r) coordinate such that
a texel is fetched using (s/r, t/r). The OpenGL ES Shading Language provides a
special built-in function to do projective texturing called textureProj.

392	 Chapter 14: Advanced Programming with OpenGL ES 3.0

The idea behind projective lighting is to transform the position of an
object into the projective view space of a light. The projective light
space position, after application of a scale and bias, can then be used as
a projective texture coordinate. The vertex shader in the PVRShaman
example workspace does the work of transforming the position into the
projective view space of a light.

Matrices for Projective Texturing

There are three matrices that we need to transform the position
into projective view space of the light and get a projective texture
coordinate:

•• Light projection—projection matrix of the light source using the
field of view, aspect ratio, and near and far planes of the light.

•• Light view—The view matrix of the light source. This would be
constructed just as if the light were a camera.

•• Bias matrix—A matrix that transforms the light-space projected
position into a 3D projective texture coordinate.

Figure 14-9	 2D Texture Projected onto Object

Projective Texturing	 393

The light projection matrix would be constructed just like any other
projection matrix, using the light’s parameters for field of view (FOV),
aspect ratio (aspect), and near (zNear) and far plane (zFar) distances.













+
−

× +
−

−































FOV

aaspect

FOV

zFar zNear
zNear zFar

zFar zNear
zNear zFar

cot
2 0 0 0

0 cot
2

0 0

0 0
2

0 0 1 0

right x up x look x

right y up y look y

right z up z look z

dot right lightPos dot up lightPos dot look lightPos

. . . 0

. . . 0

. . . 0

(,) (,) (,) 1− − −





















−














0.5 0.0 0.0
0.0 0.5 0.0
0.5 0.5 1.0

The light view matrix is constructed by using the three primary axis
directions that define the light’s view axes and the light’s position. We
refer to the axes as the right, up, and look vectors.

After transforming the object’s position by the view and projection
matrices, we must then turn the coordinates into projective texture
coordinates. This is accomplished by using a 3 × 3 bias matrix on the
(x, y, z) components of the position in projective light space. The bias
matrix does a linear transformation to go from the [−1, 1] range to the
[0, 1] range. Having the coordinates in the [0, 1] range is necessary for
the values to be used as texture coordinates.

Typically, the matrix to transform the position into a projective texture
coordinate would be computed on the CPU by concatenating the
projection, view, and bias matrices together (using a 4 × 4 version of the bias
matrix). The result would then be loaded into a single uniform matrix that
could transform the position in the vertex shader. However, in the example,
we perform this computation in the vertex shader for illustrative purposes.

394	 Chapter 14: Advanced Programming with OpenGL ES 3.0

Example 14-13	 Projective Texturing Vertex Shader

#version 300 es
uniform float u_time_0_X;
uniform mat4 u_matProjection;
uniform mat4 u_matViewProjection;
in vec4 a_vertex;
in vec2 a_texCoord0;
in vec3 a_normal;

out vec2 v_texCoord;
out vec3 v_projTexCoord;
out vec3 v_normal;
out vec3 v_lightDir;

void main(void)
{
 gl_Position = u_matViewProjection * a_vertex;
 v_texCoord = a_texCoord0.xy;

 // Compute a light position based on time
 vec3 lightPos;
 lightPos.x = cos(u_time_0_X);
 lightPos.z = sin(u_time_0_X);
 lightPos.xz = 200.0 * normalize(lightPos.xz);
 lightPos.y = 200.0;

 // Compute the light coordinate axes
 vec3 look = −normalize(lightPos);
 vec3 right = cross(vec3(0.0, 0.0, 1.0), look);
 vec3 up = cross(look, right);

 // Create a view matrix for the light
 mat4 lightView = mat4(right, dot(right, −lightPos),

up, dot(up, −lightPos),
look, dot(look, −lightPos),
0.0, 0.0, 0.0, 1.0);

 // Transform position into light view space
 vec4 objPosLight = a_vertex * lightView;

 // Transform position into projective light view space
 objPosLight = u_matProjection * objPosLight;

Projective Spotlight Shaders

Now that we have covered the basic mathematics, we can examine the
vertex shader in Example 14-13.

Projective Texturing	 395

The first operation this shader does is to transform the position by the
u_matViewProjection matrix and output the texture coordinate for the
base map to the v_texCoord output variable. Next, the shader computes a
position for the light based on time. This bit of the code can really be ignored,
but it was added to animate the light in the vertex shader. In a typical
application, this step would be done on the CPU and not in the shader.

Based on the position of the light, the vertex shader then computes the
three coordinate axis vectors for the light and places the results into
the look, right, and up variables. Those vectors are used to create a
view matrix for the light in the lightView variable using the equations
previously described. The input position for the object is then transformed
by the lightView matrix, which transforms the position into light space.
The next step is to use the perspective matrix to transform the light space
position into projected light space. Rather than creating a new perspective
matrix for the light, this example uses the u_matProjection matrix for
the camera. Typically, a real application would want to create its own
projection matrix for the light based on how big the cone angle and falloff
distance are.

Once the position is transformed into projective light space, a biasMatrix
is created to transform the position into a projective texture coordinate.
The final projective texture coordinate is stored in the vec3 output
variable v_projTexCoord. In addition, the vertex shader passes the light
direction and normal vectors into the fragment shader in the v_lightDir
and v_normal variables. These vectors will be used to determine whether a
fragment is facing the light source so as to mask off the projective texture
for fragments facing away from the light.

The fragment shader performs the actual projective texture fetch that
applies the projective spotlight texture to the surface (Example 14-14).

 // Create bias matrix
 mat3 biasMatrix = mat3(0.5, 0.0, 0.5,

0.0, −0.5, 0.5,
0.0, 0.0, 1.0);

 // Compute projective texture coordinates
 v_projTexCoord = objPosLight.xyz * biasMatrix;

 v_lightDir = normalize(a_vertex.xyz − lightPos);
 v_normal = a_normal;
}

Example 14-13	 Projective Texturing Vertex Shader (continued)

396	 Chapter 14: Advanced Programming with OpenGL ES 3.0

The first operation that the fragment shader performs is the projective
texture fetch using textureProj. As you can see, the projective texture
coordinate that was computed during the vertex shader and passed in
the input variable v_projTexCoord is used to perform the projective
texture fetch. The wrap modes for the projective texture are set to
GL_CLAMP_TO_EDGE and the minification/magnification filters are both
set to GL_LINEAR. The fragment shader then fetches the color from the
base map using the v_texCoord variable. Next, the shader computes the
dot product of the light direction and the normal vector; this result is
used to attenuate the final color so that the projective spotlight is not
applied to fragments that are facing away from the light. Finally, all of
the components are multiplied together (and scaled by 2.0 to increase the
brightness). This gives us the final image of the teapot lit by the projective
spotlight (refer back to Figure 14-7).

As mentioned at the beginning of this section, the key takeaway lesson
from this example is the set of computations that go into computing a
projective texture coordinate. The computation shown here is the exact
same computation that you would use to produce a coordinate to fetch

Example 14-14	 Projective Texturing Fragment Shader

#version 300 es
precision mediump float;

uniform sampler2D baseMap;
uniform sampler2D spotLight;
in vec2 v_texCoord;
in vec3 v_projTexCoord;
in vec3 v_normal;
in vec3 v_lightDir;
out vec4 outColor;

void main(void)
{
 // Projective fetch of spotlight
 vec4 spotLightColor =

textureProj(spotLight, v_projTexCoord);

 // Base map
 vec4 baseColor = texture(baseMap, v_texCoord);

 // Compute N.L
 float nDotL = max(0.0, −dot(v_normal, v_lightDir));

 outColor = spotLightColor * baseColor * 2.0 * nDotL;
}

Noise Using a 3D Texture	 397

from a shadow map. Similarly, rendering reflections with projective
texturing requires that you transform the position into the projective
view space of the reflection camera. You would do the same thing we
have done here, but substitute the light matrices for the reflection camera
matrices. Projective texturing is a very powerful tool in creating advanced
effects, and you should now understand the basics of how to use it.

Noise Using a 3D Texture

The next rendering technique we cover is using a 3D texture for noise. In
Chapter 9, “Texturing,” we introduced the basics of 3D textures. As you will
recall, a 3D texture is essentially a stack of 2D texture slices representing
a 3D volume. 3D textures have many possible uses, one of which is the
representation of noise. In this section, we show an example of using a 3D
volume of noise to create a wispy fog effect. This example builds on the linear
fog example from Chapter 10, “Fragment Shaders.” The example is found in
Chapter_14/Noise3D, the results of which are shown in Figure 14-10.

Figure 14-10	 Fog Distorted by 3D Noise Texture

Generating Noise

The application of noise is a very common technique that plays a
role in a large variety of 3D effects. The OpenGL Shading Language
(not OpenGL ES Shading Language) included functions for computing
noise in one, two, three, and four dimensions. These functions return a
pseudorandom continuous noise value that is repeatable based on the
input value. Unfortunately, the functions are expensive to implement.
Most programmable GPUs did not implement noise functions natively in
hardware, which meant the noise computations had to be implemented
using shader instructions (or worse, in software on the CPU). It takes
a lot of shader instructions to implement these noise functions, so the
performance was too slow to be used in most real-time fragment shaders.
Recognizing this problem, the OpenGL ES working group decided to drop
noise from the OpenGL ES Shading Language (although vendors are still
free to expose it through an extension).

398	 Chapter 14: Advanced Programming with OpenGL ES 3.0

Although computing noise in the fragment shader is prohibitively
expensive, we can work around the problem using a 3D texture. It is
possible to easily produce acceptable-quality noise by precomputing
the noise and placing the results in a 3D texture. A number of
algorithms can be used to generate noise. The list of references and
links described at the end of this chapter can be used to obtain more
information about the various noise algorithms. Here, we discuss a
specific algorithm that generates a lattice-based gradient noise. Ken
Perlin’s noise function (Perlin, 1985) is a lattice-based gradient noise and
a widely used method for generating noise. For example, a lattice-based
gradient noise is implemented by the noise function in the Renderman
shading language.

The gradient noise algorithm takes a 3D coordinate as input and returns
a floating-point noise value. To generate this noise value given an input
(x, y, z), we map the x, y, and z values to appropriate integer locations
in a lattice. The number of cells in a lattice is programmable and for our
implementation is set to 256 cells. For each cell in the lattice, we need
to generate and store a pseudorandom gradient vector. Example 14-15
describes how these gradient vectors are generated.

Example 14-15	 Generating Gradient Vectors

// permTable describes a random permutation of
// 8−bit values from 0 to 255
static unsigned char permTable[256] = {
 0xE1, 0x9B, 0xD2, 0x6C, 0xAF, 0xC7, 0xDD, 0x90,
 0xCB, 0x74, 0x46, 0xD5, 0x45, 0x9E, 0x21, 0xFC,
 0x05, 0x52, 0xAD, 0x85, 0xDE, 0x8B, 0xAE, 0x1B,
 0x09, 0x47, 0x5A, 0xF6, 0x4B, 0x82, 0x5B, 0xBF,
 0xA9, 0x8A, 0x02, 0x97, 0xC2, 0xEB, 0x51, 0x07,
 0x19, 0x71, 0xE4, 0x9F, 0xCD, 0xFD, 0x86, 0x8E,
 0xF8, 0x41, 0xE0, 0xD9, 0x16, 0x79, 0xE5, 0x3F,
 0x59, 0x67, 0x60, 0x68, 0x9C, 0x11, 0xC9, 0x81,
 0x24, 0x08, 0xA5, 0x6E, 0xED, 0x75, 0xE7, 0x38,
 0x84, 0xD3, 0x98, 0x14, 0xB5, 0x6F, 0xEF, 0xDA,
 0xAA, 0xA3, 0x33, 0xAC, 0x9D, 0x2F, 0x50, 0xD4,
 0xB0, 0xFA, 0x57, 0x31, 0x63, 0xF2, 0x88, 0xBD,
 0xA2, 0x73, 0x2C, 0x2B, 0x7C, 0x5E, 0x96, 0x10,
 0x8D, 0xF7, 0x20, 0x0A, 0xC6, 0xDF, 0xFF, 0x48,
 0x35, 0x83, 0x54, 0x39, 0xDC, 0xC5, 0x3A, 0x32,
 0xD0, 0x0B, 0xF1, 0x1C, 0x03, 0xC0, 0x3E, 0xCA,
 0x12, 0xD7, 0x99, 0x18, 0x4C, 0x29, 0x0F, 0xB3,
 0x27, 0x2E, 0x37, 0x06, 0x80, 0xA7, 0x17, 0xBC,
 0x6A, 0x22, 0xBB, 0x8C, 0xA4, 0x49, 0x70, 0xB6,

Noise Using a 3D Texture	 399

 0xF4, 0xC3, 0xE3, 0x0D, 0x23, 0x4D, 0xC4, 0xB9,
 0x1A, 0xC8, 0xE2, 0x77, 0x1F, 0x7B, 0xA8, 0x7D,
 0xF9, 0x44, 0xB7, 0xE6, 0xB1, 0x87, 0xA0, 0xB4,
 0x0C, 0x01, 0xF3, 0x94, 0x66, 0xA6, 0x26, 0xEE,
 0xFB, 0x25, 0xF0, 0x7E, 0x40, 0x4A, 0xA1, 0x28,
 0xB8, 0x95, 0xAB, 0xB2, 0x65, 0x42, 0x1D, 0x3B,
 0x92, 0x3D, 0xFE, 0x6B, 0x2A, 0x56, 0x9A, 0x04,
 0xEC, 0xE8, 0x78, 0x15, 0xE9, 0xD1, 0x2D, 0x62,
 0xC1, 0x72, 0x4E, 0x13, 0xCE, 0x0E, 0x76, 0x7F,
 0x30, 0x4F, 0x93, 0x55, 0x1E, 0xCF, 0xDB, 0x36,
 0x58, 0xEA, 0xBE, 0x7A, 0x5F, 0x43, 0x8F, 0x6D,
 0x89, 0xD6, 0x91, 0x5D, 0x5C, 0x64, 0xF5, 0x00,
 0xD8, 0xBA, 0x3C, 0x53, 0x69, 0x61, 0xCC, 0x34,
};

#define NOISE_TABLE_MASK 255

// lattice gradients 3D noise
static float gradientTable[256*3];

#define FLOOR(x) ((int)(x) − ((x) < 0 && (x) != (int)(x)))
#define smoothstep(t) (t * t * (3.0f − 2.0f * t))
#define lerp(t, a, b) (a + t * (b − a))

void initNoiseTable()
{
 int i;
 float a;
 float x, y, z, r, theta;
 float gradients[256*3];
 unsigned int *p, *psrc;

 srandom(0);
 // build gradient table for 3D noise
 for (i=0; i<256; i++)
 {

/*
* calculate 1 − 2 * random number
*/
a = (random() % 32768) / 32768.0f;
z = (1.0f − 2.0f * a);

r = sqrtf(1.0f − z * z); // r is radius of circle

a = (random() % 32768) / 32768.0f;
theta = (2.0f * (float)M_PI * a);
x = (r * cosf(a));
y = (r * sinf(a));

(continues)

Example 14-15	 Generating Gradient Vectors (continued)

400	 Chapter 14: Advanced Programming with OpenGL ES 3.0

Example 14-16	 3D Noise

//
// generate the value of gradient noise for a given lattice
// point
//
// (ix, iy, iz) specifies the 3D lattice position
// (fx, fy, fz) specifies the fractional part
//
static float
glattice3D(int ix, int iy, int iz, float fx, float fy,
float fz)
{
 float *g;
 int indx, y, z;

 z = permTable[iz & NOISE_TABLE_MASK];
 y = permTable[(iy + z) & NOISE_TABLE_MASK];
 indx = (ix + y) & NOISE_TABLE_MASK;
 g = &gradientTable[indx*3];

 return (g[0]*fx + g[l]*fy + g[2]*fz);
}

//
// generate the 3D noise value

Example 14-16 shows how the gradient noise is calculated using the
pseudorandom gradient vectors and an input 3D coordinate.

gradients[i*3] = x;
gradients[i*3+1] = y;
gradients[i*3+2] = z;

 }

 // use the index in the permutation table to load the
 // gradient values from gradients to gradientTable
 p = (unsigned int *)gradientTable;
 psrc = (unsigned int *)gradients;
 for (i=0; i<256; i++)
 {

int indx = permTable[i];
p[i*3] = psrc[indx*3];
p[i*3+1] = psrc[indx*3+1];
p[i*3+2] = psrc[indx*3+2];

 }
}

Example 14-15	 Generating Gradient Vectors (continued)

Noise Using a 3D Texture	 401

The noise3D function returns a value between −1.0 and 1.0. The value
of gradient noise is always 0 at the integer lattice points. For points in
between, trilinear interpolation of gradient values across the eight integer
lattice points that surround the point is used to generate the scalar noise

// f describes input (x, y, z) position for which the noise value
// needs to be computed. noise3D returns the scalar noise value
//
float
noise3D(float *f)
{
 int ix, iy, iz;
 float fxO, fxl, fyO, fyl, fzO, fzl;
 float wx, wy, wz;
 float vxO, vxl, vyO, vyl, vzO, vzl;

 ix = FLOOR(f[0]);
 fxO = f[0] − ix;
 fxl = fxO − 1;
 wx = smoothstep(fxO);

 iy = FLOOR(f[1]);
 fyO = f[1] − iy;
 fyl = fyO − 1;
 wy = smoothstep(fyO);

 iz = FLOOR(f[2]);
 fzO = f[2] − iz;
 fzl = fzO − 1;
 wz = smoothstep(fzO);

 vxO = glattice3D(ix, iy, iz, fxO, fyO, fzO);
 vxl = glattice3D(ix+1, iy, iz, fxl, fyO, fzO);
 vyO = lerp(wx, vxO, vxl);
 vxO = glattice3D(ix, iy+1, iz, fxO, fyl, fzO);
 vxl = glattice3D(ix+1, iy+1, iz, fxl, fyl, fzO);
 vyl = lerp(wx, vxO, vxl);
 vzO = lerp(wy, vyO, vyl);

 vxO = glattice3D(ix, iy, iz+1, fxO, fyO, fzl);
 vxl = glattice3D(ix+1, iy, iz+1, fxl, fyO, fzl);
 vyO = lerp(wx, vxO, vxl);
 vxO = glattice3D(ix, iy+1, iz+1, fxO, fyl, fzl);
 vxl = glattice3D(ix+1, iy+1, iz+1, fxl, fyl, fzl);
 vyl = lerp(wx, vxO, vxl);
 vzl = lerp(wy, vyO, vyl);

 return lerp(wz, vzO, vzl);;
}

Example 14-16	 3D Noise (continued)

402	 Chapter 14: Advanced Programming with OpenGL ES 3.0

value. Figure 14-11 shows a 2D slice of the gradient noise using the
preceding algorithm.

Example 14-17	 Noise-Distorted Fog Fragment Shader

#version 300 es
precision mediump float;
uniform sampler3D s_noiseTex;
uniform float u_fogMaxDist;
uniform float u_fogMinDist;
uniform vec4 u_fogColor;
uniform float u_time;
in vec4 v_color;
in vec2 v_texCoord;
in vec4 v_eyePos;
layout(location = 0) out vec4 outColor;

float computeLinearFogFactor()

Figure 14-11	 2D Slice of Gradient Noise

Using Noise

Once we have created a 3D noise volume, it is very easy to use it to
produce a variety of effects. In the case of the wispy fog effect, the idea is
simple: Scroll the 3D noise texture in all three dimensions based on time
and use the value from the texture to distort the fog factor. Let’s take a
look at the fragment shader in Example 14-17.

Noise Using a 3D Texture	 403

This shader is very similar to our linear fog example in Chapter 10,
“Fragment Shaders.” The primary difference is that the linear fog factor
is distorted by the 3D noise texture. The shader computes a 3D texture
coordinate based on time and places it in noiseCoord. The u_time uniform
variable is tied to the current time and is updated each frame. The 3D
texture is set up with s, t, and r wrap modes of GL_MIRRORED_REPEAT so that
the noise volume scrolls smoothly on the surface. The (s, t) coordinates are
based on the coordinates for the base texture and scroll in both directions.
The r-coordinate is based purely on time; thus it is continuously scrolled.

The 3D texture is a single-channel (GL_R8) texture, so only the red
component of the texture is used (the green and blue channels have the same
value as the red channel). The value fetched from the volume is subtracted
from the computed fogFactor and then used to linearly interpolate between
the fog color and base color. The result is a wispy fog that appears to roll in
from a distance. Its speed can be increased easily by applying a scale to the
u_time variable when scrolling the 3D texture coordinates.

You can achieve a number of different effects by using a 3D texture to
represent noise. For example, you can use noise to represent dust in a

{
 float factor;
 // Compute linear fog equation
 float dist = distance(v_eyePos,

vec4(0.0, 0.0, 0.0, 1.0));
 factor = (u_fogMaxDist − dist) /

(u_fogMaxDist − u_fogMinDist);
 // Clamp in the [0, 1] range
 factor = clamp(factor, 0.0, 1.0);
 return factor;
}

void main(void)
{
 float fogFactor = computeLinearFogFactor();
 vec3 noiseCoord =
 vec3(v_texCoord.xy + u_time, u_time);
 fogFactor −=
 texture(s_noiseTex, noiseCoord).r * 0.25;
 fogFactor = clamp(fogFactor, 0.0, 1.0);
 vec4 baseColor = v_color;
 outColor = baseColor * fogFactor +

u_fogColor * (1.0 − fogFactor);
}

Example 14-17	 Noise-Distorted Fog Fragment Shader (continued)

404	 Chapter 14: Advanced Programming with OpenGL ES 3.0

light volume, add a more natural appearance to a procedural texture, and
simulate water waves. Applying a 3D texture is a great way to economize
on performance, yet still achieve high-quality visual effects. It is unlikely
that you can expect handheld devices to compute noise functions in the
fragment shader and have enough performance to run at a high frame
rate. As such, having a precomputed noise volume will be a very valuable
trick to have in your toolkit for creating effects.

Procedural Texturing

The next topic we cover is the generation of procedural textures. Textures
are typically described as a 2D image, a cubemap, or a 3D image. These
images store color or depth values. Built-in functions defined in the
OpenGL ES Shading Language take a texture coordinate, a texture object
referred to as a sampler, and return a color or depth value. Procedural
texturing refers to textures that are described as a procedure instead of
as an image. The procedure describes the algorithm that will generate a
texture color or depth value given a set of inputs.

The following are some of the benefits of procedural textures:

•• They provide much more compact representation than a stored texture
image. All you need to store is the code that describes the procedural
texture, which will typically be much smaller in size than a stored image.

•• Procedural textures, unlike stored images, have no fixed resolution.
As a consequence, they can be applied to the surface without loss of
detail. Thus we will not see problematic issues such as reduced detail
as we zoom onto a surface that uses a procedural texture. We will,
however, encounter these issues when using a stored texture image
because of its fixed resolution.

The disadvantages of procedural textures are as follows:

•• Although the procedural texture might have a smaller footprint
than a stored texture, it might take a lot more cycles to execute the
procedural texture versus doing a lookup in the stored texture. With
procedural textures, you are dealing with instruction bandwidth,
versus memory bandwidth for stored textures. Both the instruction
and memory bandwidth are at a premium on handheld devices, and a
developer must carefully choose which approach to take.

•• Procedural textures can lead to serious aliasing artifacts. Although
most of these artifacts can be resolved, they result in additional
instructions to the procedural texture code, which can impact the
performance of a shader.

Procedural Texturing	 405

The decision whether to use a procedural texture or a stored texture
should be based on careful analysis of the performance and memory
bandwidth requirements of each.

A Procedural Texture Example

We now look at a simple example that demonstrates procedural textures.
We are familiar with how to use a checkerboard texture image to draw a
checkerboard pattern on an object. We now look at a procedural texture
implementation that renders a checkerboard pattern on an object. The
example we cover is the Checker.pod PVRShaman workspace in Chapter_14/
PVR_ProceduralTextures. Examples 14-18 and 14-19 describe the vertex
and fragment shaders that implement the checkerboard texture procedurally.

Example 14-18	 Checker Vertex Shader

#version 300 es
uniform mat4 mvp_matrix; // combined model−view

// + projection matrix

in vec4 a_position; // input vertex position
in vec2 a_st; // input texture coordinate
out vec2 v_st; // output texture coordinate

void main()
{
 v_st = a_st;
 gl_Position = mvp_matrix * a_position;
}

The vertex shader code in Example 14-18 is really straightforward. It
transforms the position using the combined model–view and projection
matrix and passes the texture coordinate (a_st) to the fragment shader as
a varying variable (v_st).

The fragment shader code in Example 14-19 uses the v_st texture coordinate
to draw the texture pattern. Although easy to understand, the fragment
shader might yield poor performance because of the multiple conditional
checks done on values that can differ over fragments being executed in
parallel. This can diminish performance, as the number of vertices or
fragments executed in parallel by the GPU is reduced. Example 14-20 is a
version of the fragment shader that omits any conditional checks.

Figure 14-12 shows the checkerboard image rendered using the fragment
shader in Example 14-17 with u_frequency = 10.

406	 Chapter 14: Advanced Programming with OpenGL ES 3.0

Example 14-20	 Checker Fragment Shader without Conditional Checks

#version 300 es
precision mediump float;

// frequency of the checkerboard pattern
uniform int u_frequency;

in vec2 v_st;
layout(location = 0) out vec4 outColor;

void
main()
{
 vec2 texcoord = mod(floor(v_st * float(u_frequency * 2)),2.0);
 float delta = abs(texcoord.x − texcoord.y);
 outColor = mix(vec4(1.0), vec4(0.0), delta);
}

Example 14-19	 Checker Fragment Shader with Conditional Checks

#version 300 es
precision mediump float;

// frequency of the checkerboard pattern
uniform int u_frequency;

in vec2 v_st;
layout(location = 0) out vec4 outColor;

void main()
{
 vec2 tcmod = mod(v_st * float(u_frequency), 1.0);

 if(tcmod.s < 0.5)
 {

if(tcmod.t < 0.5)
outColor = vec4(1.0);

else
outColor = vec4(0.0);

 }
 else
 {

if(tcmod.t < 0.5)
outColor = vec4(0.0);

else
outColor = vec4(1.0);

 }
}

Procedural Texturing	 407

Figure 14-12	 Checkerboard Procedural Texture

As you can see, this was really easy to implement. We do see quite a
bit of aliasing, which is never acceptable. With a texture checkerboard
image, aliasing issues are overcome by using mipmapping and applying
preferably a trilinear or bilinear filter. We now look at how to render an
anti-aliased checkerboard pattern.

Anti-Aliasing of Procedural Textures

In Advanced RenderMan: Creating CGI for Motion Pictures, Anthony Apodaca
and Larry Gritz give a very thorough explanation of how to implement
analytic anti-aliasing of procedural textures. We use the techniques
described in this book to implement our anti-aliased checker fragment
shader. Example 14-21 describes the anti-aliased checker fragment shader
code from the CheckerAA.rfx PVR_Shaman workspace in Chapter_14/
PVR_ProceduralTextures.

Example 14-21	 Anti-Aliased Checker Fragment Shader

#version 300 es
precision mediump float;

uniform int u_frequency;
in vec2 v_st;
layout(location = 0) out vec4 outColor;

(continues)

408	 Chapter 14: Advanced Programming with OpenGL ES 3.0

Figure 14-13 shows the checkerboard image rendered using the anti-
aliased fragment shader in Example 14-18 with u_frequency = 10.

To anti-alias the checkerboard procedural texture, we need to estimate
the average value of the texture over an area covered by the pixel. Given
a function g(v) that represents a procedural texture, we need to calculate

Example 14-21	 Anti-Aliased Checker Fragment Shader (continued)

void main()
{
 vec4 color;
 vec4 color0 = vec4(0.0);
 vec4 color1 = vec4(1.0);
 vec2 st_width;
 vec2 fuzz;
 vec2 check_pos;
 float fuzz_max;

 // calculate the filter width
 st_width = fwidth(v_st);
 fuzz = st_width * float(u_frequency) * 2.0;
 fuzz_max = max(fuzz.s, fuzz.t);

 // get the place in the pattern where we are sampling
 check_pos = fract(v_st * float(u_frequency));

 if (fuzz_max <= 0.5)
 {

// if the filter width is small enough, compute
// the pattern color by performing a smooth interpolation
// between the computed color and the average color
vec2 p = smoothstep(vec2(0.5), fuzz + vec2(0.5),

check_pos) + (1.0 − smoothstep(vec2(0.0), fuzz,
check_pos));

color = mix(color0, color1,
p.x * p.y + (1.0 − p.x) * (1.0 − p.y));

color = mix(color, (color0 + color1)/2.0,
smoothstep(0.125, 0.5, fuzz_max));

 }
 else
 {

// filter is too wide; just use the average color
color = (color0 + color1)/2.0;

 }
 outColor = color;
}

Procedural Texturing	 409

the average value of (v) of the region covered by this pixel. To determine
this region, we need to know the rate of change of g(v). The OpenGL ES
Shading Language 3.00 contains derivative functions we can use to compute
the rate of change of g(v) in x and y using the functions dFdx and dFdy.
The rate of change, called the gradient vector, is given by [dFdx(g(v)),
dFdy(g(v))]. The magnitude of the gradient vector is computed as sqrt
((dFdx(g(v))2 + dFdx(g(v))2). This value can also be approximated by
abs(dFdx(g(v)))+abs(dFdy(g(v))). The function fwidth can be used to
compute the magnitude of this gradient vector. This approach works well if
g(v) is a scalar expression. If g(v) is a point, however, we need to compute
the cross-product of dFdx(g(v)) and dFdy(g(v)). In the case of the
checkerboard texture example, we need to compute the magnitude of the
v_st.x and v_st.y scalar expressions and, therefore, the function fwidth
can be used to compute the filter widths for v_st.x and v_st.y.

Let w be the filter width computed by fwidth. We need to know two
additional things about the procedural texture:

•• The smallest value of filter width k such that the procedural texture
g(v) will not show any aliasing artifacts for filter widths less than k/2.

•• The average value of the procedural texture g(v) over very large widths.

If w < k/2, we should not see any aliasing artifacts. If w > k/2 (i.e., the
filter width is too large), aliasing will occur. We use the average value

Figure 14-13	 Anti-aliased Checkerboard Procedural Texture

410	 Chapter 14: Advanced Programming with OpenGL ES 3.0

of g(v) in this case. For other values of w, we use a smoothstep to fade
between the true function and average values. The full definition of the
smoothstep built-in function is provided in Appendix B.

This discussion should have provided you with good insight into how
to use procedural textures and how to resolve aliasing artifacts that become
apparent when you are using procedural textures. The generation of
procedural textures for many different applications is a very broad subject.
The following list of references is a good place to start if you are interested
in finding more information about procedural texture generation.

Further Reading on Procedural Textures

1. Anthony A. Apodaca and Larry Gritz. Advanced Renderman: Creating
CGI for Motion Pictures (Morgan Kaufmann, 1999).

2. David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken Perlin, and
Steven Worley. Texturing and Modeling: A Procedural Approach, 3rd ed.
(Morgan Kaufmann, 2002).

3. K. Perlin. An image synthesizer. Computer Graphics (SIGGRAPH 1985
Proceedings, pp. 287–296, July 1985).

4. K. Perlin. Improving noise. Computer Graphics (SIGGRAPH 2002
Proceedings, pp. 681–682).

5. K. Perlin. Making noise. noisemachine.com/talkl/.

6. Pixar. The Renderman interface specification, version 3.2. July 2000.
renderman.pixar.com/products/rispec/index.htm.

7. Randi J. Rost. OpenGL Shading Language, 2nd ed. (Addison-Wesley
Professional, 2006).

Rendering Terrain with Vertex Texture Fetch

The next topic we cover is rendering terrain with the vertex texture fetch
feature in OpenGL ES 3.0. In this example, we show how to render a
terrain using a height map, as shown in Figure 14-14.

Our terrain rendering example consists of two steps:

1. Generate a square grid for the terrain base.

2. Compute a vertex normal and fetch height values from the height
map in the vertex shader.

http://www.renderman.pixar.com/products/rispec/index.htm

Rendering Terrain with Vertex Texture Fetch	 411

Figure 14-14	 Terrain Rendered with Vertex Texture Fetch

Example 14-22	 Terrain Rendering Flat Grid Generation

int ESUTIL_API esGenSquareGrid (int size, GLfloat **vertices,
GLuint **indices)

{
 int i, j;
 int numIndices = (size−1) * (size−1) * 2 * 3;

 // Allocate memory for buffers
 if (vertices != NULL)
 {

int numVertices = size * size;
float stepSize = (float) size − 1;
 *vertices  =  malloc  ( sizeof(GLfloat) * 3 * numVertices);

for (i = 0; i < size; ++i) // row
{

for (j = 0; j < size; ++j) // column
{

(*vertices)[3 * (j + i*size)] = i / stepSize;
(*vertices)[3 * (j + i*size) + 1] = j / stepSize;
(*vertices)[3 * (j + i*size) + 2] = 0.0f;

}
}

 }

(continues)

Generating a Square Terrain Grid

The code in Example 14-22 generates a square triangle grid that we use as
the base terrain.

412	 Chapter 14: Advanced Programming with OpenGL ES 3.0

First, we generate the vertex position as a regularly spaced xy-coordinate
in the [0, 1] range. The same xy-value can also be used as the vertex
texture coordinate to look up the height value from the height map.

Second, we generate a list of indices for GL_TRIANGLES. A better method is
to generate a list of indices for GL_TRIANGLE_STRIP, as you can improve the
rendering performance by improving the vertex cache locality in the GPU.

Computing Vertex Normal and Fetching Height Value
in Vertex Shader

Example 14-23 shows how to compute vertex normals and fetch height
values from a height map in a vertex shader.

Example 14-23	 Terrain Rendering Vertex Shader

#version 300 es
uniform mat4 u_mvpMatrix;
uniform vec3 u_lightDirection;
layout(location = 0) in vec4 a_position;

Example 14-22	 Terrain Rendering Flat Grid Generation (continued)

 // Generate the indices
 if (indices != NULL)
 {

 *indices = malloc (sizeof(GLuint) * numIndices);

 for (i = 0; i < size − 1; ++i)
 {

for (j = 0; j < size − 1; ++j)
{

// two triangles per quad
(*indices)[6*(j+i*(size−1))] = j+(i) *(size) ;
(*indices)[6*(j+i*(size−1))+1] = j+(i) *(size)+1 ;
(*indices)[6*(j+i*(size−1))+2] = j+(i+1)*(size)+1 ;

(*indices)[6*(j+i*(size−1))+3] = j+(i) *(size) ;
(*indices)[6*(j+i*(size−1))+4] = j+(i+1)*(size)+1 ;
(*indices)[6*(j+i*(size−1))+5] = j+(i+1)*(size) ;

}
 }

 }

 return numIndices;
}

Rendering Terrain with Vertex Texture Fetch	 413

The example provided in the Chapter_14/TerrainRendering folder
shows a simple way of rendering terrain using a height map. If you
are interested in finding out more about this topic, you can find many
advanced techniques for efficiently rendering a large terrain model using
the following list of references.

Further Reading on Large Terrain Rendering

1. Marc Duchaineau et al. ROAMing Terrain: Real-Time Optimally Adapting
Meshes (IEEE Visualization, 1997).

2. Peter Lindstorm et al. Real-Time Continuous Level of Detail Rendering of
Height Fields (Proceedings of SIGGRAPH, 1996).

3. Frank Losasso and Hugues Hoppe. Geometry Clipmaps: Terrain Rendering
Using Nested Regular Grids, ACM Trans. Graphics (SIGGRAPH, 2004).

uniform sampler2D s_texture;
out vec4 v_color;
void main()
{
 // compute vertex normal from height map
 float hxl = textureOffset(s_texture,

a_position.xy, ivec2(−1, 0)).w;
 float hxr = textureOffset(s_texture,

a_position.xy, ivec2(1, 0)).w;
 float hyl = textureOffset(s_texture,

a_position.xy, ivec2(0, −1)).w;
 float hyr = textureOffset(s_texture,

a_position.xy, ivec2(0, 1)).w;
 vec3 u = normalize(vec3(0.05, 0.0, hxr−hxl));
 vec3 v = normalize(vec3(0.0, 0.05, hyr−hyl));
 vec3 normal = cross(u, v);

 // compute diffuse lighting
 float diffuse = dot(normal, u_lightDirection);
 v_color = vec4(vec3(diffuse), 1.0);

 // get vertex position from height map
 float h = texture (s_texture, a_position.xy).w;
 vec4 v_position = vec4 (a_position.xy,

h/2.5,
a_position.w);

 gl_Position = u_mvpMatrix * v_position;
}

Example 14-23	 Terrain Rendering Vertex Shader (continued)

414	 Chapter 14: Advanced Programming with OpenGL ES 3.0

4. Krzystof Niski, Budirijanto Purnomo, and Jonathan Cohen. Multi-
grained Level of Detail Using Hierarchical Seamless Texture Atlases (ACM
SIGGRAPH I3D, 2007).

5. Filip Strugar. Continuous distance-dependent level of detail for
rendering heightmaps ( Journal of Graphics, GPU and Game Tools, vol. 14,
issue 4, 2009).

Shadows Using a Depth Texture

The next topic we cover is rendering shadows using a depth texture in
OpenGL ES 3.0 using a two-rendering-pass algorithm:

1. In the first rendering pass, we draw the scene from the point
of view of the light. We record the fragment depth value into a
texture.

2. In the second rendering pass, we render the scene from the point of
view of the eye position. In the fragment shader, we perform a depth
test that determines whether the fragment is in the shadow
by sampling the depth texture.

In addition, we use the percentage closer filtering (PCF) technique
to sample the depth texture to generate soft shadows.

The result of executing the shadow rendering example from
Chapter_14/Shadows is shown in Figure 14-15.

Figure 14-15	 Shadow Rendering with a Depth Texture and 6 × 6 PCF

Shadows Using a Depth Texture	 415

Example 14-24	 Set up a MVP Matrix from the Light Position

 // Generate an orthographic projection matrix
 esMatrixLoadIdentity (&ortho);
 esOrtho (&ortho, −10, 10, −10, 10, −30, 30);

 // Generate a model matrix
 esMatrixLoadIdentity (&model);

 esTranslate (&model, −2.0f, −2.0f, 0.0f);
 esScale (&model, 10.0f, 10.0f, 10.0f);
 esRotate (&model, 90.0f, 1.0f, 0.0f, 0.0f);

 // Generate a view−matrix transformation
 // from the light position
 esMatrixLookAt (&view,

userData−>lightPosition[0],
userData−>lightPosition[1],
userData−>lightPosition[2],
0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f);

 esMatrixMultiply (&modelview, &model, &view);

 // Compute the final MVP
 esMatrixMultiply (&userData−>groundMvpLightMatrix,

&modelview, &ortho);

Rendering from the Light Position Into a Depth Texture

We render the scene from the point of view of the light into a depth
texture using the following steps:

1. Set up a MVP matrix using the light position.

Example 14-24 shows the MVP transformation matrix generated
by concatenating orthographic projection, model, and view
transformation matrices.

2. Create a depth texture and attach it to a framebuffer object.

Example 14-25 shows how to create a 1024 × 1024 16-bit depth texture
to store the shadow map. The shadow map is set with a GL_LINEAR
texture filter. When it is used with a sampler2Dshadow sampler type,
we gain a hardware-based PCF, as the hardware will perform four
depth comparisons in a single tap. We then show how to render into
a framebuffer object with a depth texture attachment (recall that this
topic was discussed in Chapter 12, “Framebuffer Objects”).

416	 Chapter 14: Advanced Programming with OpenGL ES 3.0

Example 14-25	 Create a Depth Texture and Attach It to a Framebuffer Object

int InitShadowMap (ESContext *esContext)
{
 UserData userData = (UserData) esContext−>userData;
 GLenum none = GL_NONE;

 // use 1K x 1K texture for shadow map
 userData−>shadowMapTextureWidth = 1024;
 userData−>shadowMapTextureHeight = 1024;

 glGenTextures (1, &userData−>shadowMapTextureId);
 glBindTexture (GL_TEXTURE_2D, userData−>shadowMapTextureId);
 glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,

GL_NEAREST);
 glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_LINEAR);
 glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S,

GL_CLAMP_TO_EDGE);
 glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T,

GL_CLAMP_TO_EDGE);

 // set up hardware comparison
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_MODE,

GL_COMPARE_REF_TO_TEXTURE);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_COMPARE_FUNC,

GL_LEQUAL);

 glTexImage2D (GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT16,
userData−>shadowMapTextureWidth,
userData−>shadowMapTextureHeight,
0, GL_DEPTH_COMPONENT, GL_UNSIGNED_SHORT,
NULL);

 glBindTexture (GL_TEXTURE_2D, 0);

 GLint defaultFramebuffer = 0;
 glGetIntegerv (GL_FRAMEBUFFER_BINDING,

&defaultFramebuffer);

 // set up fbo
 glGenFramebuffers (1, &userData−>shadowMapBufferId);
 glBindFramebuffer (GL_FRAMEBUFFER,

userData−>shadowMapBufferId);

 glDrawBuffers (1, &none);

 glFramebufferTexture2D (GL_FRAMEBUFFER, GL_DEPTH_ATTACHMENT,
GL_TEXTURE_2D,
userData−>shadowMapTextureId, 0);

Shadows Using a Depth Texture	 417

3. Render the scene using a pass-through vertex and fragment shader.

Example 14-26 provides the vertex and fragment shaders used to
render the scene to the depth texture from the point of view of the
light. Both shaders are very simple, as we need simply to record the
fragment depth value into the shadow map texture.

Example 14-26	 Rendering to Depth Texture Shaders

// vertex shader
#version 300 es
uniform mat4 u_mvpLightMatrix;
layout(location = 0) in vec4 a_position;
out vec4 v_color;
void main()
{
 gl_Position = u_mvpLightMatrix * a_position;
}

// fragment shader
#version 300 es
precision lowp float;
void main()
{
}

To use these shaders, in the host code prior to rendering the scene,
we clear the depth buffer and disable color rendering. To avoid the
creation of a shadow rendering artifact due to a precision problem,

 glActiveTexture (GL_TEXTURE0);
 glBindTexture (GL_TEXTURE_2D, userData−>shadowMapTextureId);

 if (GL_FRAMEBUFFER_COMPLETE !=
glCheckFramebufferStatus (GL_FRAMEBUFFER))

 {
return FALSE;

 }

 glBindFramebuffer (GL_FRAMEBUFFER, defaultFramebuffer);

 return TRUE;
}

Example 14-25	 �Create a Depth Texture and Attach It to a Framebuffer
Object (continued)

418	 Chapter 14: Advanced Programming with OpenGL ES 3.0

we can use a polygon offset command to increase the depth values
written to the texture.

 // clear depth buffer
 glClear(GL_DEPTH_BUFFER_BIT);

 // disable color rendering; only write to depth buffer
 glColorMask (GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);

 // reduce shadow rendering artifact
 glEnable (GL_POLYGON_OFFSET_FILL);
 glPolygonOffset(4.0f, 100.0f);

Rendering from the Eye Position with the Depth Texture

We render the scene from the point of view of the light into a depth
texture using the following steps:

1. Set up a MVP matrix using the eye position.

The MVP matrix setup consists of the same code as in Example 14-24,
with the exception that we create the view transformation matrix by
passing the eye position to the esMatrixLookAt call as follows:

 // create a view−matrix transformation
 esMatrixLookAt (&view,

userData−>eyePosition[0],
userData−>eyePosition[1],
userData−>eyePosition[2],
0.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f);

2. Render the scene using the shadow map created in the first
rendering pass.

Example 14-27 shows the vertex and fragment shaders that we use to
render the scene from the eye position.

Example 14-27	 Rendering from the Eye Position Shaders

// vertex shader
#version 300 es
uniform mat4 u_mvpMatrix;
uniform mat4 u_mvpLightMatrix;
layout(location = 0) in vec4 a_position;
layout(location = 1) in vec4 a_color;
out vec4 v_color;
out vec4 v_shadowCoord;
void main()

Shadows Using a Depth Texture	 419

In the vertex shader, we transform the vertex position twice: (1) using
the MVP matrix created from the eye position and (2) using the MVP
matrix created from the light position. The former result is recorded into
gl_Position, while the latter result is recorded into v_shadowCoord.
Note that the v_shadowCoord result is exactly the same vertex position
result when we render to the shadow map. Armed with this knowledge,

{
 v_color = a_color;
 gl_Position = u_mvpMatrix * a_position;
 v_shadowCoord = u_mvpLightMatrix * a_position;

 // transform from [−1,1] to [0,1];
 v_shadowCoord = v_shadowCoord * 0.5 + 0.5;
}

// fragment shader
#version 300 es
precision lowp float;
uniform lowp sampler2DShadow s_shadowMap;
in vec4 v_color;
in vec4 v_shadowCoord;
layout(location = 0) out vec4 outColor;

float lookup (float x, float y)
{
 float pixelSize = 0.002; // 1/500
 vec4 offset = vec4 (x * pixelSize * v_shadowCoord.w,

y * pixelSize * v_shadowCoord.w,
0.0, 0.0);

 return textureProj (s_shadowMap, v_shadowCoord + offset);
}

void main()
{
 // 3x3 kernel with 4 taps per sample, effectively 6x6 PCF
 float sum = 0.0;
 float x, y;
 for (x = −2.0; x <= 2.0; x += 2.0)

for (y = −2.0; y <= 2.0; y += 2.0)
sum += lookup (x, y);

 // divide sum by 9.0
 sum = sum * 0.11;
 outColor = v_color * sum;
}

Example 14-27	 Rendering from the Eye Position Shaders (continued)

420	 Chapter 14: Advanced Programming with OpenGL ES 3.0

we can use the v_shadowCoord as the texture coordinate to sample
into the shadow map by first transforming the coordinate from
homogeneous coordinate [–1, 1] space into [0, 1] space in the vertex
shader. Alternatively, we can avoid performing these calculations in
the vertex shader by pre-multiplying the MVP matrix from the light
position with the following bias matrix in the host code:

 0.5, 0.0, 0.0, 0.0,
 0.0, 0.5, 0.0, 0.0,
 0.0, 0.0, 0.5, 0.0,
 0.5, 0.5, 0.5, 1.0

In the fragment shader, we check the current fragment to determine
whether it is in the shadow by sampling the shadow map using the
v_shadowCoord and textureProj call. We perform 3 × 3 kernel filtering
to further increase the effect of PCF (effectively 6 × 6 PCF when combined
with four hardware depth comparisons per tap). Then we average the
shadow map sample result to modulate the fragment color. When the
fragment is in shadow, the sample result will be zero and the fragment
will be rendered in black.

Summary

This chapter explored how many of the OpenGL ES 3.0 features presented
throughout this book can be applied to achieve various rendering
techniques. This chapter covered rendering techniques that made use
of features including cubemaps, normal maps, point sprites, transform
feedback, image postprocessing, projective texturing, framebuffer objects,
vertex texture fetch, shadow maps, and many shading techniques. Next,
we will return to the API to discuss the functions your application can use
to query OpenGL ES 3.0 for information.

421

Chapter 15

State Queries

OpenGL ES 3.0 maintains “state information” that includes the values of
internal variables required for rendering. You’ll need to compile and link
shader programs, initialize vertex arrays and attribute bindings, specify
uniform values, and probably load and bind texture—and that only
scratches the surface.

There are also a large number of values that are intrinsic to
OpenGL ES 3.0’s operation. You might need to determine the
maximum size of viewport that is supported or the maximum number
of texture units, for example. All of those values can be queried by your
application.

This chapter describes the functions your applications can use to
obtain values from OpenGL ES 3.0, and the parameters that you
can query.

OpenGL ES 3.0 Implementation String Queries

One of the most fundamental queries that you will need to perform
in your (well-written) applications is to obtain information about the
underlying OpenGL ES 3.0 implementation, such as which version
of OpenGL ES is supported, whose implementation it is, and which
extensions are available. These characteristics are all returned as ASCII
strings from the glGetString function.

422	 Chapter 15: State Queries

The GL_VENDOR and GL_RENDERER queries are formatted for human
consumption and have no set format; they are initialized with whatever
the implementer felt were useful descriptions.

The GL_VERSION query will return a string starting with “OpenGL ES
3.0” for all OpenGL ES 3.0 implementations. The version string can
additionally include vendor-specific information after those tokens, and
will always have the following format:

OpenGL ES <version> <vendor-specific information>

with <version> being the version number (e.g., 3.0), composed of a
major release number, followed by a period and the minor release number,
and optionally another period and a tertiary release value (often used by
vendors to represent an OpenGL ES 3.0 driver’s revision number).

Likewise, the GL_SHADING_LANGUAGE_VERSION query will always return a
string starting with “OpenGL ES GLSL ES 3.00.” This string can also have
vendor-specific information appended to it, and will take the following
form:

OpenGL ES GLSL ES <version> <vendor-specific information>

with a similar formatting for the <version> value.

Implementations that support OpenGL ES 3.0 must also support OpenGL
ES GLSL ES 1.00.

When OpenGL ES is updated to the next version, these version numbers
will change accordingly.

Finally, the GL_EXTENSIONS query will return a space-separated list of all
extensions supported by the implementation, or the NULL string if the
implementation is not extended.

const GLubyte*	 glGetString(GLenum name)
const GLubyte*	 glGetStringi(GLenum name, GLuint index)

name

index

specifies the parameter to be returned. Can be one of
GL_VENDOR, GL_RENDERER, GL_VERSION,
GL_SHADING_LANGUAGE_VERSION, or GL_EXTENSIONS.

Must be GL_EXTENSIONS for glGetStringi.
specifies the index of the string to return (glGetStringi only).

Querying Implementation-Dependent Limits	 423

Querying Implementation-Dependent Limits

Many rendering parameters depend on the underlying capabilities of
the OpenGL ES implementation—for example, how many texture units
are available to a shader, or what the maximum size for a texture map
or aliased point is. Values of those types are queried using one of the
functions shown here:

void	 glGetBooleanv(GLenum pname, GLboolean *params)
void	 glGetFloatv(GLenum pname, GLfloat *params)
void	 glGetIntegerv(GLenum pname, GLint *params)
void	 glGetInteger64v(GLenum pname, GLint64 *params)

pname

params

specifies the implementation-specific parameter to be queried
specifies an array of values of the respective type with
enough entries to hold the return values for the associated
parameter

A number of implementation-dependent parameters can be queried, as
listed in Table 15-1.

Table 15-1	 Implementation-Dependent State Queries

State Variable Description

Minimum/
Initial
Value Get Function

GL_MAX_ELEMENT_
INDEX

Maximum element index 2 24 – 1 glGetInteger64v

GL_SUBPIXEL_
BITS

Number of subpixel bits
supported

4 glGetIntegerv

GL_MAX_TEXTURE_
SIZE

Maximum size of a
texture

2048 glGetIntegerv

GL_MAX_3D_
TEXTURE_SIZE

Maximum size of 3D
texture supported

256 glGetIntegerv

GL_MAX_ARRAY_
TEXTURE_LAYERS

Maximum number of
texture layers supported

256 glGetIntegerv

(continues)

424	 Chapter 15: State Queries

State Variable Description

Minimum/
Initial
Value Get Function

GL_MAX_TEXTURE_
LOD_BIAS

Maximum absolute
texture level of detail bias
supported

2.0 glGetFloatv

GL_MAX_CUBE_
MAP_TEXTURE_
SIZE

Maximum dimension of
a cubemap texture

2048 glGetIntegerv

GL_MAX_
RENDERBUFFER_
SIZE

Maximum width and
height of renderbuffers
supported

2048 glGetIntegerv

GL_MAX_DRAW_
BUFFERS

Maximum active number
of draw buffers supported

4 glGetIntegerv

GL_MAX_COLOR_
ATTACHMENTS

Maximum number
of color attachments
supported

4 glGetIntegerv

GL_MAX_
VIEWPORT_DIMS

Dimensions of the
maximum supported
viewport size

glGetIntegerv

GL_ALIASED_
POINT_SIZE_RANGE

Range of aliased point
sizes

1, 1 glGetFloatv

GL_ALIASED_LINE_
WIDTH_RANGE

Range of aliased line
width sizes

1, 1 glGetFloatv

GL_MAX_ELEMENT_
INDICES

Maximum number of
glDrawRangeElements
indices supported

glGetIntegerv

GL_MAX_ELEMENT_
VERTICES

Maximum number of
glDrawRangeElements
vertices supported

glGetIntegerv

GL_NUM_
COMPRESSED_
TEXTURE_FORMATS

Number of compressed
texture formats supported

10 glGetIntegerv

GL_COMPRESSED_
TEXTURE_FORMATS

Compressed texture
formats supported

glGetIntegerv

Table 15-1	 Implementation-Dependent State Queries (continued)

Querying Implementation-Dependent Limits	 425

State Variable Description

Minimum/
Initial
Value Get Function

GL_NUM_PROGRAM_
BINARY_FORMATS

Number of program
binary formats supported

0 glGetIntegerv

GL_PROGRAM_
BINARY_FORMATS

Program binary formats
supported

glGetIntegerv

GL_NUM_SHADER_
BINARY_FORMATS

Number of shader binary
formats supported

0 glGetIntegerv

GL_SHADER_
BINARY_FORMATS

Shader binary formats
supported

glGetIntegerv

GL_MAX_SERVER_
WAIT_TIMEOUT

Maximum glWaitSync
timeout interval

0 glGetInteger64v

GL_MAX_VERTEX_
ATTRIBS

Maximum number
of vertex attributes
supported

16 glGetIntegerv

GL_MAX_VERTEX_
UNIFORM_
COMPONENTS

Maximum number of
components for vertex
shader uniform variables
supported

1024 glGetIntegerv

GL_MAX_VERTEX_
UNIFORM_VECTORS

Maximum number
of vectors for vertex
shader uniform variables
supported

256 glGetIntegerv

GL_MAX_VERTEX_
UNIFORM_BLOCKS

Maximum number of
vertex uniform buffers
per program supported

12 glGetIntegerv

GL_MAX_VERTEX_
OUTPUT_
COMPONENTS

Maximum number of
components of outputs
written by a vertex shader
supported

64 glGetIntegerv

GL_MAX_VERTEX_
TEXTURE_IMAGE_
UNITS

Maximum number of
texture image units
accessible by a vertex
shader supported

16 glGetIntegerv

Table 15-1	 Implementation-Dependent State Queries (continued)

(continues)

426	 Chapter 15: State Queries

State Variable Description

Minimum/
Initial
Value Get Function

GL_MAX_
FRAGMENT_
UNIFORM_
COMPONENTS

Maximum number of
components for fragment
shader uniform variables
supported

896 glGetIntegerv

GL_MAX_
FRAGMENT_
UNIFORM_VECTORS

Maximum number of
vectors for fragment
shader uniform variables
supported

224 glGetIntegerv

GL_MAX_
FRAGMENT_
UNIFORM_BLOCKS

Maximum number of
fragment uniform buffers
per program supported

12 glGetIntegerv

GL_MAX_
FRAGMENT_INPUT_
COMPONENTS

Maximum number of
components of inputs
read by a fragment shader
supported

60 glGetIntegerv

GL_MAX_TEXTURE_
IMAGE_UNITS

Maximum number of
texture image units
accessible by a fragment
shader supported

16 glGetIntegerv

GL_MIN_PROGRAM_
TEXEL_OFFSET

Minimum texel offset
allowed in a lookup
supported

–8 glGetIntegerv

GL_MAX_PROGRAM_
TEXEL_OFFSET

Maximum texel offset
allowed in a lookup
supported

7 glGetIntegerv

GL_MAX_UNIFORM_
BUFFER_BINDINGS

Maximum number of
uniform buffer bindings
supported

24 glGetIntegerv

GL_MAX_UNIFORM_
BLOCK_SIZE

Maximum size of a
uniform block supported

16384 glGetInteger64v

GL_UNIFORM_
BUFFER_OFFSET_
ALIGNMENT

Minimum required
alignment for uniform
buffer sizes and offsets
supported

1 glGetIntegerv

Table 15-1	 Implementation-Dependent State Queries (continued)

Querying Implementation-Dependent Limits	 427

State Variable Description

Minimum/
Initial
Value Get Function

GL_MAX_
COMBINED_
UNIFORM_BLOCKS

Maximum number of
uniform buffers per
program supported

24 glGetIntegerv

GL_MAX_
COMBINED_
VERTEX_UNIFORM_
COMPONENTS

Maximum number of
words for vertex shader
uniform variables in all
uniform blocks supported

glGetInteger64v

GL_MAX_
COMBINED_
FRAGMENT_
UNIFORM_
COMPONENTS

Maximum number of
words for vertex shader
uniform variables in all
uniform blocks supported

glGetInteger64v

GL_MAX_VARYING_
COMPONENTS

Maximum number of
components for output
variables supported

60 glGetIntegerv

GL_MAX_VARYING_
VECTORS

Maximum number
of vectors for output
variables supported

15 glGetIntegerv

GL_MAX_
COMBINED_
TEXTURE_IMAGE_
UNITS

Maximum number of
accessible texture units
supported

32 glGetIntegerv

GL_MAX_
TRANSFORM_
FEEDBACK_
INTERLEAVED_
COMPONENTS

Maximum number
of components in
interleaved mode
supported

64 glGetIntegerv

GL_MAX_
TRANSFORM_
FEEDBACK_
SEPARATE_
COMPONENTS

Maximum number of
components in separate
mode supported

4 glGetIntegerv

Table 15-1	 Implementation-Dependent State Queries (continued)

(continues)

428	 Chapter 15: State Queries

State Variable Description

Minimum/
Initial
Value Get Function

GL_MAX_
TRANSFORM_
FEEDBACK_
SEPARATE_ATTRIBS

Maximum number of
separate attributes that can
be captured in transform
feedback supported

4 glGetIntegerv

GL_SAMPLE_
BUFFER

Number of multisample
buffers

0 glGetIntegerv

GL_SAMPLES Coverage mask size 0 glGetIntegerv

GL_MAX_SAMPLES Maximum number of
samples supported for
multisampling

4 glGetIntegerv

GL_RED_BITS Number of red bits in
current color buffer

glGetIntegerv

GL_GREEN_BITS Number of green bits in
current color buffer

glGetIntegerv

GL_BLUE_BITS Number of blue bits in
current color buffer

glGetIntegerv

GL_ALPHA_BITS Number of alpha bits in
current color buffer

glGetIntegerv

GL_DEPTH_BITS Number of bits in the
current depth buffer

glGetIntegerv

GL_STENCIL_BITS Number of stencil bits in
current stencil buffer

glGetIntegerv

GL_
IMPLEMENTATION_
COLOR_READ_TYPE

Data type for pixel
components for pixel
read operations

glGetIntegerv

GL_
IMPLEMENTATION_
COLOR_READ_
FORMAT

Pixel format for pixel
read operations

glGetIntegerv

Table 15-1	 Implementation-Dependent State Queries (continued)

Querying OpenGL ES State	 429

Querying OpenGL ES State

Your application can modify many parameters to affect OpenGL ES 3.0’s
operation. Although it’s usually more efficient for an application to track
these values when it modifies them, you can retrieve any of the values
listed in Table 15-2 from the currently bound context. For each token, the
appropriate OpenGL ES 3.0 get function is provided.

Table 15-2	 Application-Modifiable OpenGL ES State Queries

State Variable Description
Minimum/
Initial Value Get Function

GL_ARRAY_
BUFFER_BINDING

Currently bound
vertex attribute
array binding

0 glGetIntegerv

GL_VIEWPORT Current size of the
viewport

glGetIntegerv

GL_ELEMENT_
ARRAY_BUFFER_
BINDING

Currently bound
element array
binding

0 glGetIntegerv

GL_VERTEX_
ARRAY_BINDING

Currently bound
vertex array binding

0 glGetIntegerv

GL_DEPTH_RANGE Current depth range
values

(0, 1) glGetFloatv

GL_LINE_WIDTH Current line width 1.0 glGetFloatv

GL_POLYGON_
OFFSET_FACTOR

Current polygon
offset factor value

0 glGetFloatv

GL_POLYGON_
OFFSET_UNITS

Current polygon
offset units value

0 glGetFloatv

GL_CULL_FACE_
MODE

Current face culling
mode

GL_BACK glGetIntegerv

GL_FRONT_FACE Current front-facing
vertex winding mode

GL_CCW glGetIntegerv

GL_SAMPLE_
COVERAGE_VALUE

Current value
specified for
multisampling
sample coverage value

1 glGetFloatv

(continues)

430	 Chapter 15: State Queries

State Variable Description
Minimum/
Initial Value Get Function

GL_SAMPLE_
COVERAGE_
INVERT

Current
multisampling
coverage value
inversion setting

GL_FALSE glGetBooleanv

GL_TEXTURE_
BINDING_2D

Current 2D texture
binding

0 glGetIntegerv

GL_TEXTURE_
BINDING_CUBE_
MAP

Current cubemap
texture binding

0 glGetIntegerv

GL_ACTIVE_
TEXTURE

Current texture unit 0 glGetIntegerv

GL_SAMPLER_
BINDING

Current sampler
object bound to
active texture unit

0 glGetIntegerv

GL_COLOR_
WRITEMASK

Color buffer writable GL_TRUE glGetBooleanv

GL_DEPTH_
WRITEMASK

Depth buffer writable GL_TRUE glGetBooleanv

GL_STENCIL_
WRITEMASK

Current write mask
for front-facing
polygons

1 glGetIntegerv

GL_STENCIL_
BACK_WRITEMASK

Current write mask
for back-facing
polygons

1 glGetIntegerv

GL_COLOR_
CLEAR_VALUE

Current color buffer
clear value

0, 0, 0, 0 glGetFloatv

GL_DEPTH_
CLEAR_VALUE

Current depth buffer
clear value

1 glGetIntegerv

GL_STENCIL_
CLEAR_VALUE

Current stencil buffer
clear value

0 glGetIntegerv

GL_SCISSOR_BOX Current offset and
dimensions of the
scissor box

0, 0, w, h glGetIntegerv

Table 15-2	 Application-Modifiable OpenGL ES State Queries (continued)

Querying OpenGL ES State	 431

State Variable Description
Minimum/
Initial Value Get Function

GL_STENCIL_
FUNC

Current stencil test
operator function

GL_
ALWAYS

glGetIntegerv

GL_STENCIL_
VALUE_MASK

Current stencil test
value mask

1s glGetIntegerv

GL_STENCIL_REF Current stencil test
reference value

0 glGetIntegerv

GL_STENCIL_
FAIL

Current operation for
stencil test failure

GL_KEEP glGetIntegerv

GL_STENCIL_
PASS_DEPTH_
FAIL

Current operation for
when the stencil test
passes, but the depth
test fails

GL_KEEP glGetIntegerv

GL_STENCIL_
PASS_DEPTH_
PASS

Current operation
when both the stencil
and depth tests pass

GL_KEEP glGetIntegerv

GL_STENCIL_
BACK_FUNC

Current back-facing
stencil test operator
function

GL_
ALWAYS

glGetIntegerv

GL_STENCIL_
BACK_VALUE_MASK

Current back-facing
stencil test value mask

1s glGetIntegerv

GL_STENCIL_
BACK_REF

Current back-facing
stencil test reference
value

0 glGetIntegerv

GL_STENCIL_
BACK_FAIL

Current operation for
back-facing stencil
test failure

GL_KEEP glGetIntegerv

GL_STENCIL_
BACK_PASS_
DEPTH_FAIL

Current operation for
when the back-facing
stencil test passes, but
the depth test fails

GL_KEEP glGetIntegerv

GL_STENCIL_
BACK_PASS_
DEPTH_PASS

Current operation
when both the back-
facing stencil and
depth tests pass

GL_KEEP glGetIntegerv

Table 15-2	 Application-Modifiable OpenGL ES State Queries (continued)

(continues)

432	 Chapter 15: State Queries

State Variable Description
Minimum/
Initial Value Get Function

GL_DEPTH_FUNC Current depth test
comparison function

GL_LESS glGetIntegerv

GL_BLEND_SRC_
RGB

Current source RGB
blending coefficient

GL_ONE glGetIntegerv

GL_BLEND_SRC_
ALPHA

Current source alpha
blending coefficient

GL_ONE glGetIntegerv

GL_BLEND_DST_
RGB

Current destination
RGB blending
coefficient

GL_ZERO glGetIntegerv

GL_BLEND_DST_
ALPHA

Current destination
alpha blending
coefficient

GL_ZERO glGetIntegerv

GL_BLEND_
EQUATION

Current blend
equation operator

GL_FUNC_
ADD

glGetIntegerv

GL_BLEND_
EQUATION_RGB

Current RGB blend
equation operator

GL_FUNC_
ADD

glGetIntegerv

GL_BLEND_
EQUATION_ALPHA

Current alpha blend
equation operator

GL_FUNC_
ADD

glGetIntegerv

GL_BLEND_COLOR Current blend color 0, 0, 0, 0 glGetFloatv

GL_DRAW_
BUFFERi

Current buffers
being drawn by the
corresponding output
color

glGetIntegerv

GL_READ_BUFFER Current color buffer
selected for reading

glGetIntegerv

GL_UNPACK_
IMAGE_HEIGHT

Current image height
for pixel unpacking

0 glGetIntegerv

GL_UNPACK_
SKIP_IMAGES

Current number of
pixel images skipped
before the first pixel
for pixel unpacking

0 glGetIntegerv

Table 15-2	 Application-Modifiable OpenGL ES State Queries (continued)

Querying OpenGL ES State	 433

State Variable Description
Minimum/
Initial Value Get Function

GL_UNPACK_ROW_
LENGTH

Current row length
for pixel unpacking

0 glGetIntegerv

GL_UNPACK_
SKIP_ROWS

Current number
of rows of pixel
locations skipped
before the first pixel
for pixel unpacking

0 glGetIntegerv

GL_UNPACK_
SKIP_PIXELS

Current number
of pixel locations
skipped before the
first pixel for pixel
unpacking

0 glGetIntegerv

GL_UNPACK_
ALIGNMENT

Current byte-
boundary alignment
for pixel unpacking

4 glGetIntegerv

GL_PACK_ROW_
LENGTH

Current row length
for pixel packing

0 glGetIntegerv

GL_PACK_SKIP_
ROWS

Current number
of rows of pixel
locations skipped
before the first pixel
for pixel packing

0 glGetIntegerv

GL_PACK_SKIP_
PIXELS

Current number of
pixel locations skipped
before the first pixel
for pixel packing

0 glGetIntegerv

GL_PACK_
ALIGNMENT

Current byte-
boundary alignment
for pixel packing

4 glGetIntegerv

GL_PIXEL_PACK_
BUFFER_BINDING

Name of buffer object
currently bound for
pixel packing

0 glGetIntegerv

GL_PIXEL_
UNPACK_BUFFER_
BINDING

Name of buffer object
currently bound for
pixel unpacking

0 glGetIntegerv

Table 15-2	 Application-Modifiable OpenGL ES State Queries (continued)

(continues)

434	 Chapter 15: State Queries

State Variable Description
Minimum/
Initial Value Get Function

GL_CURRENT_
PROGRAM

Currently bound
shader program

0 glGetIntegerv

GL_
RENDERBUFFER_
BINDING

Currently bound
renderbuffer

0 glGetIntegerv

GL_TRANSFORM_
FEEDBACK_
BINDING

Buffer object
currently bound
to generic bind
point for transform
feedback operations

0 glGetIntegerv

GL_TRANSFORM_
FEEDBACK_
BINDING

Buffer object currently
bound to each
transform feedback
attribute stream

0 glGetIntegeri_v

GL_TRANSFORM_
FEEDBACK_
BUFFER_START

Start offset of binding
range for each
transform feedback
attribute stream

0 glGetInteger64i_v

GL_TRANSFORM_
FEEDBACK_
BUFFER_SIZE

Size of binding range
for each transform
feedback attribute
stream

0 glGetInteger64i_v

GL_TRANSFORM_
FEEDBACK_
PAUSED

Whether transform
feedback is currently
paused on the object

GL_FALSE glGetBooleanv

GL_TRANSFORM_
FEEDBACK_
ACTIVE

Whether transform
feedback is currently
active on the object

GL_FALSE glGetBooleanv

GL_UNIFORM_
BUFFER_BINDING

Currently bound
uniform buffer object
for buffer object
manipulation

0 glGetIntegerv

GL_UNIFORM_
BUFFER_BINDING

Uniform buffer object
currently bound to
the specified context
binding point

0 glGetIntegeri_v

Table 15-2	 Application-Modifiable OpenGL ES State Queries (continued)

Hints	 435

State Variable Description
Minimum/
Initial Value Get Function

GL_UNIFORM_
BUFFER_START

Start of currently
bound uniform
buffer region

0 glGetInteger64i_v

GL_UNIFORM_
BUFFER_SIZE

Size of currently
bound uniform
buffer region

0 glGetInteger64i_v

GL_GENERATE_
MIPMAP_HINT

Mipmap generation
hint

GL_DONT_
CARE

glGetIntegerv

GL_FRAGMENT_
SHADER_
DERIVATIVE_HINT

Fragment shader
derivative accuracy
hint

GL_DONT_
CARE

glGetIntegerv

GL_READ_
FRAMEBUFFER_
BINDING

Currently bound
framebuffer for
reading

0 glGetIntegerv

GL_DRAW_
FRAMEBUFFER_
BINDING

Currently bound
framebuffer for
drawing

0 glGetIntegerv

Table 15-2	 Application-Modifiable OpenGL ES State Queries (continued)

Hints

OpenGL ES 3.0 uses hints to modify the operation of features, allowing a
bias toward either performance or quality. You can specify a preference by
calling the following function:

void	 glHint(GLenum target, GLenum mode)

target

mode

specifies the hint to be set, and must be either
GL_GENERATE_MIPMAP_HINT or
GL_FRAGMENT_SHADER_DERIVATIVE_HINT.

specifies the operational mode the feature should use. Valid
values are GL_FASTEST to specify performance, GL_NICEST to
favor quality, or GL_DONT_CARE to reset any preferences to the
implementation default.

436	 Chapter 15: State Queries

The current value of any hint can be retrieved by calling glGetIntegerv
using the appropriate hint enumerated value.

Entity Name Queries

OpenGL ES 3.0 references numerous entities that you define—textures,
shaders, programs, vertex buffers, sampler objects, query objects, sync
objects, vertex array objects, transform feedback objects, framebuffers, and
renderbuffers—by integer names. You can determine if a name is currently
in use (and therefore a valid entity) by calling one of the following
functions:

GLboolean	 glIsTexture(GLuint texture)
GLboolean	 glIsShader(GLuint shader)
GLboolean	 glIsProgram(GLuint program)
GLboolean	 glIsBuffer(GLuint buffer)
GLboolean	 glIsSampler(GLuint sampler)
GLboolean	 glIsQuery(GLuint query)
GLboolean	 glIsSync(GLuint sync)
GLboolean	 glIsVertexArray(GLuint array)
GLboolean	 glIsTransformFeedback(GLuint transform)
GLboolean	 glIsRenderbuffer(GLuint renderbuffer)
GLboolean	 glIsFramebuffer(GLuint framebuffer)

texture, shader,
program, buffer,
sampler, query,
sync, array,
transform,
renderbuffer,
framebuffer

specify the name of the respective entity to
determine if the name is in use

Nonprogrammable Operations Control
and Queries

Much of OpenGL ES 3.0’s rasterization functionality, like blending or back-
face culling, is controlled by turning on and off the features you need. The
functions controlling the various operations are mentioned here.

Nonprogrammable Operations Control and Queries 437

Additionally, you can determine if a feature is in use by calling the
following function:

The capabilities controlled by glEnable and glDisable are listed in
Table 15-3.

void	 glEnable(GLenum capability)

capabi1ity specifies the feature that should be turned on and affects
all rendering until the feature is turned off

void	 glDisable(GLenum capability)

capabi1ity specifies the feature that should be turned off

GLboolean	 glIsEnabled(GLenum capability)

capability specifies which feature should be examined to determine
if it’s enabled

Table 15-3	 �OpenGL ES 3.0 Capabilities Controlled by glEnable and
glDisable

Capability Description

GL_CULL_FACE Discard polygons whose vertex
winding order is opposite of
the specified front-facing mode
(GL_CW or GL_CCW, as specified
by glFrontFace)

GL_POLYGON_OFFSET_FILL Offset the depth value of a
fragment to aid in rendering
coplanar geometry

GL_SCISSOR_TEST Further restrict rendering to the
scissor box

(continues)

438	 Chapter 15: State Queries

Shader and Program State Queries

OpenGL ES 3.0 shaders and programs have a considerable amount of state
information that you can retrieve regarding their configuration, and the
attributes and uniform variables used by them. Numerous functions are
provided for querying the state associated with shaders. To determine the
shaders attached to a program, call the following function:

void	 glGetAttachedShaders(�GLuint program, GLsizei maxcount,
GLsizei *count, GLuint *shaders)

program

maxcount

count

shaders

specifies the program to query to determine the attached
shaders
the maximum number of shader names to be returned
the actual number of shader names returned
an array of length maxcount used for storing the returned
shader names

Capability Description

GL_SAMPLE_COVERAGE Use a fragment’s computed
coverage value in multisampling
operations

GL_SAMPLE_ALPHA_TO_COVERAGE Use a fragment’s alpha value
as its coverage value in
multisampling operations

GL_STENCIL_TEST Enable the stencil test

GL_DEPTH_TEST Enable the depth test

GL_BLEND Enable blending

GL_PRIMITIVE_RESTART_FIXED_INDEX Enable primitive restarting

GL_RASTERIZER_DISCARD Enable primitive discard before
rasterization

GL_DITHER Enable dithering

Table 15-3	 �OpenGL ES 3.0 Capabilities Controlled by glEnable and
glDisable  (continued)

Shader and Program State Queries	 439

To retrieve the source code for a shader, call the following function:

void	 glGetShaderSource(�GLuint shader, GLsizei bufsize,
GLsizei *length, GLchar *source)

shader

bufsize

length

source

specifies the shader to query
the number of bytes available in the array source for
returning the shader’s source
the length of the returned shader string
specifies an array of GLchars to store the shader source to

void	 glGetUniformfv(GLuint program, GLint location,
                GLfloat *params)

void	 glGetUniformiv(�GLuint program, GLint location,
GLint *params)

program

location

params

the program to query to retrieve the uniform’s value
the uniform location associated with the program for
which to retrieve the values
an array of the appropriate type for storing the uniform
variable’s values; the associated type of the uniform in the
shader determines the number of values returned

To retrieve a value associated with a uniform variable at a particular
uniform location associated with a shader program, call the following
function:

Finally, to query the range and precision of OpenGL ES 3.0 shader
language types, call the following function:

void	 glGetShaderPrecisionFormat(�GLenum shaderType,
GLenum precisionType,
GLint *range,
GLint *precision)

(continues)

440	 Chapter 15: State Queries

The associated state for accessing the data elements in the vertex attribute
array, such as value type or stride, can be obtained by calling the following
function:

void	 glGetVertexAttribPointerv(�GLuint index, GLenum pname,
GLvoid **pointer)

index

pname

pointer

specifies the index of the generic vertex attribute array
specifies the parameter to be retrieved; must be
GL_VERTEX_ATTRIB_ARRAY_POINTER

returns the address of the specified vertex attribute array

Vertex Attribute Queries

State information for vertex attribute arrays can also be retrieved from
the current OpenGL ES 3.0 context. To obtain the pointer to the current
generic vertex attributes for a specific index, call the following function:

(continued)
shaderType

precisionType

range

precision

specifies the type of shader, and must be either
GL_VERTEX_SHADER or GL_FRAGMENT_SHADER
specifies the precision qualifier type, and must be
one of GL_LOW_FLOAT, GL_MEDIUM_FLOAT,
GL_HIGH_FLOAT, GL_LOW_INT, GL_MEDIUM_INT,
or GL_HIGH_INT
a two-element array that returns the minimum and
maximum values for precisionType as a log base-2
number
returns the precision for precisionType as a log
base-2 value

void	 glGetVertexAttribfv(GLuint index, GLenum pname,
                   GLfloat *params)

void	 glGetVertexAttribiv(�GLuint index, GLenum pname,
GLint *params)

index specifies the index of the generic vertex attribute array.

Texture State Queries	 441

pname

params

specifies the parameter to be retrieved; must be one of
GL_VERTEX_ATTRIB_ARRAY_BUFFER_BINDING,
GL_VERTEX_ATTRIB_ARRAY_ENABLED,
GL_VERTEX_ATTRIB_ARRAY_SIZE,
GL_VERTEX_ATTRIB_ARRAY_STRIDE,
GL_VERTEX_ATTRIB_ARRAY_TYPE,
GL_VERTEX_ATTRIB_ARRAY_NORMALIZED,
GL_VERTEX_ATTRIB_ARRAY_INTEGER, or
GL_VERTEX_ATTRIB_ARRAY_DIVISOR.
GL_CURRENT_VERTEX_ATTRIB returns the current vertex
attribute as specified by glEnableVertexAttribArray, and
the other parameters are values specified when the vertex
attribute pointer is specified by calling glVertexAttribPointer.
specifies an array of the appropriate type for storing the
returned parameter values.

Texture State Queries

OpenGL ES 3.0 texture objects store a texture’s image data, along with
settings describing how the texels in the image should be sampled. The
texture filter state, which includes the minification and magnification texture
filters and texture-coordinate wrap modes, can be queried from the currently
bound texture object. The following call retrieves the texture filter settings:

void	 glGetTexParameterfv(GLenum target, GLenum pname,
                   GLfloat *params)

void	 glGetTexParameteriv(�GLenum target, GLenum pname,
GLint *params)

target specifies the texture target; can either be GL_TEXTURE_2D,
GL_TEXTURE_2D_ARRAY, GL_TEXTURE_3D, or
GL_TEXTURE_CUBE_MAP

pname specifies the texture filter parameter to be retrieved; may be
GL_TEXTURE_BASE_LEVEL, GL_TEXTURE_COMPARE_FUNC,
GL_TEXTURE_COMPARE_MODE, GL_TEXTURE_MAG_FILTER,
GL_TEXTURE_IMMUTABLE_FORMAT, GL_TEXTURE_MAX_LEVEL,
GL_TEXTURE_MAX_LOD, GL_TEXTURE_MIN_FILTER,
GL_TEXTURE_MIN_LOD, GL_TEXTURE_SWIZZLE_R,

(continues)

442	 Chapter 15: State Queries

Sampler Queries

State information for sampler objects can be retrieved from the current
OpenGL ES 3.0 context by calling the following function:

void	 glGetSamplerParameterfv(GLuint sampler, GLenum pname,
                       GLfloat *params)

void	 glGetSamplerParameteriv(�GLuint sampler, GLenum pname,
GLint *params)

sampler

pname

params

specifies the name of a sampler object

specifies the sampler parameter to be retrieved; may be
GL_TEXTURE_MAG_FILTER, GL_TEXTURE_MIN_FILTER,
GL_TEXTURE_MIN_LOD, GL_TEXTURE_MAX_LOD,
GL_TEXTURE_WRAP_S, GL_TEXTURE_WRAP_T,
GL_TEXTURE_WRAP_R, GL_TEXTURE_COMPARE_MODE, or
GL_TEXTURE_COMPARE_FUNC

specifies an array of the appropriate type for storing the
returned parameter values

(continued)

params

GL_TEXTURE_SWIZZLE_G, GL_TEXTURE_SWIZZLE_B,
GL_TEXTURE_SWIZZLE_A, GL_TEXTURE_WRAP_S,
GL_TEXTURE_SWIZZLE_T, or GL_TEXTURE_WRAP_R

specifies an array of the appropriate type for storing the
returned parameter values

Asynchronous Object Queries

Information about a query object can be retrieved from the current
OpenGL ES 3.0 context by calling the following function:

void	 glGetQueryiv(�GLuint target, GLenum pname,
GLint *params)

target specifies the query target object; can be
GL_ANY_SAMPLES_PASSED,

Sync Object Queries	 443

The state of a query object can be retrieved by calling the following function:

void	 glGetQueryObjectuiv(GLuint id, GLenum pname,
                   GLuint *params)

id

pname

params

specifies the name of a query object

specifies the query object parameter to be retrieved;
can be GL_QUERY_RESULT or GL_QUERY_RESULT_AVAILABLE

specifies an array of the appropriate type for storing the
returned parameter values

Sync Object Queries

The properties of a sync object can be retrieved from the current OpenGL
ES 3.0 context by calling the following function:

void	 glGetSynciv(GLsync sync, GLenum pname,
             GLsizei bufsize, GLsizei *length,
               GLint *values)

sync

pname

specifies the sync object to query

specifies the parameter to retrieve from the sync object

bufsize

length

values

the number of bytes available in the returning values

the address of the returned number of bytes in values

specifies the address of an array for the returned parameter

pname

params

GL_ANY_SAMPLES_PASSED_CONSERVATIVE, or
GL_TRANSFORM_FEEDBACK_PRIMITIVES_WRITTEN

specifies the query object parameter to be retrieved;
must be GL_CURRENT_QUERY

specifies an array of the appropriate type for storing the
returned parameter values

444	 Chapter 15: State Queries

Vertex Buffer Queries

Vertex buffer objects have associated state information describing the state
and usage of the buffer. Those parameters can be retrieved by calling the
following function:

Additionally, you can retrieve the current pointer address for a mapped
buffer by calling the following function:

void	 glGetBufferParameteriv(GLenum target, GLenum pname,
                   GLint *params)

void	 glGetBufferParameter64iv(�GLenum target, GLenum pname,
GLint64 *params)

target

pname

params

specifies the buffer of the currently bound vertex buffer;
must be one of GL_ARRAY_BUFFER, GL_COPY_READ_BUFFER,
GL_COPY_WRITE_BUFFER, GL_ELEMENT_ARRAY_BUFFER,
GL_PIXEL_PACK_BUFFER, GL_PIXEL_UNPACK_BUFFER,
GL_TRANSFORM_FEEDBACK_BUFFER, or GL_UNIFORM_BUFFER

specifies the buffer parameter to be retrieved; must be one
of GL_BUFFER_SIZE, GL_BUFFER_USAGE, GL_BUFFER_MAPPED,
GL_BUFFER_ACCESS_FLAGS, GL_BUFFER_MAP_LENGTH,
or GL_BUFFER_MAP_OFFSET

specifies an integer array for storing the returned parameter
values

void	 glGetBufferPointerv(�GLenum target, GLenum pname,
GLvoid **params)

target

pname

params

specifies the buffer of the currently bound vertex buffer;
must be one of GL_ARRAY_BUFFER, GL_COPY_READ_BUFFER,
GL_COPY_WRITE_BUFFER, GL_ELEMENT_ARRAY_BUFFER,
GL_PIXEL_PACK_BUFFER, GL_PIXEL_UNPACK_BUFFER,
GL_TRANSFORM_FEEDBACK_BUFFER, or GL_UNIFORM_BUFFER

specifies the parameter to retrieve; must be
GL_BUFFER_MAP_POINTER

specifies a pointer for storing the returned address

Renderbuffer and Framebuffer State Queries	 445

Renderbuffer and Framebuffer State Queries

Characteristics of an allocated renderbuffer can be retrieved by calling the
following function:

void	 glGetRenderbufferParameteriv(�GLenum target,
GLenum pname,
GLint *params)

target

pname

params

specifies the target for the currently bound renderbuffer;
must be GL_RENDERBUFFER

specifies the renderbuffer parameter to retrieve; must be one
of GL_RENDERBUFFER_WIDTH, GL_RENDERBUFFER_HEIGHT,
GL_RENDERBUFFER_INTERNAL_FORMAT,
GL_RENDERBUFFER_RED_SIZE,
GL_RENDERBUFFER_GREEN_SIZE,
GL_RENDERBUFFER_BLUE_SIZE, 
GL_RENDERBUFFER_ALPHA_SIZE,
GL_RENDERBUFFER_DEPTH_SIZE, GL_RENDERBUFFER_SAMPLES,
or GL_RENDERBUFFER_STENCIL_SIZE

specifies an integer array for storing the returned parameter
values

Likewise, the current attachments to a framebuffer can be queried by
calling the following function:

void	 glGet�FramebufferAttachmentParameteriv(GLenum target,
GLenum attachment,GLenum pname,GLint *params)

target

attachment

specifies the framebuffer target; must be one of
GL_READ_FRAMEBUFFER, GL_WRITE_FRAMEBUFFER, or
GL_FRAMEBUFFER

specifies which attachment point to query; must be one of
GL_COLOR_ATTACHMENTi, GL_DEPTH_ATTACHMENT,
GL_DEPTH_STENCIL_ATTACHMENT, or
GL_STENCIL_ATTACHMENT

(continues)

446	 Chapter 15: State Queries

Summary

As there is a large amount of state information in OpenGL ES 3.0, in this
chapter we provided a reference for the various state queries that your
applications can make. Next, in the final chapter you will learn how to
build the OpenGL ES sample code in this book for various OpenGL ES
platforms.

(continued)
pname

params

specifies GL_FRAMEBUFFER_ATTACHMENT_OBJECT_TYPE,
GL_FRAMEBUFFER_ATTACHMENT_OBJECT_NAME,
GL_FRAMEBUFFER_ATTACHMENT_RED_SIZE,
GL_FRAMEBUFFER_ATTACHMENT_GREEN_SIZE,
GL_FRAMEBUFFER_ATTACHMENT_BLUE_SIZE,
GL_FRAMEBUFFER_ATTACHMENT_ALPHA_SIZE,
GL_FRAMEBUFFER_ATTACHMENT_DEPTH_SIZE,
GL_FRAMEBUFFER_ATTACHMENT_STENCIL_SIZE,
GL_FRAMEBUFFER_ATTACHMENT_COMPONENT_TYPE,
GL_FRAMEBUFFER_ATTACHMENT_COLOR_ENCODING,
GL_FRAMEBUFFER_ATTACHMENT_TEXTURE_LAYER,
GL_FRAMEBUFFER_ATTACHMENT_TEXTURE_LEVEL,
GL_FRAMEBUFFER_ATTACHMENT_TEXTURE_CUBE_MAP_FACE

specifies an integer array for storing the returned parameter
values

447

Chapter 16

OpenGL ES Platforms

As of this writing, OpenGL ES 3.0 is available in Android 4.3+, iOS 7 (on
the iPhone 5s), Windows, and Linux. We attempted to make the sample
code for the book available on as many platforms as possible. We want
our readers to be able to choose the OpenGL ES 3.0 platform that is most
relevant to them. In this chapter, we cover some specifics of getting up
and running while building the sample code with the following platforms:

•• Windows (OpenGL ES 3.0 Emulation) with Microsoft Visual Studio

•• Ubuntu Linux (OpenGL ES 3.0 Emulation)

•• Android 4.3+ NDK (C++)

•• Android 4.3+ SDK (Java)

•• iOS 7 with Xcode 5

Building for Microsoft Windows with
Visual Studio

After downloading the sample code from the book’s website (opengles-
book.com) and installing CMake v2.8 (http://cmake.org), the next step
to build the sample code for Windows is to download an OpenGL ES 3.0
Emulator. Three choices of emulators are currently available:

•• Qualcomm Adreno SDK v3.4+, available from http://developer
.qualcomm.com/develop/

http://cmake.org
http://developer.qualcomm.com/develop/
http://developer.qualcomm.com/develop/

448	 Chapter 16: OpenGL ES Platforms

•• ARM Mali OpenGL ES 3.0 Emulator, available from http://malideveloper
.arm.com/develop-for-mali/tools/opengl-es-3-0-emulator/

•• PowerVR Insider SDK v3.2+, available from http://imgtec.com/
PowerVR/insider/sdkdownloads/index.asp

Any of these emulators is a suitable choice for using the sample code for
this book. We leave it up to you to choose which option best fits with your
development needs. If you want to use the PVRShaman workspaces from
Chapters 10 and 14, the PowerVR Insider SDK is required. For this section,
we chose to use the Qualcomm Adreno SDK v3.4. After downloading and
installing your choice of OpenGL ES 3.0 emulator, you can use CMake to
generate the Microsoft Visual Studio solution and projects.

Open the cmake-gui and point the GUI to the location where you have
downloaded the source code, as shown in Figure 16-1. Create a folder to
build the binaries underneath that base directory and set it as the location
to build the binaries in the GUI. You can then click Configure and choose
the version of Microsoft Visual Studio you are using. CMake will now give
an error because the EGL and OpenGLES3 library are not found.

If you are using the Qualcomm Adreno SDK installed to C:\AdrenoSDK,
you must now set the following variables in the cmake-gui:

•• EGL_LIBRARY: C:/AdrenoSDK/Lib/Win32/OGLES3/libEGL.lib

•• OPENGLES3_LIBRARY: C:/AdrenoSDK/Lib/Win32/OGLES3/libGLESv2.lib

Figure 16-1	 Building Samples with CMake GUI on Windows

http://malideveloper.arm.com/develop-for-mali/tools/opengl-es-3-0-emulator/
http://malideveloper.arm.com/develop-for-mali/tools/opengl-es-3-0-emulator/
http://imgtec.com/PowerVR/insider/sdkdownloads/index.asp
http://imgtec.com/PowerVR/insider/sdkdownloads/index.asp

Building for Ubuntu Linux	 449

If you are using a different emulator, locate the EGL and OpenGL ES 3.0
libraries for that library and set them to the CMake variables. After setting
the EGL and OpenGL ES 3.0 libraries, click Configure again in the cmake-
gui and then click Generate. You can now navigate to the folder you chose
to build the binaries in CMake and open ES3_Book.sln in Microsoft
Visual Studio. From this solution, you can build and run all of the sample
code for the book.

If you do not have libEGL.dll and libGLESv2.dll in your path,
you will need to copy those files to the directory to which each
sample executable is built to be able to run the sample. Also, note
that libGLESv2 is the recommended Khronos naming convention
for the OpenGL ES 3.0 library. This is the same name as the OpenGL
ES 2.0 library. The names match because OpenGL ES 3.0 is backward
compatible with OpenGL ES 2.0; thus the same library can be used for
both APIs.

Building for Ubuntu Linux

This section describes how to build the sample code using the PowerVR
OpenGL ES 3.0 Emulator on Ubuntu Linux (tested on Ubuntu 12.04.1
LTS 64-bit). In addition to installing the PowerVR OpenGL ES 3.0
Emulator (by default, this installs to /opt/Imagination/PowerVR/
GraphicsSDK), you will need to make sure you have installed the
appropriate packages, including cmake and gcc. A good starting point is
to install the following packages:

$ sudo apt-get install build-essential cmake cmake-curses-gui

To build the sample code, first create a build folder at the root of the
source project (where CMakeLists.txt is found):

~/src/opengles-book$ mkdir build
~/src/opengles-book/build$ cd build
~/src/opengles-book/build$ cmake ../

If all has gone correctly, you will likely see an error message that the
EGL_LIBRARY and OPENGLES3_LIBRARY are not found. To set the libraries,
run the following (note that it is “ccmake” and not “cmake”):

~/src/opengles-book/build$ ccmake ../

You will see that the value of EGL_LIBRARY is EGL_LIBRARY-NOTFOUND;
similarly, OPENGLES3_LIBRARY is set to OPENGLES3_LIBRARY-NOTFOUND.

450	 Chapter 16: OpenGL ES Platforms

Assuming you installed the PowerVR SDK to the default location, you
can set these variables to the libEGL.so and libGLESv2.so files, as
follows:

•• EGL_LIBRARY:
/opt/Imagination/PowerVR/GraphicsSDK/PVRVFrame/
EmulationLibs/Linux_x86_64/libEGL.so

•• OPENGLES3_LIBRARY:
/opt/Imagination/PowerVR/GraphicsSDK/PVRVFrame/
EmulationLibs/Linux_x86_64/libGLESv2.so

Now you can press “c” to configure and “g” to generate and exit ccmake.
The code is now ready to build; simply type the following:

~/src/opengles-book/build$ make

This should build libCommon.a along with all of the sample code. You are
now ready to run the Hello_Triangle sample:

build$ cd Chapter_2/Hello_Triangle
build$./Hello_Triangle

If you find that you are unable to run the program because the libEGL.so
and libGLESv2.so are not found, set LD_LIBRARY_PATH to point to the
directory location as follows:

$ export
LD_LIBRARY_PATH=/opt/Imagination/PowerVR/GraphicsSDK/PVRVFrame/
EmulationLibs/Linux_x86_64/

Building for Android 4.3+ NDK (C++)

Support for OpenGL ES 3.0 in Android 4.3 was announced in July 2013.
There are two ways of accessing OpenGL ES 3.0 on Android: either
through the Native Development Kit (NDK) using C/C++ or through
the Software Development Kit (SDK) using Java. We have provided the
sample code in both C and Java to support development with either
language. This section covers how to build and run the C Android 4.3
samples using the NDK. The next section covers how to build and run
the Java Android 4.3 samples using the SDK. OpenGL ES 3.0 has been
supported in the Android NDK starting with Android NDK r9. OpenGL
ES 3.0 is supported on Android devices supporting Android 4.3 (API
level 18) or greater.

Building for Android 4.3+ NDK (C++)	 451

Prerequisites

Before building the book sample code for Android NDK r9+, you need
to install several prerequisites. The Android Developer Tools are cross-
platform tools, so you can pick either Windows (Cygwin), Linux, or
Mac OS X as a build platform. In this section, we cover building under
Windows, but the instructions will be nearly equivalent on the other
platforms. The following software is required:

•• Java SE Development Kit (JDK) 7 (http://oracle.com/technetwork/java/
javase/downloads/index.html)—For Windows x64, you would install
jdk-7u45-windows-x64.exe.

•• Android SDK (http://developer.android.com/sdk/index.html)—
The easiest way is to download and decompress the SDK Android
Developer Tools (ADT) bundle. For the purposes of these
instructions, the ADT will be installed to C:\Android\adt-bundle-
windows-x86_64-20130911.

•• Android 4.3 (API 18)—After downloading ADT, run the SDK Manager
and install Android 4.3 (API 18).

•• Android NDK (http://developer.android.com/tools/sdk/ndk/index.
html)—Download and decompress to a directory (e.g., C:\Android\
android-ndk-r9-windows-x86_64) the latest Android NDK.

•• Cygwin (http://cygwin.com/)—The Android NDK uses Cygwin as
an environment for running the build tools on Windows. If you are
developing on Mac OS X or Linux, you will not need Cygwin.

•• Apache Ant 1.9.2+ (http://ant.apache.org/bindownload.cgi)—Ant
is used for building the samples with the NDK. Download and
decompress to a folder (e.g., C:\Android\apache-ant-1.9.2).

After installing all of the prerequisites, you need to set up your PATH
to include the Android SDK tools/ and platform-tools/ folders,
Android NDK root folder, and Ant bin/ folder. You will also need to set
your JAVA_HOME variable to point to the folder in which you installed
the JDK. For example, the following was added to the end of ~/.bashrc
in Cygwin to set up the environment for the installation directories
previously used:

export JAVA_HOME="/cygdrive/c/Program Files/Java/jdk1.7.0_40"
export ANDROID_SDK=/cygdrive/c/Android/adt-bundle-windows-
x86_64-20130911/sdk
export ANDROID_NDK=/cygdrive/c/Android/android-ndk-r9-windows
-x86_64/android-ndk-r9

http://oracle.com/technetwork/java/javase/downloads/index.html
http://oracle.com/technetwork/java/javase/downloads/index.html
http://developer.android.com/sdk/index.html
http://developer.android.com/tools/sdk/ndk/index.html
http://developer.android.com/tools/sdk/ndk/index.html
http://cygwin.com/
http://ant.apache.org/bindownload.cgi

452	 Chapter 16: OpenGL ES Platforms

export ANT=/cygdrive/c/Android/apache-ant-1.9.2/bin
export PATH=$PATH:${ANDROID_NDK}
export PATH=$PATH:${ANT}
export PATH=$PATH:${ANDROID_SDK}/tools
export PATH=$PATH:${ANDROID_SDK}/platform-tools

Building the Example Code with Android NDK

Once the prerequisites have been installed, building the samples with the
Android NDK is straightforward. From a terminal (Cygwin on Windows),
navigate to the Android/ folder for the sample you want to build and
enter the following commands:

Hello_Triangle/Android $ android.bat update project -p . -t
android-18
Hello_Triangle/Android/jni $ cd jni
Hello_Triangle/Android/jni $ ndk-build
Hello_Triangle/Android/jni $ cd ..
Hello_Triangle/Android $ ant debug
Hello_Triangle/Android $ adb install -r bin/NativeActivity-debug.apk

Note that on Mac OS X or Linux, you would use the command android
instead of android.bat (the build steps are otherwise the same). The
android.bat command will generate the project build files for the
example. Navigating to the jni/ folder and entering ndk-build will
compile the C source code for the project and generate the library file for
the sample. Finally, running ant debug will build the final apk file that is
installed to the device (done with the final step using the adb tool).

Once the sample is installed on the device, an icon for it will appear in the
Apps list on the device. Any log message output from the sample can be
viewed using adb logcat.

Building for Android 4.3+ SDK (Java)

The sample code in the book is written in native C, which is why we
chose to port it to the Android NDK. While working with the NDK
may be useful to Android developers who plan to write cross-platform
native code, many Android applications are written in Java using the
SDK instead of the NDK. To help developers who wish to work in Java
with the SDK instead of the NDK, we also provide the book sample code
in Java.

Building for iOS 7	 453

If you have installed the Android ADT bundle (as described in the
Prerequisites section of Building for the Android 4.3 NDK [C++]), then you
have everything you need to run the Java versions of the applications.
The Java samples are located in the Android_Java/ folder at the root of
the sample code directory. To build and run the Java examples, simply
open Eclipse and in your Workspace choose Import > General > Existing
Projects Into Workspace. Point the import dialog to the Android_Java/
folder and you will be able to import all of the sample code from the
book. Once you have imported the samples, you will be able to build and
run them from Eclipse just as you would any Android application.

In general, the Java samples are equivalent to their native counterparts.
The main difference is observed with asset loading, where in some cases
the shaders are stored in external assets rather than placed inline with the
code. This is generally a better practice and makes editing the shaders
more straightforward. The reason this was not done in the C versions
of the samples was to reduce platform variability in how files and other
assets are loaded and to make the samples self-contained in a single file.

Building for iOS 7

Support for OpenGL ES 3.0 was added to iOS starting with version 7. The
iPhone 5s (released in September 2013) is the first iOS device that supports
OpenGL ES 3.0. The iOS Simulator that runs on Mac OS X also supports
OpenGL ES 3.0, so it is possible to run and debug the book code samples
without having an OpenGL ES 3.0–capable iOS device. This section details
the steps to get up and running with the code samples on iOS7 using
Xcode 5 on Mac OS X 10.8.5.

Prerequisites

The only prerequisite aside from Mac OS X 10.8.5 is to download and
install Xcode 5. This version of Xcode contains the SDK for iOS 7 and is
capable of building and running the sample code for the book.

Building the Example Code with Xcode 5

Each sample in the book has an iOS/ folder that contains the xcodeproj and
related files needed for building on iOS. A screenshot of an example project
open in Xcode and running on the iOS 7 Simulator is shown in Figure 16-2.

454	 Chapter 16: OpenGL ES Platforms

Notice that each sample project builds the framework files (esUtil.c,
esTransform.c, esShapes.c, and esShader.c). Additionally, each
sample contains Objective-C files from the Common/iOS folder that wrap
the interface to the ES framework. The primary file is ViewController.m,
which implements an iOS GLKViewController and calls back into
registered update, draw, and shutdown callback functions of each sample.
This abstraction mechanism allows each sample in the book to run
unmodified on iOS.

To create your own iOS 7 application using the code framework from the
book, in Xcode 5 you can navigate from File > New > Project, and choose
an OpenGL Game. Once it creates the new project, remove the generated
AppDelegate.h, AppDelegate.m, Shader.vsh, Shader.fsh,
ViewController.h, ViewController.m, and main.m files. Next, select
“Add files to <project>...” and choose all of the .c files in the Common/
Source path along with all of the files in Common/Source/iOS. Finally,
in the Build Settings for your project, add the Common/Include path
to the Search Paths > User Header Search Paths. You can then create a
sample using one of the examples from the book as a template.

You will probably find it much easier to use the iOS GLKit framework
than to use the framework in our book if you are developing an iOS-
only application. The GLKit provides functionality similar to the book

Figure 16-2	 �VertexArrayObjects Sample in Xcode Running on iOS 7
Simulator

Summary	 455

ES code framework, but is much more extensive. The one advantage to
our framework is that it is not iOS-specific, so you may find this a useful
approach if you are developing cross-platform applications designed to
run on many different operating systems.

Summary

In this chapter, we covered how to build the sample code using OpenGL
ES 3.0 emulators on Windows and Linux. We also covered how to build
the sample code for OpenGL ES 3.0 on Android 4.3+ NDK using C,
Android 4.3+ SDK with Java, and iOS7. The platforms supporting OpenGL
ES are rapidly evolving. Please check the book website (opengles-book
.com) for updated information on building for new platforms and new
versions of existing platforms.

This page intentionally left blank

457

Appendix A

GL_HALF_FLOAT

GL_HALF_FLOAT is a vertex and texture data type supported by OpenGL
ES 3.0. The GL_HALF_FLOAT data type is used to specify 16-bit floating-point
values. This can be useful, for example, in specifying vertex attributes such
as texture coordinates, normals, binormals, and tangent vectors. Using
GL_HALF_FLOAT rather than GL_FLOAT provides a two times reduction in
memory bandwidth required to read vertex or texture data by the GPU.

One might argue that we can use GL_SHORT or GL_UNSIGNED_SHORT
instead of a 16-bit floating-point data type and get the same memory
footprint and bandwidth savings. However, with that approach, you will
need to scale the data or matrices appropriately and apply a transform
in the vertex shader. For example, consider the case where a texture
pattern is to be repeated four times horizontally and vertically over
a quad. GL_SHORT can be used to store the texture coordinates. The
texture coordinates could be stored as a value of 4.12 or 8.8. The texture
coordinate values stored as GL_SHORT are scaled by (1 << 12) or (1 << 8)
to give us a fixed-point representation that uses 4 bits or 8 bits of integer
and 12 bits or 8 bits of fraction. Because OpenGL ES does not understand
such a format, the vertex shader will then need to apply a matrix to
unscale these values, which affects the vertex shading performance. These
additional transforms are not required if a 16-bit floating-point format is
used. Further, values represented as floating-point numbers have a larger
dynamic range than fixed-point values because of the use of an exponent
in the representation.

Note:	 Fixed-point values have a different error metric than floating-point
values. The absolute error in a floating-point number is proportional
to the magnitude of the value, whereas the absolute error in a

458	 Appendix A: GL_HALF_FLOAT

fixed-point format is constant. Developers need to be aware of
these precision issues when choosing which data type to use when
generating coordinates for a particular format.

16-Bit Floating-Point Number

Figure A-1 describes the representation of a half-float number. A half-float
is a 16-bit floating-point number with 10 bits of mantissa m, 5 bits of
exponent e, and a sign bit s.

Figure A-1	 A 16-Bit Floating-Point Number

s exponent (e) mantissa (m)

15 14 10 9 0

The following rules should be used when interpreting a 16-bit floating-
point number:

•• If exponent e is between 1 and 30, the half-float value is computed as
(– l)s * 2e-15 * (1 + m/1024).

•• If exponent e and mantissa m are both 0, the half-float value is 0.0.
The sign bit is used to represent –ve 0.0 or +ve 0.0.

•• If exponent e is 0 and mantissa m is not 0, the half-float value is a
denormalized number.

•• If exponent e is 31, the half-float value is either infinity (+ve or –ve)
or a NaN (“not a number”) depending on whether the mantissa m is
zero.

A few examples follow:

0 00000 0000000000 = 0.0
0 00000 0000001111 = a denorm value
0 11111 0000000000 = positive infinity
1 11111 0000000000 = negative infinity
0 11111 0000011000 = NaN
1 11111 1111111111 = NaN
0 01111 0000000000 = 1.0
1 01110 0000000000 = −0.5
0 10100 1010101010 = 54.375

OpenGL ES 3.0 implementations must be able to accept input half-float
data values that are infinity, NaN, or denormalized numbers. They do not

Converting a Float to a Half-Float	 459

have to support 16-bit floating-point arithmetic operations with these
values. Most implementations will convert denormalized numbers and
NaN values to zero.

Converting a Float to a Half-Float

The following routines describe how to convert a single-precision
floating-point number to a half-float value, and vice versa. The
conversion routines are useful when vertex attributes are generated using
single-precision floating-point calculations but then converted to half-
floats before they are used as vertex attributes:

// −15 stored using a single-precision bias of 127
const unsigned int HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP =
0x38000000;
// max exponent value in single precision that will be converted
// to Inf or NaN when stored as a half-float
const unsigned int HALF_FLOAT_MAX_BIASED_EXP_AS_SINGLE_FP_EXP =
0x47800000;

// 255 is the max exponent biased value
const unsigned int FLOAT_MAX_BIASED_EXP = (0x1F << 23);

const unsigned int HALF_FLOAT_MAX_BIASED_EXP = (0x1F << 10);

typedef unsigned short hfloat;

hfloat
convertFloatToHFloat(float *f)
{
 unsigned int x = *(unsigned int *)f;
 unsigned int sign = (unsigned short)(x >> 31);
 unsigned int mantissa;
 unsigned int exp;
 hfloat hf;

 // get mantissa
 mantissa = x & ((1 << 23) − 1);
 // get exponent bits
 exp = X & FLOAT_MAX_BIASED_EXP;
 if (exp >= HALF_FLOAT_MAX_BIASED_EXP_AS_SINGLE_FP_EXP)
 {

// check if the original single-precision float number
// is a NaN

460	 Appendix A: GL_HALF_FLOAT

if (mantissa && (exp == FLOAT_MAX_BIASED_EXP))
{

// we have a single-precision NaN
mantissa = (1 << 23) − 1;

}
else
{

// 16-bit half-float representation stores number
// as Inf mantissa = 0;

}
hf = (((hfloat)sign) << 15) |

(hfloat)(HALF_FLOAT_MAX_BIASED_EXP) |
(hfloat)(mantissa >> 13);

 }
 // check if exponent is <= −15
 else if (exp <= HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP)
 {

// store a denorm half-float value or zero
exp = (HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP − exp)

>> 23;
mantissa >>= (14 + exp);

hf = (((hfloat)sign) << 15) | (hfloat)(mantissa);
 }
 else
 {

hf = (((hfloat)sign) << 15) |
(hfloat)
((exp − HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP)
>> 13)|
(hfloat)(mantissa >> 13);

 }
 return hf;
}
float
convertHFloatToFloat(hfloat hf)
{
 unsigned int sign = (unsigned int)(hf >> 15);
 unsigned int mantissa = (unsigned int)(hf &

((1 << 10) − 1));
 unsigned int exp = (unsigned int)(hf &

HALF_FLOAT_MAX_BIASED_EXP);
 unsigned int f;

 if (exp == HALF_FLOAT_MAX_BIASED_EXP)
 {

// we have a half-float NaN or Inf
// half-float NaNs will be converted to a single-
// precision NaN

Converting a Float to a Half-Float	 461

// half-float Infs will be converted to a single-
// precision Inf
exp = FLOAT_MAX_BIASED_EXP;
if (mantissa)

mantissa = (1 << 23) − 1; // set all bits to
// indicate a NaN

 }
 else if (exp == 0x0)
 {

// convert half-float zero/denorm to single-precision
// value
if (mantissa)
{

mantissa <<= 1;
exp = HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP;
// check for leading 1 in denorm mantissa
while ((mantissa & (1 << 10)) == 0)
{

// for every leading 0, decrement single-
// precision exponent by 1
// and shift half-float mantissa value to the
// left mantissa <<= 1;
exp −= (1 << 23);

}
// clamp the mantissa to 10 bits
mantissa &= ((I << 10) − 1);
// shift left to generate single-precision mantissa
// of 23-bits mantissa <<= 13;

}
 }
 else
 {

// shift left to generate single-precision mantissa of
// 23-bits mantissa <<= 13;
// generate single-precision biased exponent value
exp = (exp << 13) +
HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP;

 }
 f = (sign << 31) | exp | mantissa;
 return *((float *)&f);
}

This page intentionally left blank

463

Appendix B

Built-In Functions

The OpenGL ES shading language built-in functions described in this
appendix are copyrighted by Khronos and are reprinted with permission
from the OpenGL ES 3.00.4 Shading Language Specification. The
latest OpenGL ES 3.0 Shading Language specification can be downloaded
from http://khronos.org/registry/gles/.

The OpenGL ES Shading Language defines an assortment of built-in
convenience functions for scalar and vector operations. Many of these
built-in functions can be used in more than one type of shader, but some
are intended to provide a direct mapping to hardware and so are available
only for a specific type of shader.

The built-in functions basically fall into three categories:

•• They expose some necessary hardware functionality in a convenient
way such as accessing a texture map. There is no way in the language
for these functions to be emulated by a shader.

•• They represent a trivial operation (clamp, mix, etc.) that is simple for
the user to write, but they are very common and might have direct
hardware support. It is a very hard problem for the compiler to map
expressions to complex assembler instructions.

•• They represent an operation graphics hardware that is likely to
accelerate at some point. The trigonometry functions fall into this
category.

Many of the functions are similar to the same named ones in common
C libraries, but they support vector input as well as the more traditional
scalar input.

http://khronos.org/registry/gles/

464	 Appendix B: Built-In Functions

Applications should be encouraged to use the built-in functions rather
than do the equivalent computations in their own shader code because
the built-in functions are assumed to be optimal (e.g., perhaps supported
directly in hardware).

When the built-in functions are specified below, where the input
arguments (and corresponding output) can be float, vec2, vec3, or
vec4, genType is used as the argument. Where the input arguments (and
corresponding output) can be int, ivec2, ivec3, or ivec4, genIType is
used as the argument. Where the input arguments (and corresponding
output) can be uint, uvec2, uvec3, or uvec4, genUType is used as the
argument. Where the input arguments (or corresponding output) can be
bool, bvec2, bvec3, or bvec4, genBType is used as the argument. For
any specific use of a function, the actual types substituted for genType,
genIType, genUType, or genBType have to have the same number of
components for all arguments and for the return type. Similarly for mat,
which can be any matrix basic type.

The precision of built-in functions is dependent on the function and
arguments. There are three categories:

•• Some functions have predefined precisions. The precision is specified;
for example,

highp ivec2 textureSize (gsampler2D sampler, int lod )

•• For the texture sampling functions, the precision of the return type
matches the precision of the sampler type:

uniform lowp sampler2D sampler;

highp vec2 coord;

. . .

// texture() returns lowp

lowp vec4 col = texture(sampler, coord);

•• For other built-in functions, a call will return a precision qualification
matching the highest precision qualification of the call’s input
arguments.

The built-in functions are assumed to be implemented according to the
equations specified in the following sections.

Angle and Trigonometry Functions	 465

Angle and Trigonometry Functions

Function parameters specified as angle are assumed to be in units of
radians. In no case will any of these functions result in a divide by zero
error. If the divisor of a ratio is 0, then results will be undefined.

These functions all operate component-wise. The description shown in
Table B-1 is per component.

Table B-1	 Angle and Trigonometry Functions

Syntax Description

genType radians (�genType
degrees)

Converts degrees to radians, i.e., π/180 *
degrees.

genType degrees (�genType
radians)

Converts radians to degrees, i.e., 180/π *
radians.

genType sin (genType angle) The standard trigonometric sine function.
Return values are in the range [–1, 1].

genType cos (genType angle) The standard trigonometric cosine function.
Return values are in the range [–1, 1].

genType tan (genType angle) The standard trigonometric tangent function.

genType asin (genType x) Arc sine. Returns an angle whose sine is x.
The range of values returned by this function
is [–π/2, π/2]. Results are undefined if |x| > 1.

genType acos (genType x) Arc cosine. Returns an angle with cosine x.
The range of values returned by this function
is [0, π]. Results are undefined if |x| > 1.

genType atan (�genType y,
genType x)

Arc tangent. Returns an angle with tangent
y/x. The signs of x and y are used to determine
what quadrant the angle is in. The range of
values returned by this function is [–π, π].
Results are undefined if x and y are both 0.

genType atan (�genType
y_over_x)

Arc tangent. Returns an angle with tangent
y_over_x. The range of values returned by this
function is [–π/2, π/2].

(continues)

466	 Appendix B: Built-In Functions

Exponential Functions

Exponential functions all operate component-wise. The description shown
in Table B-2 is per component.

Table B-1	 Angle and Trigonometry Functions (continued)

Syntax Description

genType sinh (genType x) Returns the hyperbolic sine function
(ex – e−x)/2

genType cosh (genType x) Returns the hyperbolic cosine function
(ex + e−x)/2

genType tanh (genType x) Returns the hyperbolic tangent function
sinh(x)/cosh(x)

genType asinh (genType x) Arc hyperbolic sine; returns the inverse of sinh.

genType acosh (genType x) Arc hyperbolic cosine; returns the non-
negative inverse of cosh. Results are
undefined if x < 1.

genType atanh (genType x) Arc hyperbolic tangent; returns the inverse of
tanh. Results are undefined if ∣x∣ >= 1.

Table B-2	 Exponential Functions

Syntax Description

genType pow (�genType x, genType y) Returns x raised to the y power, i.e., xy.

Results are undefined if x < 0.

Results are undefined if x = 0 and y <= 0.

genType exp (genType x) Returns the natural exponentiation
of x, i.e., ex.

genType log (genType angle) Returns the natural logarithm of x, i.e.,
returns the value y, which satisfies the
equation x = ey.

Results are undefined if x <= 0.

genType exp2 (genType angle) Returns 2 raised to the x power, i.e., 2x.

Common Functions	 467

Common Functions

Common functions all operate component-wise. The description shown
in Table B-3 is per component.

Table B-2	 Exponential Functions (continued)

Syntax Description

genType log2 (genType angle) Returns the base 2 logarithm of x, i.e.,
returns the value y, which satisfies the
equation x = 2y.

Results are undefined if x <= 0.

genType sqrt (genType x) Returns the positive square root of x.
Results are undefined if x < 0.

genType inversesqrt (genType x) Returns the reciprocal of the positive
square root of x.

Results are undefined if x <= 0.

Table B-3	 Common Functions

Syntax Description

genType abs (genType x)

genIType abs (genIType x)

Returns x if x >= 0; otherwise, it returns –x.

genType sign (genType x)

genIType sign (genIType x)

Returns 1.0 if x > 0, 0.0 if x = 0, or –1.0 if
x < 0.

genType floor (genType x) Returns a value equal to the nearest
integer that is less than or equal to x.

genType trunc (genType x) Returns a value equal to the nearest
integer to x whose absolute value
is not larger than the absolute value
of x.

(continues)

468	 Appendix B: Built-In Functions

Table B-3	 Common Functions (continued)

Syntax Description

genType round (genType x) Returns a value equal to the nearest
integer to x. The fraction 0.5 will
round in a direction chosen by the
implementation, presumably the direction
that is fastest. This includes the possibility
that round(x) returns the same value as
roundEven(x) for all values of x.

genType roundEven (genType x) Returns a value equal to the nearest
integer to x. A fractional part of 0.5 will
round toward the nearest even integer.
(Both 3.5 and 4.5 for x will return 4.0.)

genType ceil (genType x) Returns a value equal to the nearest
integer that is greater than or equal to x.

genType fract (genType x) Returns x – floor(x).

genType mod (genType x, float y)

genType mod (genType x, genType y)

Modulus (modulo). Returns x – y *
floor(x/y).

genType min (genType x, genType y)

genType min (genType x, float y)

genIType min (�genIType x,
genIType y)

genIType min (genIType x, int y)

genUType min (�genUType x,
genUType y)

genUType min (genUType x, uint y)

Returns y if y < x; otherwise, it returns x.

genType max (genType x, genType y)

genType max (genType x, float y)

genIType max (�genIType x,
genIType y)

genIType max (genIType x, int y)

genUType max (�genUType x,
genUType y)

genUType max (genUType x, uint y)

Returns y if x < y; otherwise, it
returns x.

Common Functions	 469

Table B-3	 Common Functions (continued)

Syntax Description

genType clamp (�genType x,
genType minVal,
genType maxVal)

genType clamp (�genType x,
float minVal,
float maxVal)

genIType clamp (�genIType x,
genIType minVal,
genIType maxVal)

genIType clamp (�genIType x,
int minVal,
int maxVal)

genUType clamp (�genUType x,
genUType
minVal,
genUType
maxVal)

genUType clamp (�genUType x,
uint minVal,
uint maxVal)

Returns min (max (x, minVal), maxVal)

Results are undefined if minVal > maxVal.

genType mix (�genType x,
genType y,
genType a)

genType mix (�genType x,
genType y, float a)

Returns the linear blend of x and y,
i.e., x * (1 – a) + y * a.

genType mix (�genType x,
genType y,
genBType a)

Selects which vector each returned
component comes from. For a
component of a that is false, the
corresponding component of x is
returned. For a component of a that is
true, the corresponding component of y
is returned. Components of x and y that
are not selected are allowed to be invalid
floating-point values and will have no
effect on the results. Thus, this provides
different functionality than genType
mix(genType x, genType y, genType(a))
where a is a boolean vector.

(continues)

470	 Appendix B: Built-In Functions

Table B-3	 Common Functions (continued)

Syntax Description

genType step (�genType edge,
genType x)

genType step (float edge, genType x)

Returns 0.0 if x < edge; otherwise, it
returns 1.0.

genType smoothstep (�genType
edge0,
genType
edgel,
genType x)

genType smoothstep (�float edge0,
float edgel,
gemType x)

Returns 0.0 if x <= edge0 and 1.0 if
x >= edgel and performs smooth Hermite
interpolation between 0 and 1 when edge0
< x < edgel. This is useful in cases where
you would want a threshold function with
a smooth transition. This is equivalent to:

 // genType is float, vec2, vec3,
// or vec4
genType t;
t = clamp((x – edge0)/
 (edgel – edge0), 0, 1);
return t * t * (3 − 2 * t);

Results are undefined if edge0 >= edgel.

genBType isnan (genType x) Returns true if x holds a NaN. Returns
false otherwise.

genBType isinf (genType x) Returns true if x holds a positive infinity
or negative infinity. Returns false
otherwise.

genIType floatBitsToInt (�genType
value)

genUType floatBitsToUint
(genType value)

Returns a signed or unsigned highp
integer value representing the encoding
of a floating-point value. For highp
floating point, the value’s bit-level
representation is preserved. For
mediump and lowp, the value is first
converted to highp floating point and
the encoding of that value is returned.

genType intBitsToFloat (�genIType
value)

genType uintBitsToFloat (genUType
value)

Returns a highp floating-point value
corresponding to a signed or unsigned
integer encoding of a floating-point value.
If an inf or NaN is passed in, it will not
signal, and the resulting floating-point
value is unspecified. Otherwise, the bit-
level representation is preserved. For lowp
and mediump, the value is first converted
to the corresponding signed or unsigned
highp integer and then reinterpreted as a
highp floating-point value as before.

Floating-Point Pack and Unpack Functions	 471

Floating-Point Pack and Unpack Functions

Floating-point pack and unpack functions do not operate component-
wise, rather as described in each case (Table B-4).

Table B-4	 Floating-Point Pack and Unpack Functions

Syntax Description

highp uint packSnorm2x16 (vec2 v) First, converts each component of the
normalized floating-point value v into
16-bit integer values. Then, the results are
packed into the returned 32-bit unsigned
integer. The conversion for component
c of v to fixed point is done as follows:

packSnorm2x16:

round(clamp(c, –1, +1) * 32767.0)

The first component of the vector will be
written to the least significant bits of the
output; the last component will be
written to the most significant bits.

highp vec2 unpackSnorm 2x16
(highp uint p)

First, unpacks a single 32-bit unsigned
integer p into a pair of 16-bit unsigned
integers. Then, each component is
converted to a normalized floating-
point value to generate the returned
two-component vector.

The conversion for unpacked fixed-
point value f to floating point is done
as follows:

unpackSnorm2x16:

clamp(f/32767.0, –1, +1)

The first component of the returned
vector will be extracted from the
least significant bits of the input;
the last component will be extracted
from the most significant bits.

highp vec2 unpackUnorm2x16
(highp uint p)

First, unpacks a single 32-bit unsigned
integer p into a pair of 16-bit unsigned
integers. Then, each component is
converted to a normalized floating-
point value to generate the returned
two-component vector.

(continues)

472	 Appendix B: Built-In Functions

Table B-4	 Floating-Point Pack and Unpack Functions (continued)

Syntax Description

The conversion for unpacked fixed-
point value f to floating point is done
as follows:

unpackUnorm2x16: f/65535.0

The first component of the returned
vector will be extracted from the least
significant bits of the input; the last
component will be extracted from the
most significant bits.

highp uint packHalf2x16
(mediumpvec2 v)

Returns an unsigned integer obtained
by converting the components of a
two-component floating-point vector to
the 16-bit floating-point representation
found in the OpenGL ES Specification,
and then packing these two 16-bit
integers into a 32-bit unsigned integer.

The first vector component specifies
the 16 least significant bits of the
result; the second component specifies
the 16 most significant bits.

mediump vec2 unpackHalf2x16
(highp uint v)

Returns a two-component floating-point
vector with components obtained by
unpacking a 32-bit unsigned integer
into a pair of 16-bit values, interpreting
those values as 16-bit floating-point
numbers according to the OpenGL ES
Specification, and converting them to
32-bit floating-point values.

The first component of the vector is
obtained from the 16 least significant
bits of v; the second component is
obtained from the 16 most significant
bits of v.

Geometric Functions

Geometric functions operate on vectors as vectors, not component-wise.
Table B-5 describes these functions.

Geometric Functions	 473

Table B-5	 Geometric Functions

Syntax Description

float length (genType x) Returns the length of vector x,

X X[0] [1] …
2 2+ +

float distance (�genType p0,
genType p1)

Returns the distance between p0 and p1, i.e.,
length (p0 – p1).

float dot (genType x, genType y) Returns the dot product of x and y, i.e.,
x[0] * y[0] + x[l] * y[l] + ...

vec3 cross (vec3 x, vec3 y) Returns the cross product of x and y, i.e.,
result[0] = x[1] * y[2] – y[1] * x[2]
result[1] = x[2] * y[0] – y[2] * x[0]
result[2] = x[0] * y[1] – y[0] * x[1]

genType normalize (genType x) Returns a vector in the same direction as x
but with a length of 1.

Returns x/length(x).

genType faceforward
(genType N, genType I, genType Nref )

If dot(Nref, I) < 0, return N; otherwise,
return –N.

genType reflect (�genType I,
genType N)

For the incident vector I and surface
orientation N, returns the reflection direction:

I – 2 * dot(N, I) * N

N must already be normalized to achieve the
desired result.

genType refract (�genType I,
genType N,
float eta)

For the incident vector I, surface normal N,
and ratio of indices of refraction eta, return the
refraction vector. The result is computed by

k = 1.0 – eta * eta *
 (1.0 – dot(N, I)

* dot(N, I))
if (k < 0.0)
 // genType is float, vec2,
 // vec3, or vec4
 return genType(0.0)
else
 return eta * I – (eta *

dot(N, I) + sqrt(k)) * N

Input parameters for the incident vector I
and the surface normal N must already be
normalized to get the desired results.

474	 Appendix B: Built-In Functions

Matrix Functions

The built-in functions that operate on matrices are described in Table B-6.

Table B-6	 Matrix Functions

Syntax Description

mat2 matrixCompMult (�mat2 x, mat2 y)
mat3 matrixCompMult (�mat3 x, mat3 y)
mat4 matrixCompMult (�mat4 x, mat4 y)

Multiply matrix x by matrix y
component-wise, i.e., result[i][j] is the
scalar product of x[i][j] and y[i][j].

Note: To get linear algebraic matrix
multiplication, use the multiply
operator (*).

mat2 outerProduct(vec2 c, vec2 r)
mat3 outerProduct(vec3 c, vec3 r)
mat4 outerProduct(vec4 c, vec4 r)

mat2x3 outerProduct(vec3 c, vec2 r)
mat3x2 outerProduct(vec2 c, vec3 r)
mat2x4 outerProduct(vec4 c, vec2 r)
mat4x2 outerProduct(vec2 c, vec4 r)
mat3x4 outerProduct(vec4 c, vec3 r)
mat4x3 outerProduct(vec3 c, vec4 r)

Treats the first parameter c as a
column vector (matrix with one
column) and the second parameter r
as a row vector (matrix with one row)
and does a linear algebraic matrix
multiply c * r, yielding a matrix
whose number of rows is the number
of components in c and whose
number of columns is the number of
components in r.

mat2 transpose(mat2 m)
mat3 transpose(mat3 m)
mat4 transpose(mat4 m)
mat2x3 transpose(mat3x2 m)
mat3x2 transpose(mat2x3 m)
mat2x4 transpose(mat4x2 m)
mat4x2 transpose(mat2x4 m)
mat3x4 transpose(mat4x3 m)
mat4x3 transpose(mat3x4 m)

Returns a matrix that is the
transpose of m. The input matrix m
is not modified.

float determinant(mat2 m)
float determinant(mat3 m)
float determinant(mat4 m)

Returns the determinant of m.

mat2 inverse(mat2 m)
mat3 inverse(mat3 m)
mat4 inverse(mat4 m)

Returns a matrix that is the inverse of
m. The input matrix m is not modified.
The values in the returned matrix are
undefined if m is singular or poorly
conditioned (nearly singular).

Vector Relational Functions	 475

Vector Relational Functions

Relational and equality operators (<, <=, >, >=, ==, !=) are defined to
produce scalar boolean results. For vector results, use the following built-
in functions. In Table B-7, “bvec” is a placeholder for one of bvec2,
bvec3, or bvec4; “ivec” is a placeholder for one of ivec2, ivec3, or
ivec4; “uvec” is a placeholder for uvec2, uvec3, or uvec4; and “vec” is
a placeholder for vec2, vec3, or vec4. In all cases, the sizes of the input
and return vectors for any particular call must match.

Table B-7	 Vector Relational Functions

Syntax Description

bvec lessThan (vec x, vec y)
bvec lessThan (ivec x, ivec y)
bvec lessThan (uvec x, uvec y)

Returns the component-wise
compare of x < y.

bvec lessThanEqual (vec x, vec y)
bvec lessThanEqual (ivec x, ivec y)
bvec lessThanEqual (uvec x, uvec y)

Returns the component-wise
compare of x <= y.

bvec greaterThan (vec x, vec y)
bvec greaterThan (ivec x, ivec y)
bvec greaterThan (uvec x, uvec y)

Returns the component-wise
compare of x > y.

bvec greaterThanEqual (vec x, vec y)
bvec greaterThanEqual (ivec x, ivec y)
bvec greaterThanEqual (uvec x, uvec y)

Returns the component-wise
compare of x >= y.

bvec equal (vec x, vec y)
bvec equal (ivec x, ivec y)
bvec equal (uvec x, uvec y)

Returns the component-wise
compare of x == y.

bvec notEqual (vec x, vec y)
bvec notEqual (ivec x, ivec y)
bvec notEqual (uvec x, uvec y)

Returns the component-wise
compare of x != y.

bool any (bvec2 x)
bool any (bvec3 x)
bool any (bvec4 x)

Returns true if any component of x
is true.

bool all (bvec2 x)
bool all (bvec3 x)
bool all (bvec4 x)

Returns true only if all components
of x are true.

bvec2 not (bvec2 x)
bvec3 not (bvec3 x)
bvec4 not (bvec4 x)

Returns the component-wise logical
complement of x.

476	 Appendix B: Built-In Functions

Texture Lookup Functions

Texture lookup functions are available to vertex and fragment shaders.
However, level of detail is not implicitly computed for vertex shaders.
The functions in Table B-8 provide access to textures through samplers, as
set up through the OpenGL ES API. Texture properties such as size, pixel
format, number of dimensions, filtering method, number of mipmap
levels, depth comparison, and so on are also defined by OpenGL ES API
calls. Such properties are taken into account as the texture is accessed via
the built-in functions defined below.

Texture data can be stored by the GL as floating-point, unsigned
normalized integer, unsigned integer, or signed integer data. This is
determined by the type of the internal format of the texture. Texture
lookups on unsigned normalized integer and floating-point data return
floating-point values in the range [0, 1].

Texture lookup functions are provided that can return their result as
floating-point, unsigned integer, or signed integer values, depending on
the sampler type passed to the lookup function. Care must be taken to
use the right sampler type for texture access. Table B-8 lists the supported
combinations of sampler types and texture internal formats. Blank entries
are unsupported. Doing a texture lookup will return undefined values for
unsupported combinations.

If an integer sampler type is used, the result of a texture lookup is an
ivec4. If an unsigned integer sampler type is used, the result of a texture
lookup is a uvec4. If a floating-point sampler type is used, the result of a
texture lookup is a vec4, where each component is in the range [0, 1].

Table B-8	 Supported Combinations of Sampler and Internal Texture Formats

Internal Texture
Format

Floating-Point
Sampler Types

Signed Integer
Sampler Types

Unsigned Integer
Sampler Types

Floating point Supported

Normalized
integer

Supported

Signed integer Supported

Unsigned integer Supported

Texture Lookup Functions	 477

In the prototypes below, the “g” in the return type “gvec4” is used as a
placeholder for nothing; “i” or “u” making a return type of vec4, ivec4,
or uvec4. In these cases, the sampler argument type also starts with “g”,
indicating the same substitution done on the return type; it is either a
floating-point, signed integer, or unsigned integer sampler, matching the
basic type of the return type, as described above.

For shadow forms (the sampler parameter is a shadow type), a depth
comparison lookup on the depth texture bound to sampler is done
as described in section 3.8.16, “Texture Comparison Modes,” of the
OpenGL ES Graphics System Specification. See the table below for which
component specifies Dref. The texture bound to sampler must be a depth
texture, or results are undefined. If a non-shadow texture call is made
to a sampler that represents a depth texture with depth comparisons
turned on, then results are undefined. If a shadow texture call is made
to a sampler that represents a depth texture with depth comparisons
turned off, then results are undefined. If a shadow texture call is made
to a sampler that does not represent a depth texture, then results are
undefined.

In all functions below, the bias parameter is optional for fragment shaders.
The bias parameter is not accepted in a vertex shader. For a fragment
shader, if bias is present, it is added to the implicit level of detail prior to
performing the texture access operation.

The implicit level of detail is selected as follows: For a texture that is not
mipmapped, the texture is used directly. If it is mipmapped and running
in a fragment shader, the LOD computed by the implementation is used
to do the texture lookup. If it is mipmapped and running on the vertex
shader, then the base texture is used.

Some texture functions (non-“Lod” and non-“Grad” versions) may
require implicit derivatives. Implicit derivatives are undefined within non-
uniform control flow and for vertex texture fetches.

For Cube forms, the direction of P is used to select which face to do a
two-dimensional texture lookup in, as described in section 3.8.10, “Cube
Map Texture Selection,” in the OpenGL ES Graphics System Specification.

For Array forms, the array layer used will be

max(0,min(d − 1, floor(layer + 0.5)))

where d is the depth of the texture array and layer comes from the
component indicated in Table B-9.

ptg12025281

478	
A

ppendix B
: B

uilt-In Functions

Table B-9	 Texture Lookup Functions

Syntax Description

highp ivec2 textureSize (gsampler2D sampler, int lod)
highp ivec3 textureSize (gsampler3D sampler, int lod)
highp ivec2 textureSize (gsamplerCube sampler, int lod)

highp ivec2 textureSize (sampler2DShadow sampler, int lod)
highp ivec2 textureSize (samplerCubeShadow sampler, int lod)

highp ivec3 textureSize (gsampler2DArray sampler, int lod)

highp ivec3 textureSize (sampler2DArrayShadow sampler, int lod)

Returns the dimensions of level lod for the
texture bound to sampler, as described in
section 2.11.9, “Shader Execution,” of the
OpenGL ES 3.0 Graphics System Specification,
under “Texture Size Query.”

The components in the return value are filled
in, in order, with the width, height, and depth
of the texture. For the array forms, the last
component of the return value is the number
of layers in the texture array.

gvec4 texture (gsampler2D sampler, vec2 P [, float bias])
gvec4 texture (gsampler3D sampler, vec3 P [, float bias])
gvec4 texture (gsamplerCube sampler, vec3 P [, float bias])
float texture (sampler2DShadow sampler, vec3 P [, float bias])
float texture (samplerCubeShadow sampler, vec4 P [, float bias])
gvec4 texture (gsampler2DArray sampler, vec3 P [, float bias])
float texture (sampler2DArrayShadow sampler, vec4 P)

Use the texture coordinate P to do a texture
lookup in the texture currently bound to
sampler. The last component of P is used
as Dref for the shadow forms. For array
forms, the array layer comes from the last
component of P in the non-shadow forms,
and the second-to-last component of P in the
shadow forms.

ptg12025281

Texture Lookup Functions	
479

Table B-9	 Texture Lookup Functions (continued)

Syntax Description

gvec4 textureProj (gsampler2D sampler, vec3 P [, float bias])

gvec4 textureProj (gsampler2D sampler, vec4 P [, float bias])

gvec4 textureProj (gsampler3D sampler, vec4 P [, float bias])

float textureProj (sampler2DShadow sampler, vec4 P [, float bias])

Do a texture lookup with projection. The texture
coordinates consumed from P, not including
the last component of P, are divided by the last
component of P to form projected coordinates P’.

The resulting third component of P’ in the shadow
forms is used as Dref. The third component of P is
ignored when sampler has type gsampler2D and
P has type vec4. After these values are computed,
texture lookup proceeds as in texture.

gvec4 textureLod (gsampler2D sampler, vec2 P, float lod)

gvec4 textureLod (gsampler3D sampler, vec3 P, float lod)

gvec4 textureLod (gsamplerCube sampler, vec3 P, float lod)

float textureLod (sampler2DShadow sampler, vec3 P, float lod)

gvec4 textureLod (gsampler2DArray sampler, vec3 P, float lod)

Do a texture lookup as in texture but with
explicit LOD; lod specifies λ base and sets
the partial derivatives used for the texture
minification equations to 0.

(continues)

ptg12025281

480	
A

ppendix B
: B

uilt-In Functions

Table B-9	 Texture Lookup Functions (continued)

Syntax Description

gvec4 textureOffset (�gsampler2D sampler, vec2 P,
ivec2 offset [, float bias])

gvec4 textureOffset (�gsampler3D sampler, vec3 P,
ivec3 offset [, float bias])

float textureOffset (�sampler2DShadow sampler, vec3 P,
ivec2 offset [, float bias])

gvec4 textureOffset (�gsampler2DArray sampler, vec3 P,
ivec2 offset [, float bias])

Do a texture lookup as in texture but with
offset added to the (u, v, w) texel coordinates
before looking up each texel. The offset value
must be a constant expression. A limited
range of offset values are supported; the
minimum and maximum offset values are
implementation-dependent and given by MIN_
PROGRAM_TEXEL_OFFSET and
MAX_PROGRAM_TEXEL_OFFSET, respectively.

Note that offset does not apply to the layer
coordinate for texture arrays.

Note that texel offsets are also not supported
for cubemaps.

gvec4 textureProjLod (�gsampler2D sampler, vec3 P, float lod)
gvec4 textureProjLod (�gsampler2D sampler, vec4 P, float lod)
gvec4 textureProjLod (�gsampler3D sampler, vec4 P, float lod)
float textureProjLod (�sampler2DShadow sampler, vec4 P,

float lod)

Do a projective texture lookup with explicit
LOD. See textureProj and textureLod.

gvec4 textureProjLodOffset (�gsampler2D sampler, vec3 P, float lod,
ivec2 offset)

gvec4 textureProjLodOffset (�gsampler2D sampler, vec4 P, float lod,
ivec2 offset)

gvec4 textureProjLodOffset (�gsampler3D sampler, vec4 P, float lod,
ivec3 offset)

float textureProjLodOffset (�sampler2DShadow sampler, vec4 P,
float lod, ivec2 offset)

Do an offset projective texture lookup with
explicit LOD. See textureProj, textureLod,
and textureOffset.

ptg12025281

Texture Lookup Functions	
481

Table B-9	 Texture Lookup Functions (continued)

Syntax Description

gvec4 textureGrad (�gsampler2D sampler, vec2 P,
vec2 dPdx, vec2 dPdy)

gvec4 textureGrad (�gsampler3D sampler, vec3 P,
vec3 dPdx, vec3 dPdy)

gvec4 textureGrad (�gsamplerCube sampler, vec3 P,
vec3 dPdx, vec3 dPdy)

float textureGrad (�sampler2DShadow sampler, vec3 P,
vec2 dPdx, vec2 dPdy)

float textureGrad (�samplerCubeShadow sampler, vec4 P,
vec3 dPdx, vec3 dPdy)

gvec4 textureGrad (�gsampler2DArray sampler, vec3 P,
vec2 dPdx, vec2 dPdy)

float textureGrad (�sampler2DArrayShadow sampler, vec4 P,
vec2 dPdx, vec2 dPdy)

Do a texture lookup as in texture but with
explicit gradients. The partial derivatives of P
are with respect to window x and window y.

gvec4 textureGradOffset (�gsampler2D sampler, vec2 P,
vec2 dPdx, vec2 dPdy, ivec2 offset)

gvec4 textureGradOffset (�gsampler3D sampler, vec3 P,
vec3 dPdx, vec3 dPdy, ivec3 offset)

float textureGradOffset (�sampler2DShadow sampler, vec3 P,
vec2 dPdx, vec2 dPdy, ivec2 offset)

gvec4 textureGradOffset (�gsampler2DArray sampler, vec3 P,
vec2 dPdx, vec2 dPdy, ivec2 offset)

float textureGradOffset (�sampler2DArrayShadow sampler,
vec4 P, vec2 dPdx, vec2 dPdy, ivec2 offset)

Do a texture lookup with both explicit
gradient and offset, as described in
textureGrad and textureOffset.

(continues)

ptg12025281

482	
A

ppendix B
: B

uilt-In Functions

Table B-9	 Texture Lookup Functions (continued)

Syntax Description

gvec4 textureProjGrad (�gsampler2D sampler, vec3 P, vec2
dPdx, vec2 dPdy)

gvec4 textureProjGrad (�gsampler2D sampler, vec4 P, vec2 dPdx,
vec2 dPdy)

gvec4 textureProjGrad (�gsampler3D sampler, vec4 P, vec3 dPdx,
vec3 dPdy)

float textureProjGrad (�sampler2DShadow sampler, vec4 P, vec2
dPdx, vec2 dPdy)

Do a texture lookup both projectively, as
described in textureProj, and with explicit
gradient, as described in textureGrad. The
partial derivatives dPdx and dPdy are assumed
to be already projected.

gvec4 textureProjGradOffset (�gsampler2D sampler, vec3 P, vec2
dPdx, vec2 dPdy, ivec2 offset)

gvec4 textureProjGradOffset (�gsampler2D sampler, vec4 P, vec2
dPdx, vec2 dPdy, ivec2 offset)

gvec4 textureProjGradOffset (�gsampler3D sampler, vec4 P, vec3
dPdx, vec3 dPdy, ivec3 offset)

float textureProjGradOffset (�sampler2DShadow sampler, vec4 P,
vec2 dPdx, vec2 dPdy, ivec2 offset)

Do a texture lookup projectively and
with explicit gradient as described in
textureProjGrad, as well as with offset, as
described in textureOffset.

Fragment Processing Functions	 483

Fragment Processing Functions

Fragment processing functions are only available in fragment shaders.

Derivatives may be computationally expensive and/or numerically
unstable. Therefore, an OpenGL ES implementation may approximate
the true derivatives by using a fast but not entirely accurate derivative
computation. Derivatives are undefined within non-uniform control flow.

The expected behavior of a derivative is specified using forward–backward
differencing.

Forward differencing:

F(x + dx) – F(x) ~ dFdx(x) * dx

dFdx ~ (F(x + dx) – F(x))/dx

Backward differencing:

F(x – dx) – F(x) ~ –dFdx(x) * dx

dFdx ~ (F(x) – F(x – dx))/dx

With single-sample rasterization, dx <= 1.0 in the preceding equations. For
multisample rasterization, dx < 2.0 in the preceding equations.

dFdy is approximated similarly, with y replacing x.

An OpenGL ES implementation can use the preceding or other methods
to perform the calculation, subject to the following conditions:

•• The method can use piecewise linear approximations. Such linear
approximations imply that higher-order derivatives, dFdx(dFdx(x))
and above, are undefined.

•• The method can assume that the function evaluated is continuous.
Therefore derivatives within the body of a non-uniform conditional
are undefined.

•• The method can differ per fragment, subject to the constraint that the
method can vary by window coordinates, not screen coordinates. The
invariance requirement is relaxed for derivative calculations, because
the method can be a function of fragment location.

484	 Appendix B: Built-In Functions

Table B-10	 Fragment Processing Functions

Syntax Description

genType dFdx (genType p) Returns the derivative in x using local differencing
for the input argument p.

genType dFdy (genType p) Returns the derivative in y using local differencing
for the input argument p.

genType fwidth (genType p) Returns the sum of the absolute derivative in x and
y using local differencing for the input argument p;
i.e.,

result = abs (dFdx (p)) + abs (dFdy (p)).

Other properties that are desirable, but not required, are

•• Functions should be evaluated within the interior of a primitive
(interpolated, not extrapolated).

•• Functions for dFdx should be evaluated while holding y constant.
Functions for dFdy should be evaluated while holding x constant.
However, mixed higher-order derivatives, like dFdx(dFdy(y)) and
dFdy(dFdx(x)), are undefined.

•• Derivatives of constant arguments should be 0.

In some implementations, varying degrees of derivative accuracy
can be obtained by providing hints using glHint
(GL_FRAGMENT_SHADER_DERIVATIVE_HINT), allowing a user to make an
image quality versus speed trade-off.

Table B-10 describes the fragment processing functions.

485

Appendix C

ES Framework API

The example programs throughout the book use a framework of utility
functions for performing common OpenGL ES 3.0 functions. These utility
functions are not part of OpenGL ES 3.0, but rather are custom functions
that we wrote to support the sample code in the book. The ES Framework
API is included with the source code for the book available from the book
website at opengles-book.com. The ES Framework API provides routines
for tasks such as creating a window, setting up callback functions, loading
a shader, loading a program, and creating geometry. The purpose of this
appendix is to provide documentation for the ES Framework API functions
used throughout the book.

Framework Core Functions

This section provides documentation on the core functions in the ES
Framework API.

GLboolean ESUTIL_API esCreateWindow�(ESContext * esContext,
const char * title,
GLint width,
GLint height,
GLuint flags)

Create a window with the specified parameters.

Parameters:

esContext      application context

title           name for title bar of window
(continues)

486	 Appendix C: ES Framework API

void ESUTIL_API esRegisterDrawFunc(ESContext * esContext,
		     void(ESCALLBACK *drawFunc) (ESContext *))

Register a draw callback function to be used to render each frame.

Parameters:

esContext  application context

drawFunc   � draw callback function that will be used to render the scene

void ESUTIL_API esRegisterUpdateFunc(ESContext * esContext,
void(ESCALLBACK *updateFunc)
(ESContext *, float))

Register an update callback function to be used to update on each time step.

Parameters:

esContext   application context

updateFunc � update callback function that will be used to render the
scene

(continued)
width      width in pixels of window to create

height      height in pixels of window to create

flags      bitfield for the window creation flags

        � �ES_WINDOW_RGB—specifies that the color buffer should
have R, G, B channels

         �ES_WINDOW_ALPHA—specifies that the color buffer should
have alpha

        � �ES_WINDOW_DEPTH—specifies that a depth buffer should be
created

        � �ES_WINDOW_STENCIL—specifies that a stencil buffer
should be created

        � �ES_WINDOW_MULTISAMPLE—specifies that a multisample
buffer should be created

Returns:

GL_TRUE if window creation is successful; GL_FALSE otherwise

Framework Core Functions	 487

void ESUTIL_API esRegisterKeyFunc(ESContext * esContext,
void(ESCALLBACK * keyFunc)
(ESContext *, unsigned char, int, int))

Register a keyboard input processing callback function.

Parameters:

esContext  application context

keyFunc   � � key callback function for application processing of
keyboard input

void  ESUTIL_API esRegisterShutdownFunc(ESContext * esContext,
void(ESCALLBACK * shutdownFunc)
(ESContext *))

Register a callback function to be called at shutdown.

Parameters:

esContext       application context

shutdownFunc  shutdown function called at application shutdown

GLuint ESUTIL_API esLoadShader(GLenum type,
const char * shaderSrc)

Load a shader, check for compile errors, print error messages to
output log.
Parameters:

type type of shader (GL_VERTEX_SHADER or GL_FRAGMENT_SHADER)

shaderSrc  shader source string

Returns:

A new shader object on success, 0 on failure

GLuint ESUTIL_API esLoadProgram(const char * vertShaderSrc,
const char * fragShaderSrc)

Load a vertex and fragment shader, create a program object, link
program. Errors are output to the log.

(continues)

488	 Appendix C: ES Framework API

char* ESUTIL_API esLoadTGA(char * fileName, int * width,
int * height)

Loads an 8-bit, 24-bit, or 32-bit TGA image from a file.
Parameters:
filename      name of the file on disk
width	 width of loaded image in pixels
height	 height of loaded image in pixels
Returns:
Pointer to loaded image; NULL on failure.

int ESUTIL_API esGenSphere(int numSlices, float radius,
GLfloat ** vertices, GLfloat ** normals,
GLfloat ** texCoords, GLuint ** indices)

Generates geometry for a sphere. Allocates memory for the vertex data
and stores the results in the arrays. Generates index list for a
GL_TRIANGLE_STRIP.
Parameters:
numSlices  the number of vertical and horizontal slices in the sphere
vertices    if not NULL, will contain array of float3 positions
normals    if not NULL, will contain array of float3 normals
texCoords  if not NULL, will contain array of float2 texCoords
indices    � if not NULL, will contain the array of indices for the

triangle strip

Returns:
The number of indices required for rendering the buffers (the number of
indices stored in the indices array if it is not NULL) as a
GL_TRIANGLE_STRIP

(continued)
Parameters:
vertShaderSrc      vertex shader source code
fragShaderSrc      fragment shader source code
Returns:

A new program object linked with the vertex/fragment shader pair;
0 on failure

Framework Core Functions	 489

int ESUTIL_API  esGenCube(float scale, GLfloat ** vertices,
GLfloat ** normals, GLfloat ** texCoords,
GLuint ** indices)

Generates geometry for a cube. Allocates memory for the vertex data and
stores the results in the arrays. Generates index list for GL_TRIANGLES.

Parameters:

Scale the size of the cube, use 1.0 for a unit cube

vertices	 if not NULL, will contain array of float3 positions

normals	 if not NULL, will contain array of float3 normals

texCoords	 if not NULL, will contain array of float2 texCoords

indices	� if not NULL, will contain the array of indices for the
triangle list

Returns:

The number of indices required for rendering the buffers (the number
of indices stored in the indices array if it is not NULL) as GL_TRIANGLES

int ESUTIL_API esGenSquareGrid(int size, GLfloat ** vertices,
GLuint ** indices)

Generates a square grid consisting of triangles. Allocates memory for
the vertex data and stores the results in the arrays. Generates index list
for GL_TRIANGLES.

Parameters:

Scale the size of the cube, use 1.0 for a unit cube

vertices   if not NULL, will contain array of float3 positions

indices   � if not NULL, will contain the array of indices for the triangle list

Returns:

The number of indices required for rendering the buffers (the number
of indices stored in the indices array if it is not NULL) as GL_TRIANGLES

void ESUTIL_API esLogMessage (const char * formatStr, ...)

Log a message to the debug output for the platform.

Parameters:

formatStr  format string for error log

490	 Appendix C: ES Framework API

Transformation Functions

We now describe utility functions that perform commonly used
transformations such as scale, rotate, translate, and matrix multiplication.
Most vertex shaders will use one or more matrices to transform the vertex
position from local coordinate space to clip coordinate space (refer to
Chapter 7, “Primitive Assembly and Rasterization,” for a description of
the various coordinate systems). Matrices are also used to transform other
vertex attributes such as normals and texture coordinates. The transformed
matrices can then be used as values for appropriate matrix uniforms used
in a vertex or fragment shader. You will notice similarities between these
functions and appropriate functions defined in OpenGL and OpenGL
ES 1.x. For example, esScale should be quite similar to glScale,
esFrustum should be similar to glFrustum, and so on.

A new type, ESMatrix, is defined in the framework. This is used to
represent a 4 × 4 floating-point matrix and is declared as follows:

typdedef struct {
 GLfloat m[4][4];
}ESMatrix;

void ESUTIL_API esFrustum(ESMatrix *result,
GLfloat left, GLfloat right,
GLfloat bottom, GLfloat top,
GLfloat nearZ, GLfloat farZ)

Multiply matrix specified by result with a perspective projection
matrix and return new matrix in result.

Parameters:

result	 the input matrix

left, right � specify the coordinates for the left and right clipping
planes

bottom, top � specify the coordinates for the bottom and top clipping
planes

nearZ, farZ � specify the distances to the near and far depth clipping
planes; both distances must be positive

Returns:

The new matrix after the perspective projection matrix has been
multiplied is returned in result

Transformation Functions	 491

void ESUTIL_API esPerspective(ESMatrix *result,
GLfloat fovy, GLfloat aspect
GLfloat nearZ, GLfloat farZ)

Multiply matrix specified by result with a perspective projection
matrix and return new matrix in result. This function is provided as a
convenience to more easily create a perspective matrix than by directly
using esFrustum.

Parameters:

result the input matrix

fovy        �specifies the field of view in degrees, should be between
(0, 180)

aspect        �the aspect ratio of the rendering window (e.g., width/height)

nearZ, farZ � specify the distances to the near and far depth clipping
planes; both distances must be positive

Returns:

The new matrix after the perspective projection matrix has been
multiplied is returned in result

void ESUTIL_API esOrtho(ESMatrix *result,
GLfloat left, GLfloat right,
GLfloat bottom, GLfloat top,
GLfloat nearZ, GLfloat farZ)

Multiply matrix specified by result with an orthographic projection
matrix and return new matrix in result.

Parameters:

result the input matrix

left, right   � specify the coordinates for the left and right clipping planes

bottom, top � specify the coordinates for the bottom and top clipping
planes

nearZ, farZ � specify the distances to the near and far depth clipping
planes; both nearZ and farZ can be positive or negative

Returns:

The new matrix after the orthographic projection matrix has been
multiplied is returned in result

492	 Appendix C: ES Framework API

void ESUTIL_API esScale(ESMatrix *result, GLfloat sx,
GLfloat sy, GLfloat sz)

Multiply matrix specified by result with a scaling matrix and return
new matrix in result.

Parameters:

result    the input matrix

sx, sy, sz � specify the scale factors along the x-, y-, and z-axes,
respectively

Returns:

The new matrix after the scaling operation has been performed is
returned in result

void ESUTIL_API esTranslate(ESMatrix *result, GLfloat tx,
GLfloat ty, GLfloat tz)

Multiply matrix specified by result with a translation matrix and
return new matrix in result.

Parameters:

result    the input matrix

tx, ty, tz  � specify the translate factors along the x-, y-, and z-axes,
respectively

Returns:

The new matrix after the translation operation has been performed is
returned in result

void ESUTIL_API esRotate(ESMatrix *result, GLfloat angle,
GLfloat x, GLfloat y, GLfloat z)

Multiply matrix specified by result with a rotation matrix and return
new matrix in result.

Parameters:

result   the input matrix

angle     specifies the angle of rotation, in degrees

Transformation Functions	 493

x, y, z  specify the x-, y-, and z-coordinates of a vector

Returns:

The new matrix after the rotation operation has been performed is
returned in result

void ESUTIL_API esMatrixMultiply(ESMatrix *result,
ESMatrix *srcA,
ESMatrix *srcB)

This function multiplies the matrices srcA and srcB and returns the
multiplied matrix in result.
result = srcA × srcB

Parameters:

result      � pointer to memory where the multiplied matrix will be
returned

srcA, srcB  input matrices to be multiplied

Returns:

A multiplied matrix

void ESUTIL_API esMatrixLoadIdentity(ESMatrix *result)

Parameters:

result    � pointer to memory where the identity matrix will be returned

Returns:

An identity matrix

void ESUTIL_API esMatrixLookAt(ESMatrix *result,
GLfloat posX, GLfloat posY, GLfloat posZ,
GLfloat lookAtX, GLfloat lookAtY, GLfloat lookAtZ,
GLfloat upX, GLfloat upY, GLfloat upZ)

Generate a view transformation matrix using eye position, look at
vector, and up vector.

(continues)

494	 Appendix C: ES Framework API

(continued)
Parameters:

result                  the output matrix

posX, posY, posZ                specify the coordinates of the eye position
lookAtX, lookAtY, lookAtZ specify the look at vector
upX, upY, upZ specify the up vector

Returns:

The view transformation matrix result

495

. (dot), vector access operator, 101–102
#elif directive, 116
#else directive, 116
#error directive, 116
#extension directive, 116
#if directive, 116
#pragma directive

definition, 116
enabling global invariance, 123

[] (square brackets), array subscript
operator, 101–102

2D texture arrays
loading, 260–262
new features, 11
overview, 230

2D textures
attached to framebuffer objects,

338–339
base formats, 227
overview, 226–227
in shaders, 255–257

3D textures
attached to framebuffer objects,

339–340
loading, 260–262
new features, 12
overview, 229

3D textures, noise
dust effects, 403–404
water wave simulation, 404
wispy fog, 402–404

A
abs function, 467
acos function, 465

acosh function, 466
Advanced RenderMan: Creating CGI for Motion

Pictures, 407
Aliasing artifacts. See Anti-aliasing;

Mipmapping.
all function, 473
Alpha test, 291–293
Android 4.3 (API 18), 451
Android NDK, 451
Android SDK, 451
Angles, built-in functions, 465–466
Animation, 2D images. See 2D texture

arrays.
Anti-aliasing

multi-sampled, 314–316
procedural textures, 407–410

any function, 473
Apache Ant, 451
ARM Mali OpenGL ES Emulator, 448
Array buffer objects, 140–141
Arrays, 104
Arrays of structures, 128. See also

Structures.
asin function, 465
asinh function, 466
Asynchronous objects, querying,

442–443
atan function, 465
atanh function, 466
Attributes. See also specific attributes.

active, counting, 77
active, querying, 93
getting, 92–93
largest name, getting, 77
setting, 92–93

Index

496	 Index

B
Back buffers, 41, 298
Backward compatibility, 17–18
Bias matrix, 392–393
Binaries. See Program binaries.
Binding

program objects, example, 39
renderbuffer objects, 330–331
texture objects, 231
vertex array objects, 151
vertex attributes, 137–140
vertex buffer objects, 141

Blend equations, new features, 17
Blending

colors, 311–314
per-fragment operations, 10

Blur effects, 387–390
Boolean occlusion queries, new features, 15
Buffer object to buffer object copies, new

features, 16
Buffer objects

copying, 159–160
deleting, 150
drawing with and without, 145–150
initializing, 145
updating, 145

Buffer objects, mapping
changing screen resolution, 157
data storage pointer, getting, 155–156
flushing mapped buffers, 158–159
overview, 154–155
unmapping, 155–156

Buffer objects, new features. See also
Uniform buffer objects; Vertex
buffer objects.

buffer object to buffer object
copies, 16

buffer subrange mapping, 16
pixel buffer objects, 16
sampler objects, 16
sync objects, 16
uniform buffer objects, 16
vertex array objects, 16

Buffer subrange mapping, new features, 16
Buffer write masks, 301–303
Buffers, fragments. See also Pbuffers (pixel

buffers).
back, 298
buffer write masks, 301–303
clearing, 299–301
depth of, 298

front, 298
making writable, 301–303
requesting, 299
size of, 298
swapping, 298–299
types of, 298

Built-in functions. See also Functions.
abs function, 467
acos, 465
acosh, 466
all, 473
angles, 465–466
any, 473
asin, 465
asinh, 466
atan, 465
atanh, 466
ceil, 468
clamp, 469
cos, 465
cosh, 466
cross, 473
degrees, 465
description, 107
determinant, 473
dFdx, 484
dFdy, 484
distance, 473
dot, 473
equal, 473
exp, 466
exp2, 466
exponential, 466–467
faceforward, 473
floatBitsToInt, 470
floatBitsToUInt, 470
floating-point pack and unpack,

471–472
floor, 467
fract, 468
fragment processing, 483–484
fwidth, 484
geometric, 472–473
greaterThan, 475
greaterThanEqual, 475
intBitsToFloat, 470
inverse, 474
inversesqrt, 467
isinf, 470
isnan, 470
length, 473

Index	 497

lessThan, 475
lessThanEqual, 475
log, 466
log2, 467
matrix, 474
matrixCompMult, 474
max, 468
min, 468
mix, 469
mod, 468
new features, 15
normalize, 473
not, 475
notEqual, 475
outerProduct, 474
packHalf2x16, 472
packSnorm2x16, 471
pow, 466
radians, 465
reflect, 473
refract, 473
round, 468
roundEven, 468
sign, 467
sin, 465
sinh, 466
smoothstep, 470
sqrt, 467
step, 470
tan, 465
tanh, 466
texture built-in, 478
texture lookup, 476–482
textureGrad, 481
textureGradOffset, 481
textureLod, 479
textureOffset, 480
textureProj built-in, 479
textureProjGrad, 482
textureProjGradOffset, 482
textureProjLod, 480
textureProjLodOffset, 480
textureSize, 478
transpose, 474
trigonometry, 465–466
trunc, 467
uintBitsToFloat, 470
unpackHalf2x16, 472
unpackSnorm2x16, 471
unpackUnorm2x16, 471–472
vector relational, 475

C
ceil function, 468
centroid keyword, 115
Centroid sampling, 14, 316
Checkerboard example, 405–407
clamp function, 469
Client space, 126
Clip panes, user, 293–295
Clipping

description, 176–177
lines, 177
point sprites, 177
triangles, 177

Color
blending, 311–314
color depth, simulating, 314
depth, simulating, 314
dithering, 314
fragments, 311–314
specifying for multiple render targets,

321–322
Color buffers

clearing, example, 39–40
fragment operations, 298–299, 302.

See also Fragments, buffers.
column_major qualifier, 110
Combining texture maps, 286–287
Command syntax, 20–21
Compiling shaders, example, 36–38
Compressing textures, 262–265
Compression formats, textures, 264–265
Conditional statements. See Control flow

statements.
Conditional tests, preprocessor directives,

115–117
const declarations, examples,

102–103
Constant store, 109
Constants, description, 102–103
Constructors. See Variable constructors.
Control flow statements, 107–108
Coordinate systems

clipping, 176–177
guard band region, 177
overview, 175

Copying
buffer objects, 159–160
pixels in framebuffer objects, 342–344
textures from the color buffer, 269–273

cos function, 465
cosh function, 466

498	 Index

Creating
EGL windows, 53–56, 64–65
EGLContexts, 60–62
fragment shaders, example, 35–36
pbuffers, 56–60
program objects, example, 38–39
renderbuffer objects, 329–330
rendering context, 60–62
shaders, example, 35–36
sync objects, 358–359
texture objects, 230
vertex array objects, 144, 151
vertex buffer objects, 141
vertex shaders, example, 35–36
windows, example, 34–35

cross function, 473
Cubemaps

example, 205–206
seamless filtering, new features,

12, 241
texturing, example, 258–260

Culling, 7, 180–181
Cygwin, 451

D
Data types

EGL, 20–21
matrix, 99–100
scalar, 99–100
type conversion, 100
vector, 99–100

Deferred shading, multiple render targets,
320–321

Degenerate triangles, 172
degrees function, 465
Deleting

buffer objects, 150
framebuffer objects, 346–347
program objects, 75
renderbuffer objects, 346–347
shaders, 70
sync objects, 358–359
texture objects, 230–231
vertex array objects, 154

Deletion status, querying, 77
Depth buffer test, 311
Depth buffers

attached to framebuffer objects,
337–338

sharing, 329

Depth buffers, fragment operations. See also
Fragments, buffers.

buffer write masks, 302–303
description, 298–299

Depth-of-field. See Rendering, to textures.
Depth test, per-fragment

operations, 10
Depth texture compare, 245–246
Depth textures, 12, 254–255
determinant function, 473
dFdx function, 484
dFdy function, 484
Directional light, example, 199–202
Directives. See Preprocessor directives.
disable behavior, 117
Displacement mapping, vertex shaders,

214–215
distance function, 473
Dithering, 10, 314
Dot (.), vector access operator, 101–102
dot function, 473
Double buffering, example, 41
Drawing fragments, example, 35–36
Drawing primitives

example, 40–41
geometry instancing, 169–172
multiple disconnected primitives,

168–169
multiple primitives, different attributes,

169–172
overview, 165–168
performance tips, 172–174
primitive restart, 168–169
provoking vertex, 168–169

Drawing surface, creating, 325–327.
See also FBOs (framebuffer
objects).

Dust effects, 403–404
Dynamic reflections. See Rendering, to

textures.

E
EGL

command syntax, 20–21
data types, 20–21
description, 19
display server, connecting to, 44–45
include files, 20
initializing, 44, 46
libraries, 20

Index	 499

programming with OpenGL ES 3.0, 20
rendering context, creating, 19
rendering surfaces, creating, 19

EGL error codes
EGL_BAD_ALLOC, 55, 58
EGL_BAD_ATTRIBUTE, 48, 51, 58
EGL_BAD_CONFIG, 55, 58, 61
EGL_BAD_DISPLAY, 46
EGL_BAD_MATCH, 55, 58
EGL_BAD_NATIVE_WINDOW, 55
EGL_BAD_PARAMETER, 47, 58, 67

EGL windows, creating
description, 53–56
with the esUtil library, 65–66

eglChooseConfig function, 51–53
EGLConfig data type

choosing surface configurations, 51–53
creating pbuffers, 56–60
determining available surface

configurations, 46–47
EGLConfig data type, attributes

querying, 48–50
specifying, 51–52
summary of, 49–50

EGL_CONTEXT_CLIENT_VERSION
attribute, 61

EGLContexts
associating with an EGLSurface,

62–63
creating, 60–62
making current, 62–63

EGL_CORE_NATIVE_ENGINE, 67
eglCreateContext function, 60–62
eglCreatePbufferSurface

command, 56–60
eglCreateWindowSurface function,

53–56
EGLDisplay data type, 44–45
eglGetConfigs function, 47
eglGetDisplay function, 44–45
eglGetError function, 45
EGL_HEIGHT attribute, 57
EGL_LARGEST_PBUFFER attribute, 57
eglMakeCurrent function, 62–63
EGL_MIPMAP_TEXTURE attribute, 57
EGL_NO_CONTEXT error, 58
EGL_NOT_INITIALIZED error, 46–47
EGLSurface, 62–63
eglSwapBuffers function, 41
EGL_TEXTURE_FORMAT attribute, 57

EGL_TEXTURE_TARGET attribute, 57
eglWaitClient function, 66–67
EGL_WIDTH attribute, 57
Element buffer objects, 140–141
Emulating OpenGL ES 3.0

ARM Mali OpenGL ES Emulator, 448
iOS 7, 453–455
OpenGL ES 3.0 Emulator, 447–449
PowerVR Insider SDK v 3.2+, 448
PowerVR OpenGL ES 3.0 Emulator,

449–450
Qualcomm Adreno SDK v3.4+, 447
Ubuntu Linux, 449–450
Windows, 447–449

enable behavior, 116
Entity names, querying, 429–435
Environment mapping

definition, 228, 370
example, 370
fragment shader, 372–373
vertex shader, 370–372

equal function, 473
Error checking, querying for error codes, 45
Error codes. See also specific codes.

querying for, 45
summary of, 23

Error handling, 22–23
ES Framework API

core functions, 485–489
esCreateWindow function, 34,

485–486
esFrustrum function, 198, 490
esGenCube function, 489
esGenSphere function, 488
esGenSquareGrid function, 489
esLoadProgram function, 487–488
esLoadShader function, 487
esLoadTGA function, 488
esLogMessage function, 489
esMatrixLoadIdentity function,

493
esMatrixMultiply function, 493
esOrtho function, 491
esPerspective function,

198–199, 491
esRegisterDrawFunc

function, 486
esRegisterKeyFunc function, 487
esRegisterShutdownFunc

function, 487

500	 Index

ES Framework API (cont.)
esRegisterUpdateFunc function,

486
esRotate function, 492–493
esScale function, 492
esTranslate function, 492
transformation functions, 490–494

esCreateWindow function, 34, 485–486
esFrustrum function, 198, 490
esGenCube function, 489
esGenSphere function, 488
esGenSquareGrid function, 489
esLoadProgram function, 487–488
esLoadShader function, 487
esLoadTGA function, 488
esLogMessage function, 489
esMain function, 34
esMatrixLoadIdentity

function, 493
esMatrixMultiply function, 493
esOrtho function, 491
esPerspective function, 198–199, 491
esRegisterDrawFunc function, 486
esRegisterKeyFunc function, 487
esRegisterShutdownFunc function,

487
esRegisterUpdateFunc function,

486
esRotate function, 492–493
esScale function, 492
esTranslate function, 492
esUtil library, creating EGL windows,

65–66
ETC/EAC texture compression, 12, 264–265
Example code. See also specific examples.

creating. See Hello Triangle.
downloading, 28–29

exp function, 466
exp2 function, 466
Exponential built-in functions, 466–467
Extension behaviors, 116–117
Extensions, 116–117

F
faceforward function, 473
FBOs (framebuffer objects). See also

Renderbuffer objects.
attachment points, 336–337
binding, 335–336
blits, 342–344
checking for completeness, 341–342

copying pixels, 342–344
creating, 329–330
definition, 327
deleting, 346–347
vs. EGL surfaces, 329
examples, 348–354
invalidation, 344–346
new features, 17
performance tips, 354
purpose of, 325–327
querying, 445–446
reading pixels, 347
vs. renderbuffer objects, 328
resolving multisample renderbuffers to

textures, 342–344
state values, 336
TBR GPUs, 345

FBOs (framebuffer objects), attachments
2D textures, 338–339
3D textures, 339–340
depth buffers, 337–338
renderbuffer objects, 337–338, 347

Fences, 358–361
Filtering textures. See Texture filtering.
Flat/smooth interpolators, 14, 114
floatBitsToInt function, 470
floatBitsToUInt function, 470
Floating-point

numbers. See GL_HALF_FLOAT data
type.

pack and unpack, built-in functions,
471–472

texture formats, 249–250
textures, new features, 12

floor function, 467
Fog effects. See also Particle systems.

linear fog, creating with a fragment
shader, 288–291

wispy fog, creating with noise, 402–404
fract function, 468
Fragment depth, new features, 15
Fragment processing, built-in functions,

483–484
Fragment shaders

2D texturing, 255–257
built-in constants, 284–285
built-in special variables, 283–284
creating, example, 35–36
examples, 9, 113–114
fragment depth, overriding, 284
front-facing fragments, identifying, 284
input variables, 8

Index	 501

inputs, 8
inputs/outputs, 111–114
maximum uniform blocks, querying, 91
MRTs (multiple render targets),

minimum/maximum number
of, 285

offsets, minimum/maximum, 285
overview, 8–9, 282–285
precision qualifiers, 285
samplers, 8
shader inputs, minimum/maximum

number of, 284
shader program, 8
Shading Language version, specifying, 9
texture coordinates for point sprites, 284
texture image units, minimum/

maximum number of, 285
uniforms, 8
vec4 uniform entries, minimum/

maximum number of, 285
window coordinates of current fragment,

283–284
Fragment shaders, fixed-function

techniques
alpha test, 291–293
combining texture maps, 286–287
fog effects, 288–291
multitexturing, 286–287
pipeline description, 280–282
transparent fragments, 291–293
user clip panes, 293–295

Fragments
blending pixel colors, 311–314
centroid sampling, 316
color depth, simulating, 314
depth, overriding, 284
dithering, 314
front-facing, identifying, 284
MRTs (multiple render targets), 320–324
multi-sampled anti-aliasing, 314–316
pixel pack buffer objects, 320
pixels, reading and writing, 316–320
rendered images, saving, 316–320
sample coverage masks, 315
transparent, 291–293
window coordinates of, 283–284

Fragments, buffers
back, 298
buffer write masks, 301–303
clearing, 299–301
depth of, 298
double buffering, example, 41

front, 298
making writable, 301–303
requesting, 299
size of, 298
swapping, 298–299
types of, 298. See also specific types.

Fragments, tests
depth buffer test, 311
overview, 303–304
scissor test, 304–305
stencil buffer test, 305–311
test enable tokens, 304

Framebuffer invalidation hints, 17, 344–345
Framebuffer objects (FBOs). See FBOs

(framebuffer objects).
Front buffers, 298
Frustrum, 7
Full integer support, new

features, 14
Functions. See also Built-in functions; ES

Framework API; specific functions.
description, 106
passing parameters to, 106
recursion, 106

fwidth function, 484

G
Gamma-correct rendering, new features, 11,

254. See also sRGB textures.
Geometric built-in functions, 472–473
Geometry, new features, 15. See also

Primitives.
Geometry instancing, 169–172
GL_ACTIVE_ATTRIBUTE_MAX_

LENGTH, 77
GL_ACTIVE_ATTRIBUTES, 77, 93
glActiveTexture function, 256
GL_ACTIVE_UNIFORM_ BLOCK_

MAX_LENGTH, 77
GL_ACTIVE_UNIFORM_BLOCKS, 77
GL_ACTIVE_UNIFORM_MAX_LENGTH,

77
GL_ACTIVE_UNIFORMS, 77
GL_ARRAY_BUFFER token, 140–141
GL_ATTACHED_SHADERS, 77
glAttachShader function, 75
glBeginQuery command, 184
glBeginTransformFeedback

command, 213
glBindAttribLocation

command, 139

502	 Index

glBindBuffer command, 142–143, 212
glBindBufferBase function, 91, 212
glBindBufferRange function, 91, 212
glBindFramebuffer, 335–336
glBindRenderbuffer function,

330–331
glBindSamplers function, 274–275
glBindTextures function, 231
glBindVertexArray function, 151
GL_BLEND token, 304
glBlendColor function, 313
glBlendEquation function, 313–314
glBlendEquationSeparate

function, 313–314
glBlendFunc function, 312–313
glBlendFuncSeparate function,

312–313
glBlitFramebuffer command,

343–344
glBufferData command, 144
GL_BUFFER_SIZE, 143
glBufferSubData command, 145
GL_BUFFER_USAGE, 143
glCheckFramebufferStatus

command, 342
GL_CLAMP_TO_EDGE mode, 243–244
glClear function, 40
glClear* functions, 299–300
glClientWaitSync function, 359–360
glColorMask function, 302
glCompileShader function, 37, 71–72
glCompresedTexImage* functions,

277–278
glCompresedTexSubImage*

functions, 277–278
glCompressedTexImage2D function,

263–264
glCompressedTexImage3D function,

263–264
glCompressedTexSubImage2D

function, 267
GL_COMPRESSED_TEXTURE_

FORMATS, 265
glCopyBufferSubData function,

159–160
glCopyTexImage2D function,

270–272
glCopyTexSubImage2D function,

270–272
glCopyTexSubImage3D function,

270–272
glCreateProgram function, 74–75

glCreateShader function, 36–37,
70–71

glCullFace command, 181
GL_CULL_FACE state, 181
GL_DECR operation, 306
GL_DECR_WRAP operation, 306–307
glDeleteBuffers command, 150
glDeleteFramebuffers command,

346–347
glDeleteProgram function, 75
glDeleteQueries command, 184
glDeleteRenderbuffers command,

346–347
glDeleteSamplers function, 273–274
glDeleteShader function, 70–71
GL_DELETE_STATUS, 77
glDeleteSync function, 359
glDeleteTextures function, 230–231
glDeleteVertexArrays

command, 154
glDepthFunc function, 311
glDepthMask function, 302
gl_DepthRange uniform type, 190
glDepthRangef command, 179
gl_DepthRangeParameters uniform

type, 190
GL_DEPTH_TEST token, 304, 311
glDetachShader function, 75
glDisable command, 23–24
glDisable function, 437–438
glDisableVertexAttribArray

command, 132–135
GL_DITHER token, 304
glDrawArrays function, 40–41,

165–168, 341
glDrawArraysInstanced command,

165–168, 170–172
glDrawBuffers function, 321–322
glDrawElements function, 165–168,

172–174, 341
glDrawElementsInstanced

command, 165–168, 170–172,
172–174

GL_DYNAMIC_COPY, 143
GL_DYNAMIC_DRAW, 143
GL_DYNAMIC_READ, 143
GL_ELEMENT_ARRAY_BUFFER token,

140–141
glEnable function, 23–24, 437–438
glEnableVertexAttribArray

command, 132–135
glEndQuery command, 184

Index	 503

glEndTransformFeedback
command, 213

glFenceSync function, 358
glFinish command, 358
glFlush command, 358
glFlushMappedBufferRange,

158–159
gl_FragCoord variable, 283–284
gl_FragDepth variable, 284
glFramebufferRenderbuffer

command, 337–338
glFramebufferTexture2D

command, 338–339
glFramebufferTextureLayer

command, 339–341
glFrontFace command, 180
gl_FrontFacing variable, 190, 284
glFrustrum function, see

esFrustrum function
glGenBuffers command, 142–143
glGenerateMipmap function, 242
glGenFramebuffers function, 330
glGenQueries command, 184
glGenRenderbuffers function,

329–330
glGenSamplers function, 273
glGenTextures function, 230
glGenVertexArrays function, 151
glGetActiveAttrib command,

136–137
glGetActiveAttrib function, 93
glGetActiveUniform function,

81–82
glGetActiveUniform* functions,

81–82
glGetActiveUniformBlockiv

function, 89–90
glGetActiveUniformBlockName

function, 89–90
glGetActiveUniformsiv function,

82, 87–88
glGetAttachedShaders

function, 438
glGetAttribLocation

command, 140
glGetBooleanv function, 423
glGetBufferParameter*

functions, 444
glGetBufferPointerv function,

444–446
glGetError command, 22–23
glGetFloatv function, 423

glGetFramebuffer
AttachmentParameteriv
function, 445–446

glGetInteger* functions, 423
glGetInteger64v function, 92
glGetIntegerv command, 91,

 214, 265
glGetProgramBinary function, 94
glGetProgramiv function

checking link status, 76
largest uniform name, getting, 81
number of active vertex attributes,

querying, 137–140
program compatibility, checking, 95

glGetQueryiv function, 442–443
glGetQueryObjectuiv function, 185,

213, 443
glGetRenderbufferParameteriv

function, 445–446
glGetSamplerParameter* functions,

442
glGetShaderInfoLog function, 72–73
glGetShaderiv function, 72
glGetShaderPrecisionFormat

function, 439–440
glGetShaderSource function, 439
glGetString* functions, 421–422
glGetSynciv function, 443
glGetTexParameter* functions,

441–442
glGetUniform* functions, 439
glGetUniformBlockIndex function,

89
glGetUniformLocation

function, 83
glGetVertexAttrib* functions,

440–441
GL_HALF_FLOAT data type

16-bit floating-point numbers, 458–459
converting float to half-float, 459–461
overview, 457–458

glHint function, 435–436
GL_INCR operation, 306
GL_INCR_WRAP operation, 306–307
GL_INFO_LOG_LENGTH, 77
gl_InstanceID variable, 171–172, 189
GL_INTERLEAVED_ATTRIBS, 77
glInvalidateFramebuffer

command, 345–346
glInvalidateSubFramebuffer

command, 345–346
GL_INVALID_ENUM code, 23

504	 Index

GL_INVALID_OPERATION code, 23
GL_INVALID_VALUE code, 23
GL_INVERT operation, 307
glIs* functions, 436
glIsEnabled function, 24, 437
GL_KEEP operation, 307
GL_LINE_LOOP, 163
GL_LINES, 163
GL_LINES mode, 213
GL_LINE_STRIP, 163
glLineWidth API call, 164
glLinkProgram command, 212
glLinkProgram function, 75–76
GL_LINK_STATUS, 95
glMapBufferRange command,

155–157
gl_MaxCombinedTexture

ImageUnits constant, 190
GL_MAX_COMBINED_UNIFORM_

BLOCKS, 91
gl_MaxDrawBuffers constant, 285
gl_MaxFragmentInputVectors

constant, 284
GL_MAX_FRAGMENT_UNIFORM_

BLOCKS, 91
GL_MAX_FRAGMENT_UNIFORM_

VECTORS, 109
gl_MaxFragmentUniformVectors

constant, 285
gl_MaxFragmentUniformVectors

variable, 109
gl_MaxProgramTexelOffset

constant, 285
gl_MaxTextureImageUnits

constant, 285
GL_MAX_UNIFORM_BLOCK_SIZE, 92
gl_MaxVertexAttribs constant, 190
gl_MaxVertexAttribs variable, 112
GL_MAX_VERTEX_ATTRIBS

variable, 112
GL_MAX_VERTEX_OUTPUT_

COMPONENTS variable, 113
gl_MaxVertexOutputVectors

constant, 190
gl_MaxVertexOutputVectors

variable, 113
gl_MaxVertexTextureImageUnits

constant, 190
GL_MAX_VERTEX_TEXTURE_UNITS,

213
GL_MAX_VERTEX_UNIFORM_BLOCKS,

91

GL_MAX_VERTEX_UNIFORM_
VECTORS, 109

gl_MaxVertexUniformVectors
constant, 190, 193–196

gl_MaxVertexUniformVectors
variable, 109

gl_MinProgramTexelOffset
constant, 285

GL_MIRRORED_REPEAT mode, 243–244
GL_NO_ERROR code, 23
GL_OUT_OF_MEMORY code, 23
glPixelStorei function, 235
GL_PIXEL_UNPACK_BUFFER,

277–278
gl_PointCoord variable, 164–165, 284
GL_POINTS mode, 164–165, 213
gl_PointSize variable, 164, 190
glPolygonOffset command, 182–183
gl_Position variable, 190
glProgramBinary function, 94
GL_PROGRAM_BINARY_

RETRIEVABLE_HINT, 77
GL_RASTERIZER_DISCARD, 214
glReadBuffer function, 269–270
glReadPixels function, 316–320,

346–347
GL_REFLECTION_MAP mode, 206
glReleaseShaderCompiler

function, 93
glRenderbufferStorage function,

331–332
glRenderbufferStorage

Multisample function,
331–332

GL_REPEAT mode, 243–244
GL_REPLACE operation, 306
GL_SAMPLE_ALPHA_TO_COVERAGE

token, 304
glSampleCoverage function,

315–316
GL_SAMPLE_COVERAGE token, 304
glScissor test, 304–305
GL_SEPARATE_ATTRIBS, 77
glShaderSource function, 37, 71
GL_SPHERE_MAP mode, 206
GL_STATIC_COPY, 143
GL_STATIC_DRAW, 143
GL_STATIC_READ, 143
glStencilFunc function, 305–311
glStencilFuncSeparate function,

305–306
glStencilMask function, 302–303

Index	 505

glStencilMaskSeparate function,
303

glStencilOp function, 306–311
glStencilOpSeparate function,

306–307
GL_STENCIL_TEST token, 304
GL_STREAM_COPY, 144
GL_STREAM_DRAW, 144
GL_STREAM_READ, 144
glTexImage* functions, 277–278
glTexImage2D function, 231–234
glTexImage3D function, 260–262
glTexParameter* commands

API overhead, 273
setting minification/magnification

filtering modes, 236, 239–240
texture coordinate wrapping, 243
texture detail level, setting, 245

glTexStorage2D function, 276–277
glTexStorage3D function, 276–277
glTexSubImage* functions, 277–278
glTexSubImage2D function, 266–267
glTexSubImage3D function, 267–269
GL_TEXTURE_BASE_LEVEL parameter,

245
GL_TEXTURE_COMPARE_FUNC

parameter, 245–246
GL_TEXTURE_COMPARE_MODE

parameter, 245–246
GL_TEXTURE_MAX_LOD parameter, 245
GL_TEXTURE_MIN_LOD parameter,

245
GL_TEXTURE_SWIZZLE_A parameter,

244–245
GL_TEXTURE_SWIZZLE_B parameter,

244–245
GL_TEXTURE_SWIZZLE_G parameter,

244–245
GL_TEXTURE_SWIZZLE_R parameter,

244–245
GL_TRANSFORM_FEEDBACK_

VARYINGS, 77
GL_TRANSFORM_FEEDBACK_BUFFER_

MODE, 77
GL_TRANSFORM_FEEDBACK_

PRIMITIVES_WRITTEN, 213
GL_TRANSFORM_FEEDBACK_

VARYING_MAX_LENGTH, 77
glTransformFeedbackVaryings

command, 212
GL_TRIANGLE_FAN, 162–163
GL_TRIANGLES, 162

GL_TRIANGLES mode, 213
GL_TRIANGLE_STRIP, 162
GL_UNIFORM_BLOCK_ACTIVE_

NUMBER_INDICES, 90
GL_UNIFORM_BLOCK_ACTIVE_

UNIFORMS, 90
GL_UNIFORM_BLOCK_BINDING, 90
glUniformBlockBinding function,

90–91
GL_UNIFORM_BLOCK_DATA_SIZE, 90
GL_UNIFORM_BLOCK_NAME_

LENGTH, 90
GL_UNIFORM_BLOCK_REFERENCED_

BY_VERTEX_SHADER, 90
GL_UNIFORM_BLOCK_REFERENCED_

BY_FRAGMENT_SHADER, 90
glUnmapBuffer command, 156–157
gluPerspective function, see

esPerspective function
glUseProgram function, 39, 78
glValidateProgram function, 78
GL_VALIDATE_STATUS, 77
glVertexAttrib* commands, 126
glVertexAttribDivisor command,

170–172
glVertexAttribPointer function,

40, 131–132
gl_VertexID variable, 189
glViewport command, 39, 178–179
GLvoid data type, 21
glWaitSync function, 360
GL_ZERO operation, 306
greaterThan function, 475
greaterThanEqual function, 475
Guard band region, 177

H
Hello Triangle

back buffer, displaying, 41
code framework, 28
color buffer, clearing, 39–40
double buffering, 41
drawing fragments, 35–36
geometry, loading, 40–41
OpenGL ES 3.0 framework, 34–35
primitives, drawing, 40–41
program objects, 38–39
source code, 29–33
transforming vertices, 35–36
viewport, setting, 39–40
windows, creating, 34–35

506	 Index

Hello Triangle, shaders
compiling and loading, 36–38
creating, 35–36
fragment, creating, 35–36
linking, 38–39
vertex, creating, 35–36

highp keyword, 120, 192–193
Hints, 77, 435–436

I
if-then-else tests. See Control flow

statements.
Images

dimensions, specifying, 331
format, specifying, 331

Images, postprocessing
blur effect, 387–390
light bloom, 389–390
render-to-texture setup, 387

Immutable textures, 13, 276–277
in qualifier, 106
Include files, EGL, 20
info logs, 77–78
Initializing

arrays, 104
buffer objects, 145
EGL, 44, 46
scalar data types, 100
structures, 103
vector data types, 100
vertex array objects, 144

inout qualifier, 106
Input variables, fragment shader, 8
Instance ID, new features, 15
Instanced rendering, new features, 15
intBitsToFloat function, 470
Integer texture formats, 250–252
Integer textures, new features, 12
Interpolation, 114–115
Interpolation qualifiers

centroid sampling, 115
default behavior, 114
flat shading, 114
smooth shading, 114

Interpolators
definition, 113
packing, 117–119

Invariance, 121–123
invariant keyword, 121–123
inverse function, 474
inversesqrt function, 467

iOS 7, 453–455
isinf function, 470
isnan function, 470

J
JDK (Java SE Development Kit) 7, 451

K
Keywords

centroid, 115
highp, 120, 192–193
invariant, 121–123
lowp, 120, 192–193
mediump, 120, 192–193

L
Latitude-longitude maps, example, 205–206
Layout qualifiers, 14, 109–110
length function, 473
Lens flare effects, 183–185
lessThan function, 475
lessThanEqual function, 475
Libraries, EGL, 20
Light bloom, 389–390
Light projection matrix, 392–393
Light view matrix, 392–393
Lighting

equations, 369–370
example, 199–205

Lighting, per fragment
lighting equations, 369–370
lighting shaders, 366–369
with a normal map, 364–365
overview, 363–364

Lighting shaders, 366–369
Lines

clipping, 177
description, 163–164
width, specifying, 164

Linking shaders, example, 38–39
Loading

2D texture arrays, 260–262
3D textures, 260–262
geometry, example, 40–41
shaders, 36–38, 73–74
shaders, example, 36–38
texture objects, 231–234
textures, 230–236
uniforms, 83–85

LoadShader function, 36–37
log function, 466

Index	 507

log2 function, 467
Loops. See Control flow statements.
lowp keyword, 120, 192–193

M
Macros, defining, 115–117
Magnification filtering mode, 236, 238–241
main function, vertex shader, 6–7
Mandatory online compiler, new features,

14
Mapping, texture formats to colors, 257
Mapping buffer objects

changing screen resolution, 157
data storage pointer, getting, 155–156
flushing mapped buffers, 158–159
overview, 154–155
unmapping, 155–156

Matrices
non-square, new features, 14
projective texturing, 392–393

Matrix built-in functions, 474
Matrix components, 101–102
Matrix construction, 101
Matrix data types, 99–100
Matrix transformations, example, 196–199
matrixCompMult function, 474
max function, 468
mediump keyword, 120, 192–193
Meshes, connecting, 172
min function, 468
Min/max functions, new features, 17
Minification filtering mode, 236, 238–241
Mipmap chains, 237–238
Mipmapping

automatic generation, 242
detail levels, specifying, 245
mipmap chains, 237–238
overview, 237–241

mix function, 469
mod function, 468
Model matrix, example, 197–198
Motion blur effects. See Rendering, to

textures.
MRTs (multiple render targets)

deferred shading, 320–321
in fragment shaders, 285
in fragments, 320–324
new features, 17
overview, 320
setting up, 322–324
specifying color attachments, 321–322

Multi-sampled anti-aliasing, 314–316
Multisample renderbuffers, 17, 333
Multitexturing, 286–287

N
Naming conventions, 102
Nearest sampling, 237
New features, buffer objects

buffer object to buffer object
copies, 16

buffer subrange mapping, 16
pixel buffer objects, 16
sampler objects, 16
sync objects, 16
uniform buffer objects, 16
vertex array objects, 16

New features, framebuffer
blend equations, 17
framebuffer invalidation hints, 17
min/max functions, 17
MRTs (multiple render targets), 17
multisample renderbuffers, 17
off-screen rendering, 17

New features, geometry
Boolean occlusion queries, 15
instanced rendering, 15
new vertex formats, 15
primitive restart, 15
transform feedback, 15

New features, shaders
built-in functions, 15
centroid sampling, 14
flat/smooth interpolators, 14
fragment depth, 15
full integer support, 14
instance ID, 15
layout qualifiers, 14
mandatory online compiler, 14
non-square matrices, 14
program binaries, 13–14
relaxed restrictions, 15
uniform blocks, 14
vertex ID, 15

New features, texturing
2D texture arrays, 11
3D textures, 12
depth textures, 12
ETC/EAC texture compression, 12
floating-point textures, 12
gamma-correct rendering, 11
immutable textures, 13

508	 Index

New features, texturing (cont.)
increased minimum sizes, 13
integer textures, 12
NPOT (non-power-of-2) textures, 13
seamless cubemap filtering, 12, 241
shadow comparisons, 12
sRGB textures and framebuffers, 11
texture LOD (level of detail)

features, 13
texture swizzles, 13
texturing, 11–13
vendor-specific compressed texture

formats, 12
New features, vendor-specific compressed

texture formats, 12
New vertex formats, new features, 15
Noise, 3D texture

dust effects, 403–404
example, 397
generating, 397–402
water wave simulation, 404
wispy fog, 402–404

noise3D function, 401
Non-square matrices, new features, 14
normalize function, 473
Normalized flag, 131–132
Normalized texture formats, 247–248
not function, 475
notEqual function, 475
NPOT (non-power-of-2) textures, new

features, 13

O
Occlusion queries, 183–185
Off-screen rendering, new

features, 17
Offsetting polygons, 181–183
OpenGL ES 1.0, specifications, 2
OpenGL ES 1.1

fixed-function vertex pipeline,
215–223

specifications, 2
OpenGL ES 2.0, specifications, 2–3
OpenGL ES 3.0

API specifications, 3–4
command syntax, 21–22
data types, 21–22
emulating. See Emulating OpenGL

ES 3.0.
error handling, 22–23
implementations, querying, 421–422

new features. See New features.
platforms. See Emulating OpenGL

ES 3.0.
specifications, 2–3

OpenGL ES 3.0, graphics pipeline. See also
specific components.

diagram, 4
fragment shader, 8–9
per-fragment operations, 9–11
primitive assembly, 7
rasterization, 7
vertex shader, 4–7

OpenGL ES 3.0 Emulator, 447–449.
See also Emulating OpenGL
ES 3.0.

OpenGL ES Shading Language 3.0,
specifications, 4

Operators, 104–105
out qualifier, 106
outerProduct function, 474
Overlapping polygons, 181–183

P
packed qualifier, 110
packHalf2x16 function, 472
Packing

interpolators, 117–119
uniforms, 117–119

packSnorm2x16 function, 471
Particle emissions, 381–385
Particle systems

fragment shader, 377–379
particle emissions, 381–385
point sprites, 374
rendering algorithm, 381
rendering particles, 385–386
setup, 374–375
transform feedback, 380, 381–385
vertex shader, 375–377

Pbuffers (pixel buffers)
attributes, 57
creating, 56–60
description, 56
errors, 58

PCF (percentage closest filtering), 245–246,
414

Per fragment lighting
lighting equations, 369–370
lighting shaders, 366–369
with a normal map, 364–365
overview, 363–364

Index	 509

Per-fragment operations
blending, 10
depth test, 10
dithering, 10
overview, 9–11
scissor test, 10
stencil test, 10

Performance
drawing primitives, 172–174
FBOs (framebuffer objects), 354
hints, 435–436
primitives, drawing, 172–174
vertex attributes, storing, 131–135

Perspective division, 178
Pixel buffer objects

new features, 16
pixel pack buffer objects, 320
pixel unpack buffer objects,

277–278
Pixel buffers (pbuffers)

attributes, 57
creating, 56–60
description, 56
errors, 59

Pixel pack buffer objects, 320
Pixel unpack buffer objects,

277–278
Pixels

copying in framebuffer objects,
342–344

in fragments, reading and writing,
316–320

reading in framebuffer objects, 347
storage options, 236
texels (texture pixels), 226–227

Point light, example, 202
Point sampling, 237
Point sprites

clipping, 177
description, 164–165
position, 164
radius, 164
texture coordinates for, 284

Point sprites in particle systems, 374
Polygons

joins, smoothing (example),
207–211

offsetting, 181–183
overlapping, 181–183

Position, point sprites, 164
Postprocessing effects. See Rendering,

to textures.

pow function, 466
PowerVR Insider SDK v 3.2+, 448
PowerVR OpenGL ES 3.0 Emulator,

449–450
Precision qualifiers

default precision, 120
variables, 119–120
vertex shaders, 119–120, 192–193

Preprocessor directives. See also specific
directives.

conditional tests, 115–117
description, 115–117

Primitive assembly
culling primitives, 7
overview, 174–175
perspective division, 178
view frustrum, 7
viewport transformation, 178–179

Primitive assembly, coordinate systems
clipping, 176–177
guard band region, 177
overview, 175

Primitive restart, 15, 168–169
Primitives. See also Geometry, new

features.
definition, 7, 161
drawing, 7. See also Rasterization.
types of, 162–165. See also specific

primitives.
Primitives, drawing

example, 40–41
geometry instancing, 169–172
multiple disconnected primitives,

168–169
multiple primitives, different attributes,

169–172
overview, 165–168
performance tips, 172–174
primitive restart, 168–169
provoking vertex, 168–169

Procedural textures
anti-aliasing, 407–410
checkerboard example, 405–407
example, 405–407
pros and cons, 404

Program binaries
compatibility check, 95
definition, 94
format, 95
getting, 94
new features, 13–14
saving, 94

510	 Index

Program objects. See also Shader objects;
Shaders.

attached shaders, counting, 77
attaching shaders, 75, 79
creating, 74–79
definition, 69–70
deleting, 75
deletion status, querying, 77
detaching shaders, 75
linking, 74–79
making active, 78
validating, 78

Projection matrix, example,
198–199

Projective texturing
basic techniques, 391–392
bias matrix, 392–393
definition, 391
light projection matrix, 392–393
light view matrix, 392–393
matrices, 392–393
overview, 390–391
spotlight shaders, 394–397

Provoking vertex, 168–169

Q
Qualcomm Adreno SDK v3.4+, 447
Qualifiers

column_major, 110
in, 106
inout, 106
out, 106
packed, 110
row_major, 110
shared, 110
std140, 110

Queries. See State queries.

R
radians function, 465
Radius, point sprites, 164
Rasterization

culling, 180–181
enabling/disabling, 214
pipeline, 179
polygon offset, 181–183

Recursion, in functions, 106
reflect function, 473
Reflective surfaces, 205–206. See also

Environment mapping; Projective
texturing; Rendering, to textures.

refract function, 473
Renderbuffer objects. See also FBOs

(framebuffer objects).
attached to framebuffer objects,

337–338, 347
binding, 330–331
creating, 329–330
default values, 331
definition, 327
deleting, 346–347
vs. FBOs (framebuffer objects), 328
formats, 333–335
image dimensions, specifying, 331
image format, specifying, 331
multisample, 333
state values, 331
vs. textures, 328

Renderbuffers
multisample, new features, 17
querying, 445–446

Rendering
from eye position with depth texture,

418–420
gamma-correct, new features, 11
instanced, new features, 15
from light position into depth texture,

415–418
off-screen area. See Pbuffers (pixel

buffers).
on-screen area. See Windows.
particles, 381, 385–386
rendered images, saving,

316–320
shadows with depth texture, 414–420
synchronizing, 66–67
terrain with vertex texture fetch,

410–414
Rendering, to off-screen surfaces.

See also FBOs (framebuffer
objects); Renderbuffer objects.

basic techniques, 326–327
new features, 17

Rendering, to textures. See also FBOs
(framebuffer objects).

basic techniques, 326–327
examples, 348–354
uses for, 326
while using the texture object in a

fragment shader, 341
Rendering context, creating, 19, 60–62,

325–327. See also EGL; FBOs
(framebuffer objects).

Index	 511

Rendering surfaces, creating with
EGL, 19. See also EGL.

require behavior, 116
round function, 468
roundEven function, 468
row_major qualifier, 110

S
Sample coverage masks, 315
Sampler objects, 16, 273–275
Samplers

definition, 256
fragment shader, 8
querying, 442
vertex shader, 4

Scalar data types
description, 99–100
initializing, 100
type conversion, 100

Scissor test, 10, 304–305
Screen resolution, effect on mapped buffer

objects, 157
Seamless cubemap filtering, new features,

12, 241
Shader compiler, 93
Shader objects, 69–70. See also Program

objects; Shaders.
Shaders. See also Fragment shaders; Vertex

shaders.
2D textures, 255–257
attached to programs, querying, 438–440
compiling, 70–74
creating, 70–74
deleting, 70
info log, retrieving, 72–73
linking, 70
loading, 73–74
source, providing, 71
texturing, 255–257
version specification,

declaring, 98
Shaders, new features

built-in functions, 15
centroid sampling, 14
flat/smooth interpolators, 14
fragment depth, 15
full integer support, 14
instance ID, 15
layout qualifiers, 14
mandatory online compiler, 14
non-square matrices, 14

program binaries, 13–14
relaxed restrictions, 15
uniform blocks, 14
vertex ID, 15

Shading Language version, specifying in
fragment shaders, 9

Shadow comparisons, new features, 12
Shadow mapping, 245–246. See also

Projective texturing; Rendering, to
textures.

Shadows, rendering, 414–420
Shared exponent texture formats, 252–253
shared qualifier, 110
Shimmering. See Z fighting.
Shiny surfaces, example, 205–206
sign function, 467
Signaling sync objects, 359–360
sin function, 465
sinh function, 466
Smoke effects. See Particle systems.
Smooth shading, 114
smoothstep function, 470
Specifications, OpenGL ES

1.0, 2
1.1, 2
2.0, 2–3
3.0, 2–3
3.0 API, 3–4
Shading Language 3.0, 4

Sphere maps, example, 205–206
Spotlight, example, 202–205
Spotlight shaders, 394–397
sqrt function, 467
Square brackets ([]), array subscript

operator, 101–102
sRGB textures, 11, 254. See also Gamma-

correct rendering.
Stairstep effects. See Anti-aliasing;

Mipmapping.
State management

checking current state, 24
enabling/disabling state, 23–24
overview, 23–24
querying state values, 24

State queries
application-modifiable queries,

429–435
asynchronous objects, 442–443
entity names, 429–435
framebuffer, 445–446
implementation-dependent limits,

423–428

512	 Index

State queries (cont.)
nonprogrammable operations control,

436–438
OpenGL ES 3.0 implementation string

queries, 421–422
renderbuffer, 445–446
samplers, 442
shaders attached to programs, 438–440
sync objects, 443
texture state, 441–442
vertex attributes, 440–441
vertex buffers, 444

std140 qualifier, 88–89, 110
Stencil buffer test, 305–311
Stencil buffers

buffer write masks, 303
fragment operations, 298–299, 303.

See also Fragments, buffers.
sharing, 329

Stencil test, per-fragment operations, 10
step function, 470
Structures, 103. See also Arrays of structures.
Structures of arrays, 128. See also Arrays.
Surface configurations

available, determining, 46–47
choosing with EGL, 51–53

Swapping, buffers, 298–299
Swizzles. See Texture swizzles.
Sync objects

creating, 358–359
deleting, 358–359
example, 360–361
fences, 358–361
new features, 16
overview, 357–358
querying, 443
signaling, 359–360
waiting for, 359–360

Synchronizing rendering, 66–67

T
tan function, 465
tanh function, 466
Terrain surfaces, 214–215, 410–414
Test enable tokens, 304
Tests, fragments

depth buffer test, 311
overview, 303–304
scissor test, 304–305
stencil buffer test, 305–311
test enable tokens, 304

Texels (texture pixels), 226–227
texture built-in function, 257, 260, 478
Texture coordinates

generating, example, 205–206
wrapping, 243–244

Texture filtering
magnification, 236, 238–241
minification, 236, 238–241
nearest sampling, 237
overview, 237–241
point sampling, 237
seamless cubemap filtering, 241

Texture filtering, mipmapping
automatic generation, 242
detail levels, specifying, 245
mipmap chains, 237–238
overview, 237–241

Texture formats
depth textures, 254–255
floating-point, 249–250
integer, 250–252
mapping to colors, 257
normalized, 247–248
overview, 246–247
shared exponent, 252–253
sRGB, 254
unsized, 247

Texture image units, in fragment shaders,
285

Texture LOD (level of detail) features, new
features, 13

Texture lookup built-in functions, 476–482
Texture maps, combining, 286–287
Texture objects

overview, 230–236
pixel storage options, 236

Texture pixels (texels), 226–227
Texture state, querying, 441–442
Texture swizzles

accessing vector components, 101
new features, 13
overview, 244–245

Texture units, specifying min/max number,
190

textureGrad function, 481
textureGradOffset function, 481
textureLod function, 479
textureOffset function, 480
textureProj built-in function, 391, 479
textureProjGrad function, 482
textureProjGradOffset

function, 482

Index	 513

textureProjLod function, 480
textureProjLodOffset

function, 480
Textures

color components, mapping. See Texture
swizzles.

combining texture maps, 286–287
compressing, 262–265
compression formats, 264–265
copying from the color buffer, 269–273
immutable, 276–277
multitexturing, 286–287
vs. renderbuffer objects, 328
subimage selection, 266–269

textureSize function, 478
Texturing

depth texture compare, 245–246
fetching from a texture map, 256
loading textures, 230–236
PCF (percentage closest filtering),

245–246
pixel unpack buffer objects,

277–278
sampler objects, 273–275
samplers, 256
in shaders, 255–257
texels (texture pixels), 226–227
volume textures. See 3D textures.

Texturing, 2D texture arrays
loading, 260–262
overview, 230

Texturing, 2D textures
attached to framebuffer objects, 338–339
base formats, 227
overview, 226–227
in shaders, 255–257

Texturing, 3D textures
attached to framebuffer objects, 339–340
loading, 260–262
overview, 229

Texturing, cubemap textures
environment mapping, 228–229
overview, 228–229

Texturing, new features
2D texture arrays, 11
3D textures, 12
depth textures, 12
ETC/EAC texture compression, 12
floating-point textures, 12
gamma-correct rendering, 11
immutable textures, 13
increased minimum sizes, 13

integer textures, 12
NPOT (non-power-of-2) textures, 13
seamless cubemap filtering, 12, 241
shadow comparisons, 12
sRGB textures and framebuffers, 11
texture LOD (level of detail) features, 13
texture swizzles, 13
texturing, 11–13
vendor-specific compressed texture

formats, 12
Texturing, texture objects

binding, 231
creating, 230
deleting, 230–231
loading, 231–234
minification/magnification filtering

modes, setting, 236
overview, 230–236
pixel storage options, 236

3D textures
attached to framebuffer objects, 339–340
loading, 260–262
new features, 12
overview, 229

3D textures, noise
dust effects, 403–404
water wave simulation, 404
wispy fog, 402–404

Transform feedback
example, 211–214
new features, 15
in particle systems, 380–385
vertex shader, 5

Transformation functions,
490–494

Transforming vertices, example,
35–36

Transparent fragments, 291–293
transpose function, 474
Triangle fans, drawing, 162–163
Triangle strips

connecting, 172–174
drawing, 162–163
generating degenerate triangles, 15
primitive restart, 15
winding order, 174

Triangles
clipping, 177
culling, 180–181
degenerate, 15, 172
description, 162–163
drawing, 162–163

514	 Index

Trigonometry built-in functions,
465–466

trunc function, 467
2D texture arrays

loading, 260–262
new features, 11
overview, 230

2D textures
attached to framebuffer objects,

338–339
base formats, 227
noise, 402
overview, 226–227
in shaders, 255–257

Type conversion, 100

U
Ubuntu Linux, emulating OpenGL ES 3.0,

449–450
uintBitsToFloat function, 470
Uniform block indexes, associating with

binding points, 90
Uniform blocks

active uniforms, counting, 90
description, 109–111
examples, 109–110
last buffer binding point, getting, 90
layout qualifiers, 109–110
maximum for all shaders, querying, 91
maximum per shader, querying, 91
minimum supported number, 91
minimum total buffer object size, 90
name length, getting, 90
new features, 14
references to, querying, 90

Uniform buffer objects. See also Buffer
objects.

available storage, querying, 92
binding, 91
new features, 16
overview, 87–92
programming limitations, 91

Uniform names
largest, counting characters, 81
largest, getting, 77, 81
maximum length, querying, 77

Uniform variables. See Uniforms.
Uniforms

active, counting, 77
active, querying, 77, 86–87
constant store, 109

description, 80, 108–109
first category, 80
fragment shader, 8
getting, 81–87
indexes, getting, 89
loading, 83–85
maximum number in vertex shaders,

193–196
maximum number of, determining, 109
named uniform blocks, 80, 88
packing, 117–119
properties, getting, 81–87
setting, 81–87
sharing, 87–92
std140 block layout, 88
vertex shader, 4

Unmapping mapped buffer objects,
155–156

unpackHalf2x16 function, 472
unpackSnorm2x16 function, 471
unpackUnorm2x16 function,

471–472
Unsized texture formats, 247
Updating, buffer objects, 145
User clip panes, 293–295

V
Validating programs, description, 78
Validation status, querying, 77
Variable constructors, 100–101
Variables, 119–120. See also specific variables.
Varying variables. See Vertex shaders, output

variables.
vec4 uniform entries, in fragment shaders,

285
Vector components

accessing, 101–102
naming conventions, 102

Vector data types
description, 99–100
initializing, 100
type conversion, 100

Vector relational built-in functions, 475
Vertex array objects

binding, 151
creating, 144, 151
deleting, 154
drawing with, 152–154
initializing, 144
new features, 16
overview, 150–151

Index	 515

Vertex attribute variables, declaring in
vertex shaders, 135–137

Vertex attributes
active, listing, 136–137
enabling/disabling, 132–135
minimum number required, 126
querying, 126, 440–441

Vertex attributes, binding
to attribute variables, 137–140
to locations, 139–140
querying results of, 140

Vertex attributes, specifying
client vertex arrays, 126–135
constant vertex attributes, 126
description, 126

Vertex attributes, storing. See also Arrays of
structures; Structures of arrays.

constant vertex attributes, 132–135
data conversions, 132
normalized flag, 131–132
performance tips, 131–135
selecting a data format, 131
vertex arrays, 132–135

Vertex buffer objects. See also Buffer
objects.

array buffer objects, 140–141
binding, 141
creating, 141
element buffer objects, 140–141
making current, 141
overview, 140–141
state, 143–144
types of, 140–141

Vertex buffers, querying, 444
Vertex ID, new features, 15
Vertex shaders

2D texturing, 255–257
displacement mapping, 214–215
inputs/outputs, 111–114, 188–189.

See also specific inputs/outputs.
interpolation, 114–115
interpolators, 113
maximum uniform blocks, querying, 91
min/max limits, 190–192, 193–196
output variables, 5
precision qualifiers, 119–120, 192–193
Shading Language version, specifying, 6
uniforms, maximum number of,

193–196
vertex normal, computing, 412–413
vertex textures, 214–215
water surfaces, 214–215

Vertex shaders, built-ins
constants, 190–192
special variables, 189–190
uniform state, 190

Vertex shaders, examples
creating vertex shaders, 35–36
cube maps, 205–206
directional light, 199–202
generating texture coordinates, 205–206
height value, fetching, 412–413
latitude-longitude maps, 205–206
lighting, 199–205
matrix transformations, 196–199
model matrix, 197–198
OpenGL ES 1.1 fixed-function vertex

pipeline, 215–223
point light, 202
polygon joins, smoothing, 207–211
projection matrix, 198–199
reflective surfaces, 205–206
shiny surfaces, 205–206
sphere maps, 205–206
spotlight, 202–205
terrain surfaces, 214–215
transform feedback, 211–214
vertex skinning, 207–211
view matrix, 197–198

Vertex shaders, overview
entry point, 6–7
example, 6
inputs/outputs, 4–5
main function, 6–7
samplers, 4
shader program, 4
transform feedback, 5
uniforms, 4
vertex shader output variables, 5

Vertex skinning, example, 207–211
Vertex textures, 214–215
Vertices, transforming (example), 35–36
View frustrum, 7
View matrix, example, 197–198
Viewport, setting (example), 39–40
Viewport transformation, 178–179
Visual artifacts. See Mipmapping; Z-fighting

artifacts.

W
Waiting for sync objects, 359–360
warn behavior, 117
Water surfaces, vertex shaders, 214–215

516	 Index

Water wave simulation, 404
Winding order, triangle strips, 174
Windowing systems, communicating with,

44–45
Windows, 34–35. See also EGL windows.
Windows, emulating OpenGL ES 3.0,

447–449

Wrapping, texture coordinates, 243–244

Z
Z-fighting artifacts

avoiding, 121–123
polygon offset, 181–183

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefi ts.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram
IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall
Professional, Que, and Sams. Here you will gain access to quality and trusted content and
resources from the authors, creators, innovators, and leaders of technology. Whether you’re
looking for a book on a new technology, a helpful article, timely newsletters, or access to
the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefits:

• Access to supplemental content,
including bonus chapters,
source code, or project files.

• A coupon to be used on your
next purchase.

Registration benefits vary by product.
Benefits will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

aw_regthisprod_7x9.125.indd 1 12/5/08 3:36:19 PM

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefi ts.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall
Professional, Que, and Sams. Here you will gain access to quality and trusted content and
resources from the authors, creators, innovators, and leaders of technology. Whether you’re
looking for a book on a new technology, a helpful article, timely newsletters, or access to
the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

informit.com/register

THIS PRODUCT

aw_regthisprod_7x9.125.indd 1 12/5/08 3:36:19 PM

 InformIT is a brand of Pearson and the online presence
for the world’s leading technology publishers. It’s your source
for reliable and qualified content and knowledge, providing
access to the top brands, authors, and contributors from
the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at
informit.com/articles.

• Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook,
Twitter, YouTube, and more! Visit informit.com/socialconnect.

* Available to new subscribers only. Discount applies to the Safari Library and is valid for  rst
12 consecutive monthly billing cycles. Safari Library is not available in all countries.

Try Safari Books Online FREE for 15 days
Get online access to Thousands of Books and Videos

FREE 15-DAY TRIAL + 15% OFF*

informit.com/safaritrial

Feed your brain
Gain unlimited access to thousands of books and videos about technology,
digital media and professional development from O’Reilly Media,
Addison-Wesley, Microsoft Press, Cisco Press, McGraw Hill, Wiley, WROX,
Prentice Hall, Que, Sams, Apress, Adobe Press and other top publishers.

See it, believe it
Watch hundreds of expert-led instructional videos on today’s hottest topics.

WAIT, THERE’S MORE!
Gain a competitive edge
Be first to learn about the newest technologies and subjects with Rough Cuts
pre-published manuscripts and new technology overviews in Short Cuts.

Accelerate your project
Copy and paste code, create smart searches that let you know when new
books about your favorite topics are available, and customize your library
with favorites, highlights, tags, notes, mash-ups and more.

InformIT is a brand of Pearson and the online presence
for the world’s leading technology publishers. It’s your source
for reliable and qualified content and knowledge, providing
access to the top brands, authors, and contributors from
the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at
informit.com/articles.

• Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook,
Twitter, YouTube, and more! Visit informit.com/socialconnect.

* Available to new subscribers only. Discount applies to the Safari Library and is valid for  rst
12 consecutive monthly billing cycles. Safari Library is not available in all countries.

Try Safari Books Online FREE for 15 days
Get online access to Thousands of Books and Videos

FREE 15-DAY TRIAL + 15% OFF*

informit.com/safaritrial

Feed your brain
Gain unlimited access to thousands of books and videos about technology,
digital media and professional development from O’Reilly Media,
Addison-Wesley, Microsoft Press, Cisco Press, McGraw Hill, Wiley, WROX,
Prentice Hall, Que, Sams, Apress, Adobe Press and other top publishers.

See it, believe it
Watch hundreds of expert-led instructional videos on today’s hottest topics.

WAIT, THERE’S MORE!
Gain a competitive edge
Be first to learn about the newest technologies and subjects with Rough Cuts
pre-published manuscripts and new technology overviews in Short Cuts.

Accelerate your project
Copy and paste code, create smart searches that let you know when new
books about your favorite topics are available, and customize your library
with favorites, highlights, tags, notes, mash-ups and more.

Activate your FREE Online Edition at
informit.com/safarifree

STEP 1: Enter the coupon code: VERYYBI.

STEP 2: New Safari users, complete the brief registration form.
Safari subscribers, just log in.

If you have diffi culty registering on Safari or accessing the online edition,
please e-mail customer-service@safaribooksonline.com

Your purchase of OpenGL® ES™ 3.0 Programming Guide, Second Edition, includes access
to a free online edition for 45 days through the Safari Books Online subscription service.
Nearly every Addison-Wesley book is available online through Safari Books Online, along
with thousands of books and videos from publishers such as Cisco Press, Exam Cram, IBM
Press, O’Reilly Media, Prentice Hall, Que, Sams, and VMware Press.

Safari Books Online is a digital library providing searchable, on-demand access to thousands
of technology, digital media, and professional development books and videos from leading
publishers. With one monthly or yearly subscription price, you get unlimited access to learning
tools and information on topics including mobile app and software development, tips and tricks
on using your favorite gadgets, networking, project management, graphic design, and much
more.

FREE
Online Edition

SFOE_9780321933881.indd 1 1/24/14 10:30 AM

OpenGL ES 3.0 API Reference Card Page 1

Buffer Objects [2.9]
Buffer objects hold vertex array data or indices
in high-performance server memory.
void GenBuffers(sizei n, uint *buffers);
void DeleteBuffers(sizei n, const uint *buffers);

Creating and Binding Buffer Objects
void BindBuffer(enum target, uint buffer);

target: {ELEMENT_}ARRAY_BUFFER,
UNIFORM_BUFFER,
PIXEL_{UN}PACK_BUFFER,
COPY_{READ, WRITE}_BUFFER,
TRANSFORM_FEEDBACK_BUFFER

void BindBufferRange(enum target, uint index,
uint buffer, intptr offset, sizeiptr size);

target: {TRANSFORM_FEEDBACK, UNIFORM}_BUFFER

void BindBufferBase(enum target,
uint index, uint buffer);

target: {TRANSFORM_FEEDBACK, UNIFORM}_BUFFER

Creating Buffer Object Data Stores
void BufferData(enum target, sizeiptr size,

const void *data, enum usage);
target: See BindBuffer
usage:

{STATIC, STREAM, DYNAMIC}_{DRAW, READ, COPY}

void BufferSubData(enum target,
intptr offset, sizeiptr size,
const void *data);

target: See BindBuffer

Mapping and Unmapping Buffer Data
void *MapBufferRange(enum target,

intptr offset,
sizeiptr length, bitfield access);

target: See BindBuffer
access: Bitwise OR of MAP_{READ, WRITE}_BIT,

MAP_INVALIDATE_{RANGE, BUFFER_BIT},
MAP_FLUSH_EXPLICIT_BIT,
MAP_UNSYNCHRONIZED_BIT

void FlushMappedBufferRange(enum target,
intptr offset, sizeiptr length);

target: See BindBuffer

boolean UnmapBuffer(enum target);
target: See BindBuffer

Copying Between Buffers
void CopyBufferSubData(enum readtarget,

enum writetarget, intptr readoffset,
intptr writeoffset, sizeiptr size);

readtarget, writetarget: See target for BindBuffer

Buffer Object Queries [6.1.9]
boolean IsBuffer(uint buffer);

void GetBufferParameteriv(enum target,
enum pname, int * data);

target: See BindBuffer
pname: BUFFER_{SIZE, USAGE, ACCESS_FLAGS,

MAPPED}, BUFFER_ MAP_{POINTER, OFFSET,
LENGTH}

void GetBufferParameteri64v(enum target,
enum pname, int64 *data);

target, pname: See GetBufferParameteriv
void GetBufferPointerv(enum target,

enum pname, void **params);
target: See BindBuffer
pname: BUFFER_ MAP_POINTER

OpenGL® ES is a software interface to graphics hardware. The
interface consists of a set of procedures and functions that
allow a programmer to specify the objects and operations
involved in producing high-quality graphical images,
specifically color images of three-dimensional objects.
Specifications available at www.khronos.org/registry/gles/

• [n.n.n]: OpenGL ES 3.0 specification sections and tables
• [n.n.n]: OpenGL ES Shading Language 3.0 specification sections

OpenGL ES Command Syntax [2.3]
Open GL ES commands are formed from a return type, a name, and optionally a
type letter: i for 32-bit int, i64 for int64, f for 32-bit float, or ui for 32-bit uint, as
shown by the prototype below:

 return-type Name{1234}{i i64 f ui}{v} ([args ,] T arg1 , . . . , T argN [, args]);

The arguments enclosed in brackets ([args ,] and [, args]) may or may not be
present. The argument type T and the number N of arguments may be indicated
by the command name suffixes. N is 1, 2, 3, or 4 if present. If “v” is present, an
array of N items is passed by a pointer. For brevity, the OpenGL documentation and
this reference may omit the standard prefixes. The actual names are of the forms:
glFunctionName(), GL_CONSTANT, GLtype

Errors [2.5]
enum GetError(void); //Returns one of the following:
NO_ERROR No error encountered
INVALID_ENUM Enum argument out of range
INVALID_VALUE Numeric argument out of range
INVALID_OPERATION Operation illegal in current state
INVALID_FRAMEBUFFER_OPERATION Framebuffer is incomplete
OUT_OF_MEMORY Not enough memory left to execute command

GL Data Types [2.3]
GL types are not C types.

GL Type
Min Bit
Width Description

boolean 1 Boolean
byte 8 Signed 2’s complement binary integer
ubyte 8 Unsigned binary integer
char 8 Characters making up strings
short 16 Signed 2’s complement binary integer
ushort 16 Unsigned binary integer
int 32 Signed 2’s complement binary integer
uint 32 Unsigned binary integer
int64 64 Signed 2’s complement binary integer
uint64 64 Unsigned binary integer
fixed 32 Signed 2’s complement 16.16 scaled integer
sizei 32 Non-negative binary integer size
enum 32 Enumerated binary integer value
intptr ptrbits Signed 2’s complement binary integer
sizeiptr ptrbits Non-negative binary integer size
sync ptrbits Sync object handle
bitfield 32 Bit field
half 16 Half-precision float encoded in unsigned scalar
float 32 Floating-point value
clampf 32 Floating-point value clamped to [0, 1]

Vertex Array Objects [2.10, 6.1.10]
void GenVertexArrays(sizei n, uint *arrays);
boolean IsVertexArray(uint array);

void DeleteVertexArrays(
sizei n, const uint *arrays);

void BindVertexArray(
uint array);

Viewport , Clipping [2.12.1]
void DepthRangef(float n, float f);

void Viewport(int x, int y, sizei w,
sizei h);

Transform Feedback [2.14, 6.1.11]
void GenTransformFeedbacks(sizei n,

uint *ids);
void DeleteTransformFeedbacks(sizei n,

const uint *ids);
void BindTransformFeedback(enum target,

uint id);
target: TRANSFORM_FEEDBACK

void BeginTransformFeedback(
enum primitiveMode);

primitiveMode: TRIANGLES, LINES, POINTS

void EndTransformFeedback(void);
void PauseTransformFeedback(void);
void ResumeTransformFeedback(void);
boolean IsTransformFeedback(uint id);

http://www.khronos.org/registry/gles/

OpenGL ES 3.0 API Reference Card Page 2



void GetProgramBinary(uint program,
sizei bufSize, sizei *length,
enum *binaryFormat, void *binary);

void ProgramBinary(uint program,
enum binaryFormat, const void *binary,
sizei length);

Vertex Attributes [2.11.5]
void GetActiveAttrib(uint program,

uint index, sizei bufSize, sizei *length,
int *size, enum *type, char *name);

*type returns: FLOAT, FLOAT_VEC{2,3,4},
FLOAT_MAT{2,3,4},
FLOAT_MAT{2x3, 2x4, 3x2, 3x4, 4x2, 4x3},
{UNSIGNED_}INT, {UNSIGNED_}INT_VEC{2,3,4}

int GetAttribLocation(uint program,
const char *name);

void BindAttribLocation(uint program,
uint index, const char *name);

Uniform Variables [2.11.6]
int GetUniformLocation(uint program,

const char *name);
uint GetUniformBlockIndex(uint program,

const char *uniformBlockName);
void GetActiveUniformBlockName(

uint program, uint uniformBlockIndex,
sizei bufSize, sizei *length,
char *uniformBlockName);

void GetActiveUniformBlockiv(uint program,
uint uniformBlockIndex, enum pname,
int *params);

pname: UNIFORM_BLOCK_{BINDING, DATA_SIZE},
UNIFORM_BLOCK_{NAME_LENGTH},
UNIFORM_BLOCK_ACTIVE_{UNIFORMS,
UNIFORM_INDICES}, UNIFORM_BLOCK_
REFERENCED_BY_{VERTEX,FRAGMENT}_SHADER

void GetUniformIndices(
uint program, sizei uniformCount,
const char * const *uniformNames,
uint *uniformIndices);

void GetActiveUniform(uint program,
uint uniformIndex, sizei bufSize,
sizei *length, int *size, enum *type,
char *name);

*type returns: FLOAT, BOOL,
{FLOAT, BOOL}_VEC{2, 3, 4},
{UNSIGNED_}INT,
{UNSIGNED_}INT_VEC{2, 3, 4},
FLOAT_MAT{2, 3, 4},
FLOAT_MAT{2x3, 2x4, 3x2, 3x4, 4x2, 4x3},
SAMPLER_{2D, 3D, CUBE_SHADOW},
SAMPLER_2D{_ARRAY}_SHADOW,
{UNSIGNED_}INT_SAMPLER_{2D, 3D, CUBE},
{{UNSIGNED_}INT_}SAMPLER_2D_ARRAY

void GetActiveUniformsiv(
uint program, sizei uniformCount,
const uint *uniformIndices, enum pname,
int *params);

pname: UNIFORM_TYPE, UNIFORM_SIZE,
UNIFORM_NAME_LENGTH,
UNIFORM_BLOCK_INDEX, UNIFORM_{OFFSET,
ARRAY_STRIDE}, UNIFORM_MATRIX_STRIDE,
UNIFORM_IS_ROW_MAJOR

(Continued on next page >)

Shaders and Programs
Shader Objects [2.11.1]
uint CreateShader(enum type);

type: VERTEX_SHADER, FRAGMENT_SHADER

void ShaderSource(uint shader, sizei count,
const char * const *string,
const int *length);

void CompileShader(uint shader);
void ReleaseShaderCompiler(void);
void DeleteShader(uint shader);

Loading Shader Binaries [2.11.2]
void ShaderBinary(sizei count,

const uint *shaders, enum binaryformat,
const void *binary, sizei length);

Program Objects [2.11.3-4]
uint CreateProgram(void);
void AttachShader(uint program, uint shader);
void DetachShader(uint program, uint shader);
void LinkProgram(uint program);
void UseProgram(uint program);
void ProgramParameteri(uint program,

enum pname, int value);
pname: PROGRAM_BINARY_RETRIEVABLE_HINT

void DeleteProgram(uint program);

Vertices
Current Vertex State [2.7]
void VertexAttrib{1234}f(uint index,

float values);
void VertexAttrib{1234}fv(uint index,

const float *values);
void VertexAttribl4{i ui}(uint index, T values);
void VertexAttribl4{i ui}v(uint index,

const T values);

Vertex Arrays [2.8]
Vertex data may be sourced from arrays stored in
client’s address space (via a pointer) or in server’s
address space (in a buffer object).
void VertexAttribPointer(uint index, int size,

enum type, boolean normalized,
sizei stride, const void *pointer);

type: {UNSIGNED_}BYTE, {UNSIGNED_}SHORT,
{UNSIGNED_}INT, FIXED, {HALF_}FLOAT,
{UNSIGNED_}INT_2_10_10_10_REV

index: [0, MAX_VERTEX_ATTRIBS - 1]

void VertexAttribIPointer(uint index, int size,
enum type,
sizei stride, const void *pointer);

type: {UNSIGNED_}BYTE, {UNSIGNED_}SHORT,
{UNSIGNED_}INT

index: [0, MAX_VERTEX_ATTRIBS - 1]

void EnableVertexAttribArray(uint index);
void DisableVertexAttribArray(uint index);

void VertexAttribDivisor(uint index,
uint divisor);

index: [0, MAX_VERTEX_ATTRIBS - 1]

void Enable(enum target);
void Disable(enum target);

target: PRIMITIVE_RESTART_FIXED_INDEX

Drawing [2.8.3]
void DrawArrays(enum mode, int first,

sizei count);
void DrawArraysInstanced(enum mode,

int first, sizei count, sizei primcount);
void DrawElements(enum mode, sizei count,

enum type,
const void *indices);

type: UNSIGNED_BYTE, UNSIGNED_SHORT,
UNSIGNED_INT

void DrawElementsInstanced(enum mode,
sizei count, enum type, const void *indices,
sizei primcount);

type: UNSIGNED_BYTE, UNSIGNED_SHORT,
UNSIGNED_INT

void DrawRangeElements(enum mode,
uint start, uint end, sizei count, enum type,
const void *indices);

mode: POINTS, TRIANGLES, LINES, LINE_{STRIP, LOOP},
TRIANGLE_STRIP, TRIANGLE_FAN

type: UNSIGNED_BYTE, UNSIGNED_SHORT,
UNSIGNED_INT

Rasterization [3]
Points [3.4]
Point size is taken from the shader built-in
gl_PointSize and clamped to the
implementation-dependent point size range.

Line Segments [3.5]
void LineWidth(float width);

Polygons [3.6]
void FrontFace(enum dir);

dir: CCW, CW

void CullFace(enum mode);
mode: FRONT, BACK, FRONT_AND_BACK

Enable/Disable(CULL_FACE);
void PolygonOffset(float factor, float units);
Enable/Disable(POLYGON_OFFSET_FILL);

Reading, Copying Pixels [4.3.1-2]
void ReadPixels(int x, int y, sizei width,

sizei height, enum format, enum type,
void *data);

format: RGBA, RGBA_INTEGER
type: INT, UNSIGNED_INT_2_10_10_10_REV,

UNSIGNED_{BYTE, INT}
Note: [4.3.1] ReadPixels() also accepts a

queriable implementation-chosen format/type
combination.

void ReadBuffer(enum src);
src: BACK, NONE, or COLOR_ATTACHMENTi

where i may range from zero to the value of
MAX_COLOR_ATTACHMENTS - 1

void BlitFramebuffer(int srcX0, int srcY0,
int srcX1, int srcY1, int dstX0, int dstY0,
int dstX1, int dstY1, bitfield mask,
enum filter);

mask: Bitwise OR of
{COLOR, DEPTH, STENCIL}_BUFFER_BIT

filter: LINEAR or NEAREST

Asynchronous Queries [2.13, 6.1.7]
void GenQueries(sizei n, uint *ids);
void BeginQuery(enum target, uint id);

target: ANY_SAMPLES_PASSED{_CONSERVATIVE}
void EndQuery(enum target);

target: ANY_SAMPLES_PASSED{_CONSERVATIVE}

void DeleteQueries(sizei n, const uint *ids);
boolean IsQuery(uint id);
void GetQueryiv(enum target, enum pname,

int *params);
void GetQueryObjectuiv(uint id, enum pname,

uint *params);

OpenGL ES 3.0 API Reference Card Page 3





Texturing [3.8]
Shaders support texturing using at least
MAX_VERTEX_TEXTURE_IMAGE_UNITS images
for vertex shaders and at least MAX_TEXTURE_
IMAGE_UNITS images for fragment shaders.

void ActiveTexture(enum texture);
texture: [TEXTURE0..TEXTUREi] where
i = [MAX_COMBINED_TEXTURE_IMAGE_UNITS-1]

void GenTextures(sizei n, uint *textures);
void BindTexture(enum target, uint texture);
void DeleteTextures(sizei n, const uint

*textures);

Sampler Objects [3.8.2]
void GenSamplers(sizei count, uint *samplers);
void BindSampler(uint unit, uint sampler);
void SamplerParameter{if}(uint sampler,

enum pname, T param);
pname: TEXTURE_WRAP_{S, T, R},

TEXTURE_{MIN, MAG}_FILTER, TEXTURE_{MIN,
MAX}_LOD, TEXTURE_COMPARE_{MODE, FUNC}

void SamplerParameter{if}v(uint sampler,
enum pname, const T *params);

pname: See SamplerParameter{if}

void DeleteSamplers(sizei count,
const uint *samplers);

Sampler Queries [6.1.5]
boolean IsSampler(uint sampler);
void GetSamplerParameter{if}v(uint sampler,

enum pname, T *params);
pname: See SamplerParameter{if}

Texture Image Specification [3.8.3, 3.8.4]
void TexImage3D(enum target, int level,

int internalformat, sizei width, sizei height,
sizei depth, int border, enum format,
enum type, const void *data);

target: TEXTURE_3D, TEXTURE_2D_ARRAY
format: ALPHA, RGBA, RGB, RG, RED,

{RGBA, RGB, RG, RED}_INTEGER,
DEPTH_{COMPONENT, STENCIL},
LUMINANCE_ALPHA, LUMINANCE

type: {UNSIGNED_}BYTE, {UNSIGNED_}SHORT,
{UNSIGNED_}INT, UNSIGNED_SHORT_5_6_5,
UNSIGNED_SHORT_4_4_4_4,
UNSIGNED_SHORT_5_5_5_1, {HALF_}FLOAT,
UNSIGNED_INT_2_10_10_10_REV,
UNSIGNED_INT_24_8,
UNSIGNED_INT_10F_11F_11F_REV,
UNSIGNED_INT_5_9_9_9_REV,
FLOAT_32_UNSIGNED_INT_24_8_REV

internalformat: R8, R8I, R8UI, R8_SNORM, R16I,
R16UI, R16F, R32I, R32UI, R32F, RG8, RG8I,
RG8UI, RG8_SNORM, RG16I, RG16UI, RG16F,
RG32I, RG32UI, RG32F, RGB, RGB5_A1, RGB565,
RGB8, RGB8I, RGB8UI, RGB8_SNORM, RGB9_E5,

RGB10_A2, RGB10_A2UI, RGB16I, RGB16UI,
RGB16F, RGB32I, RGB32UI, RGB32F, SRGB8,
RGBA, RGBA4, RGBA8, RGBA8I, RGBA8UI,
RGBA8_SNORM, RGBA16I, RGBA16UI, RGBA16F,
RGBA32I, RGBA32UI, RGBA32F, SRGB8_ALPHA8,
R11F_G11F_B10F, DEPTH_COMPONENT16,
DEPTH_COMPONENT24,
DEPTH_COMPONENT32F, DEPTH24_STENCIL8,
DEPTH32F_STENCIL8, LUMINANCE_ALPHA,
LUMINANCE, ALPHA

void TexImage2D(enum target, int level,
int internalformat, sizei width,
sizei height, int border, enum format,
enum type, void *data);

target: TEXTURE_2D,
TEXTURE_CUBE_MAP_POSITIVE_{X, Y, Z},
TEXTURE_CUBE_MAP_NEGATIVE}{X, Y, Z}

internalformat: See TexImage3D
format, type: See TexImage3D

void TexStorage2D(enum target, sizei levels,
enum internalformat, sizei width,
sizei height);

target: TEXTURE_CUBE_MAP, TEXTURE_2D
internalformat: See TexImage3D except for

unsized base internal formats in [Table 3.3]

void TexStorage3D(enum target, sizei levels,
enum internalformat, sizei width,
sizei height, sizei depth);

target: TEXTURE_3D, TEXTURE_2D_ARRAY
internalformat: See TexImage3D except for

unsized base internal formats in [Table 3.3]

Shaders and Programs (Cont’d)
void Uniform{1234}{if}(int location, T value);
void Uniform{1234}{if}v(int location,

sizei count, const T value);
void Uniform{1234}ui(int location, T value);
void Uniform{1234}uiv(int location,

sizei count, const T value);
void UniformMatrix{234}fv(int location,

sizei count, boolean transpose,
const float *value);

void UniformMatrix{
2x3,3x2,2x4,4x2,3x4,4x3}fv(
int location, sizei count,
boolean transpose, const float *value);

void UniformBlockBinding(uint program,
uint uniformBlockIndex,
uint uniformBlockBinding);

Output Variables [2.11.8]
void TransformFeedbackVaryings(

uint program, sizei count,
const char * const *varyings,
enum bufferMode);

bufferMode: {INTERLEAVED, SEPARATE}_ATTRIBS
void GetTransformFeedbackVarying(

uint program, uint index, sizei bufSize,
sizei *length, sizei *size, enum *type,
char *name);

*type returns any of the scalar, vector, or matrix
attribute types returned by GetActiveAttrib().

Shader Execution [2.11.9, 3.9.2]
void ValidateProgram(uint program);
int GetFragDataLocation(uint program,

const char *name);

Shader Queries
Shader Queries [6.1.12]
boolean IsShader(uint shader);
void GetShaderiv(uint shader, enum pname,

int *params);
pname: SHADER_TYPE, {VERTEX,

FRAGMENT_SHADER}, {DELETE, COMPILE}_STATUS,
INFO_LOG_LENGTH, SHADER_SOURCE_LENGTH

void GetAttachedShaders(uint program,
sizei maxCount, sizei *count, uint *shaders);

void GetShaderInfoLog(uint shader,
sizei bufSize, sizei *length, char *infoLog);

void GetShaderSource(uint shader,
sizei bufSize, sizei *length, char *source);

void GetShaderPrecisionFormat(
enum shadertype, enum precisiontype,
int *range, int *precision);

shadertype: VERTEX_SHADER,
FRAGMENT_SHADER

precision: LOW_FLOAT, MEDIUM_FLOAT, HIGH_FLOAT,
LOW_INT, MEDIUM_INT, HIGH_INT

void GetVertexAttribfv(uint index,
enum pname, float *params);

pname: CURRENT_VERTEX_ATTRIB ,
VERTEX_ATTRIB_ARRAY_x (where x may be
BUFFER_BINDING, DIVISOR, ENABLED, INTEGER, SIZE,
STRIDE, TYPE, NORMALIZED)

void GetVertexAttribiv(uint index,
enum pname, int *params);

pname: See GetVertexAttribfv()

void GetVertexAttribIiv(uint index,
enum pname, int *params);

pname: See GetVertexAttribfv()

void GetVertexAttribIuiv(uint index,
enum pname, uint *params);

pname: See GetVertexAttribfv()

void GetVertexAttribPointerv(uint index,
enum pname, void **pointer);

pname: VERTEX_ATTRIB_ARRAY_POINTER

void GetUniformfv(uint program,
int location, float *params);

void GetUniformiv(uint program,
int location, int *params);

void GetUniformuiv(uint program,
int location, uint *params);

Program Queries [6.1.12]
boolean IsProgram(uint program);
void GetProgramiv(uint program,

enum pname, int *params);
pname: {DELETE, LINK, VALIDATE}_STATUS,

INFO_LOG_LENGTH,
ACTIVE_UNIFORM_BLOCKS,
TRANSFORM_[FEEDBACK_]VARYINGS,
TRANSFORM_FEEDBACK_BUFFER_MODE,
TRANSFORM_FEEDBACK_VARYING_MAX_
LENGTH,
ATTACHED_SHADERS, ACTIVE_ATTRIBUTES,
ACTIVE_UNIFORMS,
ACTIVE_{ATTRIBUTE, UNIFORM}_MAX_LENGTH,
ACTIVE_UNIFORM_BLOCK_MAX_NAME_
LENGTH,
PROGRAM_BINARY_RETRIEVABLE_HINT

void GetProgramInfoLog(uint program,
sizei bufSize, sizei *length,
char *infoLog);

(Continued on next page >)

OpenGL ES 3.0 API Reference Card Page 4



Whole Framebuffer
Selecting a Buffer for Writing [4.2.1]
void DrawBuffers(sizei n, const

enum *bufs);
bufs points to an array of n BACK, NONE,

or COLOR_ATTACHMENTi
where i = [0,MAX_COLOR_ATTACHMENTS - 1].

Fine Control of Buffer Updates [4.2.2]
void ColorMask(boolean r, boolean g,

boolean b, boolean a);
void DepthMask(boolean mask);
void StencilMask(uint mask);
void StencilMaskSeparate(enum face,

uint mask);
face: FRONT, BACK, FRONT_AND_BACK

Clearing the Buffers [4.2.3]
void Clear(bitfield buf);

buf: Bitwise OR of COLOR_BUFFER_BIT,
DEPTH_BUFFER_BIT, STENCIL_BUFFER_BIT

void ClearColor(float r, float g, float b, float a);
void ClearDepthf(float d);
void ClearStencil(int s);
void ClearBuffer{if ui}v(enum buffer,

int drawbuffer, const T *value);
buffer: COLOR, DEPTH, STENCIL

void ClearBufferfi(enum buffer,
int drawbuffer, float depth, int stencil);

buffer: DEPTH_STENCIL
drawbuffer: 0

Texturing (continued)
Alt. Texture Image Specification

Commands [3.8.5]
Texture images may also be specified using image
data taken directly from the framebuffer, and
rectangular subregions of existing texture images
may be respecified.

void CopyTexImage2D(enum target, int level,
enum internalformat, int x, int y,
sizei width, sizei height, int border);

target: TEXTURE_2D,
TEXTURE_CUBE_MAP_POSITIVE_{X, Y, Z},
TEXTURE_CUBE_MAP_NEGATIVE_{X, Y, Z}

internalformat: See TexImage3D, except for DEPTH*
values

void TexSubImage3D(enum target, int level,
int xoffset, int yoffset, int zoffset,
sizei width, sizei height, sizei depth,
enum format, enum type, const void *data);

target: TEXTURE_3D, TEXTURE_2D_ARRAY
format, type: See TexImage3D

void TexSubImage2D(enum target, int level,
int xoffset, int yoffset, sizei width,
sizei height, enum format,
enum type, const void *data);

target: TEXTURE_2D,
TEXTURE_CUBE_MAP_POSITIVE_{X, Y, Z},
TEXTURE_CUBE_MAP_NEGATIVE_{X, Y, Z}

format, type: See TexImage3D

void CopyTexSubImage3D(enum target,
int level, int xoffset, int yoffset, int zoffset,
int x, int y, sizei width, sizei height);

target: TEXTURE_3D, TEXTURE_2D_ARRAY

void CopyTexSubImage2D(enum target,
int level, int xoffset, int yoffset, int x,
int y, sizei width, sizei height);

target: See TexSubImage2D

Compressed Texture Images [3.8.6]
void CompressedTexImage2D(enum target,

int level, enum internalformat, sizei width,
sizei height, int border, sizei imageSize,
const void *data);

target: See TexImage2D
internalformat: COMPRESSED_RGBA8_ETC2_EAC,

COMPRESSED_{R{G}11, SIGNED_R{G}11}_EAC,
COMPRESSED_SRGB8_ALPHA8_ETC2_EAC,
COMPRESSED_{S}RGB8{_PUNCHTHROUGH_
ALPHA1}_ETC2 [Table 3.16]

void CompressedTexImage3D(enum target,
int level, enum internalformat, sizei width,
sizei height, sizei depth, int border,
sizei imageSize, const void *data);

target: see TexImage3D
internalformat: See TexImage2D

void CompressedTexSubImage2D(enum target,
int level, int xoffset, int yoffset, sizei width,
sizei height, enum format, sizei imageSize,
const void *data);

target: See TexSubImage2D

void CompressedTexSubImage3D(
enum target, int level, int xoffset, int yoffset,
int zoffset, sizei width, sizei height,
sizei depth, enum format, sizei imageSize,
const void *data);

target: See TexSubImage2D

Texture Parameters [3.8.7]
void TexParameter{if}(enum target,

enum pname, T param);
void TexParameter{if}v(enum target,

enum pname, const T *params);
target: TEXTURE_{2D, 3D}, TEXTURE_2D_ARRAY,

TEXTURE_CUBE_MAP
pname: TEXTURE_{BASE, MAX}_LEVEL,

TEXTURE_{MIN, MAX}_LOD,
TEXTURE_{MIN, MAG}_FILTER,
TEXTURE_COMPARE_{MODE,FUNC},
TEXTURE_SWIZZLE_{R,G,B,A},
TEXTURE_WRAP_{S,T,R}

Manual Mipmap Generation [3.8.9]
void GenerateMipmap(enum target);

target: TEXTURE_{2D,3D}, TEXTURE_{2D_ARRAY,
CUBE_MAP}

Enumerated Queries [6.1.3]
void GetTexParameter{if}v(enum target,

enum value,
T data);

target: TEXTURE_{2D, 3D},
TEXTURE_{2D_ARRAY, CUBE_MAP}

value: TEXTURE_{BASE, MAX}_LEVEL,
TEXTURE_{MIN, MAX}_LOD,
TEXTURE_{MIN, MAG}_FILTER,
TEXTURE_IMMUTABLE_FORMAT,
TEXTURE_COMPARE_{FUNC, MODE},
TEXTURE_WRAP_{S, T, R},
TEXTURE_SWIZZLE_{R, G, B, A}

Texture Queries [6.1.4]
boolean IsTexture(uint texture);

Per-Fragment Operations
Scissor Test [4.1.2]
Enable/Disable(SCISSOR_TEST);
void Scissor(int left, int bottom, sizei width,

sizei height);

Multisample Fragment Operations [4.1.3]
Enable/Disable(cap);

cap: SAMPLE{_ALPHA_TO}_COVERAGE

void SampleCoverage(float value,
boolean invert);

Stencil Test [4.1.4]
Enable/Disable(STENCIL_TEST);
void StencilFunc(enum func, int ref,

uint mask);
func: NEVER, ALWAYS, LESS, GREATER,

{L, G}EQUAL, {NOT}EQUAL

void StencilFuncSeparate(enum face,
enum func, int ref, uint mask);

face, func: See StencilOpSeparate

void StencilOp(enum sfail, enum dpfail,
enum dppass);

sfail, dpfail, and dppass: KEEP, ZERO, REPLACE, INCR,
DECR, INVERT, INCR_WRAP, DECR_WRAP

void StencilOpSeparate(enum face,
enum sfail, enum dpfail, enum dppass);

face: FRONT, BACK, FRONT_AND_BACK
sfail, dpfail, and dppass: KEEP, ZERO, REPLACE, INCR,

DECR, INVERT, INCR_WRAP, DECR_WRAP
func: NEVER, ALWAYS, LESS, GREATER,

{L, G}EQUAL, {NOT}EQUAL

Depth Buffer Test [4.1.5]
Enable/Disable(DEPTH_TEST);
void DepthFunc(enum func);

func: NEVER, ALWAYS, LESS, LEQUAL, EQUAL,
GREATER, GEQUAL, NOTEQUAL

Blending [4.1.7]
Enable/Disable(BLEND); (all draw buffers)
void BlendEquation(enum mode);

void BlendEquationSeparate(
enum modeRGB, enum modeAlpha);

mode, modeRGB, and modeAlpha: FUNC_ADD,
FUNC[_REVERSE]_SUBTRACT, MIN, MAX

void BlendFuncSeparate(
enum srcRGB, enum dstRGB,
enum srcAlpha, enum dstAlpha);

srcRGB, dstRGB, srcAlpha, and dstAlpha: ZERO, ONE,
{ONE_MINUS_}SRC_COLOR,
{ONE_MINUS_}DST_COLOR,
{ONE_MINUS_}SRC_ALPHA,
{ONE_MINUS_}DST_ALPHA,
{ONE_MINUS_}CONSTANT_COLOR,
{ONE_MINUS_}CONSTANT_ALPHA, SRC_ALPHA_
SATURATE

void BlendFunc(enum src, enum dst);
src, dst: See BlendFuncSeparate

void BlendColor(float red, float green, float blue,
float alpha);

Dithering [4.1.9]
Enable/Disable(DITHER);

OpenGL ES 3.0 API Reference Card Page 5

Special Functions
Flush and Finish [5.1]
Flush guarantees that commands issued so far
will eventually complete. Finish blocks until all
commands issued so far have completed.
void Flush(void);
void Finish(void);

Sync Objects and Fences [5.2]
sync FenceSync(enum condition,

bitfield flags);
condition: SYNC_GPU_COMMANDS_COMPLETE
flags: 0

enum ClientWaitSync(sync sync, bitfield flags,
uint64 timeout);

flags: 0 or SYNC_FLUSH_COMMANDS_BIT
timeout: nanoseconds

void WaitSync(
sync sync, bitfield flags, uint64 timeout);

flags: 0
timeout: TIMEOUT_IGNORED

void DeleteSync(sync sync);
Hints [5.3]
void Hint(enum target, enum hint);

target: GENERATE_MIPMAP_HINT,
FRAGMENT_SHADER_DERIVATIVE_HINT

hint: FASTEST, NICEST, DONT_CARE

Sync Object Queries [6.1.8]
sync GetSynciv(sync sync, enum pname,

sizei bufSize, sizei *length, int *values);
pname: OBJECT_TYPE, SYNC_{STATUS, CONDITION,

FLAGS}

boolean IsSync(sync sync);

Visit khronos.org/opengles for a free
PDF of the full-size OpenGL ES 3.0 API
referencce card, or purchase
a laminated card on amazon.com
(search for “Khronos reference card”).

State and State Requests
A complete list of symbolic constants for states
is shown in the tables in [6.2].

Simple Queries [6.1.1]
void GetBooleanv(enum pname,

boolean *data);
void GetIntegerv(enum pname, int *data);
void GetInteger64v(enum pname,

int64 *data);
void GetFloatv(enum pname, float *data);
void GetIntegeri_v(enum target, uint index,

int *data ;
void GetInteger64i_v(enum target,

uint index, int64 *data);
boolean IsEnabled(enum cap);

String Queries [6.1.6]
ubyte *GetString(enum name);

name: VENDOR, RENDERER, EXTENSIONS,
{SHADING_LANGUAGE_}VERSION

ubyte *GetStringi(enum name, uint index);
name: EXTENSIONS

`Framebuffer Objects
Binding/Managing Framebuffer [4.4.1]
void GenFramebuffers(sizei n,

uint *framebuffers);
void BindFramebuffer(enum target,

uint framebuffer);
void DeleteFramebuffers(sizei n,

const uint *framebuffers);

Renderbuffer Objects [4.4.2]
void GenRenderbuffers(sizei n,

uint *renderbuffers);
void BindRenderbuffer(enum target,

uint renderbuffer);
target: RENDERBUFFER

void DeleteRenderbuffers(sizei n,
const uint *renderbuffers);

void RenderbufferStorageMultisample(
enum target, sizei samples,
enum internalformat, sizei width,
sizei height);

target: RENDERBUFFER
internalformat: {R,RG,RGB}8,

RGB{565, A4, 5_A1, 10_A2},
RGB{10_A2UI}, R{8,16,32}I, RG{8,16,32}I,
R{8,16,32}UI, RG{8,16,32}UI, RGBA,
RGBA{8, 8I, 8UI, 16I, 16UI, 32I, 32UI},
SRGB8_ALPHA8, STENCIL_INDEX8,
DEPTH{24, 32F}_STENCIL8,
DEPTH_COMPONENT{16, 24, 32F}

void RenderbufferStorage(enum target,
enum internalformat, sizei width,
sizei height);

target: RENDERBUFFER
internalformat: See

RenderbufferStorageMultisample

Attach Renderbuffer Images to Framebuffer
void FramebufferRenderbuffer(enum target,

enum attachment,
enum renderbuffertarget,
uint renderbuffer);

target: FRAMEBUFFER,
{DRAW, READ}_FRAMEBUFFER

attachment: DEPTH_ATTACHMENT,
{DEPTH_}STENCIL_ATTACHMENT,
COLOR_ATTACHMENTi
(i = [0, MAX_COLOR_ATTACHMENTS-1])

renderbuffertarget: RENDERBUFFER

Attaching Texture Images to a Framebuffer
void FramebufferTexture2D(enum target,

enum attachment, enum textarget,
uint texture, int level);

textarget: TEXTURE_2D,
TEXTURE_CUBE_MAP_POSITIVE{X, Y, Z},
TEXTURE_CUBE_MAP_NEGATIVE{X, Y, Z}

target: FRAMEBUFFER,
{DRAW, READ}_FRAMEBUFFER

attachment: See FrameBufferRenderbuffer

void FramebufferTextureLayer(enum target,
enum attachment, uint texture, int level,
int layer);

target: TEXTURE_2D_ARRAY, TEXTURE_3D
attachment: See FrameBufferRenderbuffer

Framebuffer Completeness [4.4.4]
enum CheckFramebufferStatus(

enum target);
target: FRAMEBUFFER,

{DRAW, READ}_FRAMEBUFFER
returns: FRAMEBUFFER_COMPLETE or a constant

indicating which value violates framebuffer
completeness

Invalidating Framebuffer Contents [4.5]
void InvalidateSubFramebuffer(

enum target, sizei numAttachments,
const enum *attachments, int x,
int y, sizei width, sizei height);

target: FRAMEBUFFER
attachments: points to an array of COLOR, STENCIL,

{DEPTH, STENCIL}_ATTACHMENT,
COLOR_ATTACHMENTi

void InvalidateFramebuffer(enum target,
sizei numAttachments,
const enum *attachments);

Renderbuffer Object Queries [6.1.14]
boolean IsRenderbuffer(uint renderbuffer);
void GetRenderbufferParameteriv(

enum target, enum pname, int *params);
target: RENDERBUFFER
pname: RENDERBUFFER_x, where x may be

WIDTH, HEIGHT, {RED, GREEN, BLUE}_SIZE,
{ALPHA, DEPTH, STENCIL}_SIZE, SAMPLES,
INTERNAL_FORMAT

Framebuffer Object Queries [6.1.13]
boolean IsFramebuffer(uint framebuffer);
void

GetFramebufferAttachmentParameteriv(
enum target, enum attachment,
enum pname, int *params);

target: FRAMEBUFFER, {DRAW, READ}_FRAMEBUFFER
attachment: BACK, STENCIL, COLOR_ATTACHMENTi,

{DEPTH, STENCIL, DEPTH_STENCIL}_ATTACHMENT
pname: FRAMEBUFFER_ATTACHMENT_x,

where x may be one of OBJECT_{TYPE, NAME},
COMPONENT_TYPE, COLOR_ENCODING,
{RED, GREEN, BLUE, ALPHA}_SIZE,
{DEPTH, STENCIL}_SIZE, TEXTURE_{LEVEL, LAYER},
TEXTURE_CUBE_MAP_FACE

void GetInternalformativ(enum target,
enum internalformat, enum pname,
sizei bufSize, int *params);

internalformat:
See RenderbufferStorageMultisample

target: RENDERBUFFER
pname: NUM_SAMPLE_COUNTS, SAMPLES

Pixel Rectangles [3.7.1]
void PixelStorei(enum pname, T param);

pname: {UN}PACK_ROW_LENGTH,
{UN}PACK_ALIGNMENT,
{UN}PACK_SKIP_{ROWS,PIXELS},
{UN}PACK_IMAGE_HEIGHT,
{UN}PACK_SKIP_IMAGES

OpenGL ES Shading Language 3.0 Reference Card Page 6



Types [4.1]
A shader can aggregate these using arrays and
structures to build more complex types. There
are no pointer types.
Basic Types
void no function return value or

empty parameter list
bool Boolean

int, uint signed, unsigned integer

float floating scalar

vec2, vec3, vec4 n-component floating
point vector

bvec2, bvec3, bvec4 Boolean vector

ivec2, ivec3, ivec4 signed integer vector

uvec2, uvec3, uvec4 unsigned integer vector

mat2, mat3, mat4 2x2, 3x3, 4x4 float matrix

mat2x2, mat2x3, mat2x4 2x2, 2x3, 2x4 float matrix

mat3x2, mat3x3, mat3x4 3x2, 3x3, 3x4 float matrix

mat4x2, mat4x3, mat4x4 4x2, 4x3, 4x4 float matrix

Floating Point Sampler Types (opaque)
sampler2D, sampler3D access a 2D or 3D texture
samplerCube access cube mapped

texture
samplerCubeShadow access cube map depth

texture with comparison
sampler2DShadow access 2D depth texture

with comparison
sampler2DArray access 2D array texture
sampler2DArrayShadow access 2D array depth

texture with comparison

Signed Integer Sampler Types (opaque)
isampler2D,
isampler3D

access an integer 2D or 3D texture

isamplerCube access integer cube mapped texture

isampler2DArray access integer 2D array texture

Unsigned Int Sampler Types (opaque)
usampler2D, usampler3D access unsigned integer 2D or

3D texture
usamplerCube access unsigned integer cube

mapped texture
usampler2DArray access unsigned integer 2D

array texture

Structures and Arrays [4.1.8, 4.1.9]
Structures struct type-name {

 members
} struct-name[]; // optional variable

 // declaration or array

Arrays float foo[3];
 structures, blocks, and structure
members can be arrays
 only 1-dimensional arrays supported

Operators and Expressions
Operators [5.1] Numbered in order of pre-
cedence. The relational and equality operators >
< <= >= == != evaluate to a Boolean. To compare
vectors component-wise, use functions such as
lessThan(), equal(), etc. [8.7].

Operator Description Assoc.

1. () parenthetical grouping N/A

2.
[]
()
 .

++ --

array subscript
function call &
constructor structure
field or method
selector, swizzler
postfix increment and
decrement

L - R

3. ++ --
+ - ~ !

prefix increment and
decrement
unary

R - L

4. * % / multiplicative L - R
5. + - additive L - R
6. << >> bit-wise shift L - R
7. < > <= >= relational L - R
8. == != equality L - R
9. & bit-wise and L - R

10. ^ bit-wise exclusive or L - R
11. | bit-wise inclusive or L - R

Operator Description Assoc.
12. && logical and L - R
13. ^^ logical exclusive or L - R
14. | | logical inclusive or L - R

15. ? :

selection
(Selects an entire
operand. Use mix()
to select individual
components of
vectors.)

L - R

16.

= assignment L - R
+= -= *= /=
%= <<= >>=

&= ^= |=
arithmetic
assignments L - R

17. , sequence L - R

Vector Components [5.5]
In addition to array numeric subscript syntax,
names of vector components are denoted by a
single letter. Components can be swizzled and
replicated, e.g.: pos.xx, pos.zy

{x, y, z, w} Use when accessing vectors that represent
points or normals

{r, g, b, a} Use when accessing vectors that represent
colors

{s, t, p, q} Use when accessing vectors that represent
texture coordinates

Qualifiers
Storage Qualifiers [4.3]
Variable declarations may be preceded by one
storage qualifier.

none (Default) local read/write memory, or
input parameter

const Compile-time constant, or read-only
function parameter.

in
centroid in

linkage into a shader from a previous
stage

out
centroid out

linkage out of a shader to a
subsequent stage

uniform
Value does not change across the
primitive being processed, uniforms form
the linkage between a shader, OpenGL
ES, and the application

The following interpolation qualifiers for
shader outputs and inputs may procede in,
centroid in, out, or centroid out.
smooth perspective correct interpolation

flat no interpolation

Predefined Macros

__LINE__ Decimal integer constant that is one more than the number of preceding newlines in the
current source string

__FILE__ Decimal integer constant that says which source string number is currently being processed.

__VERSION__ Decimal integer, e.g.: 300

GL_ES Defined and set to integer 1 if running on an OpenGL-ES Shading Language.

Preprocessor [3.4]
Preprocessor Directives
The number sign (#) can be immediately
preceded or followed in its line by spaces or
horizontal tabs.

#define #undef
#if #ifdef #ifndef
#else #elif #endif
#error #pragma #extension
#line

Examples of Preprocessor Directives
• “#version 300 es” must appear in the first line

of a shader program written in GLSL ES version
3.00. If omitted, the shader will be treated as
targeting version 1.00.

• #extension extension_name : behavior,
where behavior can be require, enable, warn,
or disable; and where extension_name is the
extension supported by the compiler

• #pragma optimize({on, off}) - enable or
disable shader optimization (default on)

• #pragma debug({on, off}) - enable or
disable compiling shaders with debug
information (default off)

The OpenGL® ES Shading Language is two closely-related
languages which are used to create shaders for the vertex and
fragment processors contained in the OpenGL ES processing
pipeline.

[n.n.n] and [Table n.n] refer to sections and tables
in the OpenGL ES Shading Language 3.0 specification at www.
khronos.org/registry/gles/

(Continued on next page >)

http://www.khronos.org/registry/gles/
http://www.khronos.org/registry/gles/

OpenGL ES Shading Language 3.0 Reference Card Page 7



Aggregate Operations and
Constructors
Matrix Constructor Examples [5.4.2]
mat2(float) // init diagonal

mat2(vec2, vec2); // column-major order

mat2(float, float, float, float);
// column-major order

Structure Constructor Example [5.4.3]
struct light {
 float intensity;
 vec3 pos;

 };
light lightVar = light(3.0, vec3(1.0, 2.0, 3.0));

Matrix Components [5.6]
Access components of a matrix with array
subscripting syntax.
For example:

mat4 m; // m represents a matrix

m[1] = vec4(2.0); // sets second column to
// all 2.0

m[0][0] = 1.0; // sets upper left element
// to 1.0

m[2][3] = 2.0; // sets 4th element of 3rd
// column to 2.0

Examples of operations on matrices and
vectors:

m = f * m; // scalar * matrix
// component-wise

v = f * v; // scalar * vector
// component-wise

v = v * v; // vector * vector c
// component-wise

m = m +/- m; // matrix component-wise
// addition/subtraction

m = m * m; // linear algebraic multiply
m = v * m; // row vector * matrix linear

// algebraic multiply

m = m * v; // matrix * column vector linear
// algebraic multiply

f = dot(v, v); // vector dot product
v = cross(v, v); // vector cross product
m = matrixCompMult(m, m);

// component-wise multiply

Structure Operations [5.7]
Select structure fields using the period (.)
operator. Valid operators are:

. field selector
== != equality

= assignment

Array Operations [5.7]
Array elements are accessed using the array
subscript operator “[]”. For example:

diffuseColor += lightIntensity[3] * NdotL;

The size of an array can be determined using
the .length() operator. For example:
 for (i = 0; i < a.length(); i++)
 a[i] = 0.0;

Qualifiers (continued)
Interface Blocks [4.3.7]
Uniform variable declarations can be grouped
into named interface blocks, for example:

uniform Transform {
 mat4 ModelViewProjectionMatrix;
 uniform mat3 NormalMatrix; // restatement
of qualifier
 float Deformation;
}

Layout Qualifiers [4.3.8]
layout(layout-qualifier) block-declaration
layout(layout-qualifier) in/out/uniform
layout(layout-qualifier) in/out/uniform

 declaration

Input Layout Qualifiers [4.3.8.1]
For all shader stages:

location = integer-constant

Output Layout Qualifiers [4.3.8.2]
For all shader stages:

location = integer-constant

Uniform Block Layout Qualifiers [4.3.8.3]
Layout qualifier identifiers for uniform blocks:

shared, packed, std140, {row, column}_major

Parameter Qualifiers [4.4]
Input values are copied in at function call time, output values are copied out at function return
time.

none (Default) same as in
in For function parameters passed into a function
out For function parameters passed back out of a function, but not initialized for use when passed in
inout For function parameters passed both into and out of a function

Precision and Precision Qualifiers [4.5]
Any floating point, integer, or sampler declaration can have the type preceded by one of these
precision qualifiers:

highp Satisfies minimum requirements for the vertex language.
mediump Range and precision is between that provided by lowp and highp.

lowp Range and precision can be less than mediump, but still represents all color values for any color
channel.

A precision statement establishes a default precision qualifier for subsequent int, float, and
sampler declarations, e.g.:
 precision highp int;

Ranges & precisions for precision qualifiers (FP=floating point):

FP Range FP Magnitude Range FP Precision
Integer Range

Signed Unsigned

highp (−2126 , 2127) 0.0, (2–126 , 2127) Relative 2–24 [−231, 231 −1] [0, 232 −1]

mediump (−214 , 214) (2–14 , 214) Relative 2–10 [−215, 215 −1] [0, 216 −1]

lowp (−2, 2) (2–8 , 2) Absolute 2–8 [−27, 27 −1] [0, 28 −1]

Invariant Qualifiers Examples [4.6]
#pragma STDGL invariant(all) Force all output variables to be invariant
invariant gl_Position; Qualify a previously declared variable
invariant centroid out
 vec3 Color; Qualify as part of a variable declaration

Order of Qualification [4.7]
When multiple qualifications are present, they must follow a strict order. This order is one of the
following:
 invariant, interpolation, storage, precision
 storage, parameter, precision

Statements and Structure
Iteration and Jumps [6]

Entry void main()

Iteration for (;;) { break, continue }
while () { break, continue }
do { break, continue } while ();

Selection if () { }
if () { } else { }
switch () { break, case }

Jump break, continue, return
discard // Fragment shader only

OpenGL ES Shading Language 3.0 Reference Card Page 8



Built-In Functions
Angle & Trigonometry Functions [8.1]
Component-wise operation. Parameters specified as angle are assumed to
be in units of radians. T is float, vec2, vec3, vec4.

T radians (T degrees); degrees to radians

T degrees (T radians); radians to degrees

T sin (T angle); sine

T cos (T angle); cosine

T tan (T angle); tangent

T asin (T x); arc sine

T acos (T x); arc cosine

T atan (T y, T x);
T atan (T y_over_x); arc tangent

T sinh (T x); hyperbolic sine

T cosh (T x); hyperbolic cosine

T tanh (T x); hyperbolic tangent

T asinh (T x); arc hyperbolic sine; inverse of sinh

T acosh (T x); arc hyperbolic cosine; non-negative inverse of cosh

T atanh (T x); arc hyperbolic tangent; inverse of tanh

Exponential Functions [8.2]
Component-wise operation. T is float, vec2, vec3, vec4.

T pow (T x, T y); xy

T exp (T x); ex

T log (T x); ln

T exp2 (T x); 2x

T log2 (T x); log2
T sqrt (T x); square root

T inversesqrt (T x); inverse square root

Common Functions [8.3]
Component-wise operation. T is float and vecn, TI is int and ivecn, TU is uint
and uvecn, and TB is bool and bvecn, where n is 2, 3, or 4.

T abs(T x);
TI abs(TI x); absolute value

T sign(T x);
TI sign(TI x); returns -1.0, 0.0, or 1.0

T floor(T x); nearest integer <= x

T trunc (T x); nearest integer a such that |a| <= |x|

T round (T x); round to nearest integer

T roundEven (T x); round to nearest integer

T ceil(T x); nearest integer >= x

T fract(T x); x - floor(x)

T mod(T x, T y);
T mod(T x, float y);
T modf(T x, out T i);

modulus

T min(T x, T y);
TI min(TI x, TI y);
TU min(TU x, TU y);
T min(T x, float y);
TI min(TI x, int y);
TU min(TU x, uint y);

minimum value

T max(T x, T y);
TI max(TI x, TI y);
TU max(TU x, TU y);
T max(T x, float y);
TI max(TI x, int y);
TU max(TU x, uint y);

maximum value

T clamp(TI x, T minVal, T maxVal);
TI clamp(V x, TI minVal, TI maxVal);
TU clamp(TU x, TU minVal, TU maxVal);
T clamp(T x, float minVal, float maxVal);
TI clamp(TI x, int minVal, int maxVal);
TU clamp(TU x, uint minVal, uint maxVal);

min(max(x, minVal), maxVal)

T mix(T x, T y, T a);
T mix(T x, T y, float a); linear blend of x and y

(Continued on next page >)

Built-In Inputs, Outputs, and Constants [7]
Shader programs use special variables to communicate with fixed-function parts
of the pipeline. Output special variables may be read back after writing. Input
special variables are read-only. All special variables have global scope.
Vertex Shader Special Variables [7.1]
Inputs:

int gl_VertexID; // integer index
int gl_InstanceID; // instance number

Outputs:
 out gl_PerVertex {

vec4 gl_Position; // transformed vertex position in clip
coordinates
float gl_PointSize; // transformed point size in pixels (point

// rasterization only)
};

Fragment Shader Special Variables [7.2]
Inputs:

highp vec4 gl_FragCoord; // fragment position within frame buffer
bool gl_FrontFacing; // fragment belongs to a front-facing primitive
mediump vec2 gl_PointCoord; // 0.0 to 1.0 for each component

Outputs:
highp float gl_FragDepth; // depth range

Built-In Constants With Minimum Values [7.3]
Built-in Constant Minimum value
const mediump int gl_MaxVertexAttribs 16
const mediump int gl_MaxVertexUniformVectors 256
const mediump int gl_MaxVertexOutputVectors 16
const mediump int gl_MaxFragmentInputVectors 15
const mediump int gl_MaxVertexTextureImageUnits 16
const mediump int gl_MaxCombinedTextureImageUnits 32
const mediump int gl_MaxTextureImageUnits 16
const mediump int gl_MaxFragmentUniformVectors 224
const mediump int gl_MaxDrawBuffers 4
const mediump int gl_MinProgramTexelOffset -8
const mediump int gl_MaxProgramTexelOffset 7

Built-In Uniform State [7.4]
As an aid to accessing OpenGL ES processing state, the following
uniform variables are built into the OpenGL ES Shading Language.
 struct gl_DepthRangeParameters {

 float near; // n
 float far; // f
 float diff; // f - n
 };
 uniform gl_DepthRangeParameters gl_DepthRange;

OpenGL ES Shading Language 3.0 Reference Card Page 9





Built-In Functions (continued)

T mix(T x, T y, TB a); Selects vector source for each returned
component

T step(T edge, T x);
T step(float edge, T x); 0.0 if x < edge, else 1.0

T smoothstep(T edge0, T edge1, T x);
T smoothstep(float edge0,

float edge1, T x);
clamp and smooth

TB isnan(T x); true if x is a NaN
TB isinf(T x); true if x is positive or negative infinity
TI floatBitsToInt(T value);
TU floatBitsToUint(T value);

highp integer, preserving float bit level
representation

T intBitsToFloat(TI value);
T uintBitsToFloat(TU value);

highp float, preserving integer bit level
representation

Floating-Point Pack and Unpack [8.4]
uint packSnorm2x16(vec2 v);
uint packUnorm2x16(vec2 v);

convert two floats to fixed point and pack
into an integer

vec2 unpackSnorm2x16(uint p);
vec2 unpackUnorm2x16(uint p); unpack fixed point value pair into floats

uint packHalf2x16(vec2 v); convert two floats into half-precision floats
and pack into an integer

vec2 unpackHalf2x16(uint v); unpack half value pair into full floats

Geometric Functions [8.5]
These functions operate on vectors as vectors, not
component-wise. T is float, vec2, vec3, vec4.
float length(T x); length of vector
float distance(T p0, T p1); distance between points
float dot(T x, T y); dot product
vec3 cross(vec3 x, vec3 y); cross product
T normalize(T x); normalize vector to length 1
T faceforward(T N, T I, T Nref); returns N if dot(Nref, I) < 0, else -N
T reflect(T I, T N); reflection direction I - 2 * dot(N,I) * N
T refract(T I, T N, float eta); refraction vector

Matrix Functions [8.6]
Type mat is any matrix type.
mat matrixCompMult(mat x, mat y); multiply x by y component-wise

mat2 outerProduct(vec2 c, vec2 r);
mat3 outerProduct(vec3 c, vec3 r);
mat4 outerProduct(vec4 c, vec4 r);

 linear algebraic column vector * row vector

mat2x3 outerProduct(vec3 c, vec2 r);
mat3x2 outerProduct(vec2 c, vec3 r);
mat2x4 outerProduct(vec4 c, vec2 r);
mat4x2 outerProduct(vec2 c, vec4 r);
mat3x4 outerProduct(vec4 c, vec3 r);
mat4x3 outerProduct(vec3 c, vec4 r);

linear algebraic column vector * row vector

mat2 transpose(mat2 m);
mat3 transpose(mat3 m);
mat4 transpose(mat4 m);
mat2x3 transpose(mat3x2 m);
mat3x2 transpose(mat2x3 m);
mat2x4 transpose(mat4x2 m);
mat4x2 transpose(mat2x4 m);
mat3x4 transpose(mat4x3 m);
mat4x3 transpose(mat3x4 m);

transpose of matrix m

float determinant(mat2 m);
float determinant(mat3 m);
float determinant(mat4 m);

determinant of matrix m

mat2 inverse(mat2 m);
mat3 inverse(mat3 m);
mat4 inverse(mat4 m);

inverse of matrix m

Vector Relational Functions [8.7]
Compare x and y component-wise. Input and return vector sizes for a particular
call must match. Type bvec is bvecn; vec is vecn; ivec is ivecn; uvec is uvecn;
(where n is 2, 3, or 4). T is union of vec and ivec.
bvec lessThan(T x, T y);
bvec lessThan(uvec x, uvec y); x < y

bvec lessThanEqual(T x, T y);
bvec lessThanEqual(uvec x, uvec y); x <= y

bvec greaterThan(T x, T y);
bvec greaterThan(uvec x, uvec y); x > y

bvec greaterThanEqual(T x, T y);
bvec greaterThanEqual(uvec x, uvec y); x >= y

bvec equal(T x, T y);
bvec equal(bvec x, bvec y);
bvec equal(uvec x, uvec y);

x == y

bvec notEqual(T x, T y);
bvec notEqual(bvec x, bvec y);
bvec notEqual(uvec x, uvec y);

x!= y

bool any(bvec x); true if any component of x is true

bool all(bvec x); true if all components of x are true

bvec not(bvec x); logical complement of x

Texture Lookup Functions [8.8]
The function textureSize returns the dimensions of level lod for the texture bound
to sampler, as described in [2.11.9] of the OpenGL ES 3.0 specification, under
“Texture Size Query”. The initial “g” in a type name is a placeholder for nothing,
“i”, or “u”.

highp ivec{2,3} textureSize(gsampler{2,3}D sampler, int lod);
highp ivec2 textureSize(gsamplerCube sampler, int lod);
highp ivec2 textureSize(sampler2DShadow sampler, int lod);
highp ivec2 textureSize(samplerCubeShadow sampler, int lod);
highp ivec3 textureSize(gsampler2DArray sampler, int lod);
highp ivec3 textureSize(sampler2DArrayShadow sampler, int lod);

Texture lookup functions using samplers are available to vertex and fragment
shaders. The initial “g” in a type name is a placeholder for nothing, “i”, or “u”.
gvec4 texture(gsampler{2,3}D sampler, vec{2,3} P [, float bias]);
gvec4 texture(gsamplerCube sampler, vec3 P [, float bias]);
float texture(sampler2DShadow sampler, vec3 P [, float bias]);
float texture(samplerCubeShadow sampler, vec4 P [, float bias]);
gvec4 texture(gsampler2DArray sampler, vec3 P [, float bias]);
float texture(sampler2DArrayShadow sampler, vec4 P);

gvec4 textureProj(gsampler2D sampler, vec{3,4} P [, float bias]);
gvec4 textureProj(gsampler3D sampler, vec4 P [, float bias]);
float textureProj(sampler2DShadow sampler, vec4 P [, float bias]);

gvec4 textureLod(gsampler{2,3}D sampler, vec{2,3} P, float lod);
gvec4 textureLod(gsamplerCube sampler, vec3 P, float lod);
float textureLod(sampler2DShadow sampler, vec3 P, float lod);
gvec4 textureLod(gsampler2DArray sampler, vec3 P, float lod);

gvec4 textureOffset(gsampler2D sampler, vec2 P, ivec2 offset [, float bias]);
gvec4 textureOffset(gsampler3D sampler, vec3 P, ivec3 offset [, float bias]);
float textureOffset(sampler2DShadow sampler, vec3 P, ivec2 offset [, float bias]);
gvec4 textureOffset(gsampler2DArray sampler, vec3 P, ivec2 offset [, float bias]);

gvec4 texelFetch(gsampler2D sampler, ivec2 P, int lod);
gvec4 texelFetch(gsampler3D sampler, ivec3 P, int lod);
gvec4 texelFetch(gsampler2DArray sampler, ivec3 P, int lod);

gvec4 texelFetchOffset(gsampler2D sampler, ivec2 P, int lod, ivec2 offset);
gvec4 texelFetchOffset(gsampler3D sampler, ivec3 P, int lod, ivec3 offset);
gvec4 texelFetchOffset(gsampler2DArray sampler, ivec3 P, int lod, ivec2 offset);

(Continued on next page >)

OpenGL ES Shading Language 3.0 Reference Card Page 10



Sample Program
Here is an example of G-buffer construction for deferred
lighting using GLSL ES 3.0 with multiple render targets.

Vertex Shader
#version 300 es

// inputs
layout (location=0) in vec4 a_position;
layout (location=1) in vec2 a_texCoord;
layout (location=3) in vec3 a_normal;

// outputs
out vec2 v_texCoord;
out vec3 v_normal;
out vec3 v_worldPos;

// uniforms
layout(std140) uniform transforms
{
 mat4 u_modelViewMat;
 mat4 u_modelViewProjMat;
 mat3 u_normalMat;
};

void main()
{
 v_texCoord = a_texCoord;
 v_normal = u_normalMat * a_normal;
 v_worldPos = (u_modelViewMat * a_position).xyz;

 // vertex position calculation
 gl_Position = u_modelViewProjMat * a_position;
}

Fragment Shader
#version 300 es

precision mediump float;

// inputs
in vec2 v_texCoord;
in vec3 v_normal;
in vec3 v_worldPos;

// outputs
out vec4 gl_FragData[3];

// uniforms
uniform sampler2D u_baseTextureSamp;
uniform float u_specular;

void main()
{
 vec4 baseColor = texture(u_baseTextureSamp, v_texCoord);

 // Normalize per-pixel vectors
 vec3 normal = normalize(v_normal);

 // Store material properties into MRTs
 gl_FragData[0] = baseColor; // base color
 gl_FragData[1] = vec4(normal, u_specular); // packed: surface

// normal in xyz, specular exponent in w.
 gl_FragData[2] = vec4(v_worldPos, 0.0); // world position
}

Reference card production by Miller & Mattson www.millermattson.com

www.khronos.org/opengles©2013 Khronos Group - Rev. 1113

OpenGL ES is a registered trademark of Silicon Graphics International, used under license by Khronos
Group. The Khronos Group is an industry consortium creating open standards for the authoring and
acceleration of parallel computing, graphics and dynamic media on a wide variety of platforms and
devices. See www.khronos.org to learn more about the Khronos Group.
Learn more at www.khronos.org/opengles

Built-In Functions (continued)
gvec4 textureProjOffset(gsampler2D sampler, vec3 P, ivec2 offset [, float bias]);
gvec4 textureProjOffset(gsampler2D sampler, vec4 P, ivec2 offset [, float bias]);
gvec4 textureProjOffset(gsampler3D sampler, vec4 P, ivec3 offset [, float bias]);
float textureProjOffset(sampler2DShadow sampler, vec4 P, ivec2 offset [, float bias]);
gvec4 textureLodOffset(gsampler2D sampler, vec2 P, float lod, ivec2 offset);
gvec4 textureLodOffset(gsampler3D sampler, vec3 P, float lod, ivec3 offset);
float textureLodOffset(sampler2DShadow sampler, vec3 P, float lod, ivec2 offset);
gvec4 textureLodOffset(gsampler2DArray sampler, vec3 P, float lod, ivec2 offset);
gvec4 textureProjLod(gsampler2D sampler, vec3 P, float lod);
gvec4 textureProjLod(gsampler2D sampler, vec4 P, float lod);
gvec4 textureProjLod(gsampler3D sampler, vec4 P, float lod);
float textureProjLod(sampler2DShadow sampler, vec4 P, float lod);
gvec4 textureProjLodOffset(gsampler2D sampler, vec3 P, float lod, ivec2 offset);
gvec4 textureProjLodOffset(gsampler2D sampler, vec4 P, float lod, ivec2 offset);
gvec4 textureProjLodOffset(gsampler3D sampler, vec4 P, float lod, ivec3 offset);
float textureProjLodOffset(sampler2DShadow sampler, vec4 P, float lod, ivec2 offset);
gvec4 textureProjGrad(gsampler2D sampler, vec3 P, vec2 dPdx, vec2 dPdy);
gvec4 textureProjGrad(gsampler2D sampler, vec4 P, vec2 dPdx, vec2 dPdy);
gvec4 textureProjGrad(gsampler3D sampler, vec4 P, vec3 dPdx, vec3 dPdy);
float textureProjGrad(sampler2DShadow sampler, vec4 P, vec2 dPdx, vec2 dPdy);
gvec4 textureGrad(gsampler2D sampler, vec2 P, vec2 dPdx, vec2 dPdy);
gvec4 textureGrad(gsampler3D sampler, vec3 P, vec3 dPdx, vec3 dPdy);
gvec4 textureGrad(gsamplerCube sampler, vec3 P, vec3 dPdx, vec3 dPdy);
float textureGrad(sampler2DShadow sampler, vec3 P, vec2 dPdx, vec2 dPdy);

float textureGrad(samplerCubeShadow sampler, vec4 P, vec3 dPdx, vec3 dPdy);
gvec4 textureGrad(gsampler2DArray sampler, vec3 P, vec2 dPdx, vec2 dPdy);
float textureGrad(sampler2DArrayShadow sampler, vec4 P, vec2 dPdx, vec2 dPdy);

gvec4 textureGradOffset(gsampler2D sampler, vec2 P, vec2 dPdx, vec2 dPdy,
ivec2 offset);

gvec4 textureGradOffset(gsampler3D sampler, vec3 P, vec3 dPdx, vec3 dPdy,
ivec3 offset);

float textureGradOffset(sampler2DShadow sampler, vec3 P, vec2 dPdx,
vec2 dPdy, ivec2 offset);

gvec4 textureGradOffset(gsampler2DArray sampler, vec3 P, vec2 dPdx,
vec2 dPdy, ivec2 offset);

float textureGradOffset(sampler2DArrayShadow sampler, vec4 P,
vec2 dPdx, vec2 dPdy, ivec2 offset);

gvec4 textureProjGradOffset(gsampler2D sampler, vec3 P, vec2 dPdx,
vec2 dPdy, ivec2 offset);

gvec4 textureProjGradOffset(gsampler2D sampler, vec4 P, vec2 dPdx,
vec2 dPdy, ivec2 offset);

gvec4 textureProjGradOffset(gsampler3D sampler, vec4 P, vec3 dPdx,
vec3 dPdy, ivec3 offset);

float textureProjGradOffset(sampler2DShadow sampler, vec4 P, vec2 dPdx, vec2
dPdy, ivec2 offset);

Fragment Processing Functions [8.9]
Approximated using local differencing.
T dFdx(T p); Derivative in x
T dFdy(T p); Derivative in y
T fwidth(T p); abs (dFdx (p)) + abs (dFdy (p));

http://www.khronos.org/opengles
http://www.khronos.org
http://www.khronos.org/opengles
http://www.millermattson.com

You love our titles and you love to
share them with your colleagues and friends...why
not earn some $$ doing it!

If you have a website, blog, or even a Facebook
page, you can start earning money by putting
InformIT links on your page.

Whenever a visitor clicks on these links and makes
a purchase on informit.com, you earn commissions*
on all sales!

Every sale you bring to our site will earn you a
commission. All you have to do is post the links to
the titles you want, as many as you want, and we’ll
take care of the rest.

Apply and get started!
It’s quick and easy to apply.
To learn more go to:
http://www.informit.com/affiliates/
*Valid for all books, eBooks and video sales at www.informit.com

Join the

Informit
Affiliate Team!

	Contents
	List of Figures
	List of Examples
	List of Tables
	Foreword
	Preface
	Intended Audience
	Organization of This Book
	Example Code and Shaders
	Errata

	Acknowledgments
	About the Authors
	1. Introduction to OpenGL ES 3.0
	OpenGL ES 3.0
	Vertex Shader
	Primitive Assembly
	Rasterization
	Fragment Shader
	Per-Fragment Operations

	What’s New in OpenGL ES 3.0
	Texturing
	Shaders
	Geometry
	Buffer Objects
	Framebuffer

	OpenGL ES 3.0 and Backward Compatibility
	EGL
	Programming with OpenGL ES 3.0
	Libraries and Include Files

	EGL Command Syntax
	OpenGL ES Command Syntax
	Error Handling
	Basic State Management
	Further Reading

	2. Hello Triangle: An OpenGL ES 3.0 Example
	Code Framework
	Where to Download the Examples
	Hello Triangle Example
	Using the OpenGL ES 3.0 Framework
	Creating a Simple Vertex and Fragment Shader
	Compiling and Loading the Shaders
	Creating a Program Object and Linking the Shaders
	Setting the Viewport and Clearing the Color Buffer
	Loading the Geometry and Drawing a Primitive
	Displaying the Back Buffer
	Summary

	3. An Introduction to EGL
	Communicating with the Windowing System
	Checking for Errors
	Initializing EGL
	Determining the Available Surface Configurations
	Querying EGLConfig Attributes
	Letting EGL Choose the Configuration
	Creating an On-Screen Rendering Area: The EGL Window
	Creating an Off-Screen Rendering Area: EGL Pbuffers
	Creating a Rendering Context
	Making an EGLContext Current
	Putting All Our EGL Knowledge Together
	Synchronizing Rendering
	Summary

	4. Shaders and Programs
	Shaders and Programs
	Creating and Compiling a Shader
	Creating and Linking a Program

	Uniforms and Attributes
	Getting and Setting Uniforms
	Uniform Buffer Objects
	Getting and Setting Attributes

	Shader Compiler
	Program Binaries
	Summary

	5. OpenGL ES Shading Language
	OpenGL ES Shading Language Basics
	Shader Version Specification
	Variables and Variable Types
	Variable Constructors
	Vector and Matrix Components
	Constants
	Structures
	Arrays
	Operators
	Functions
	Built-In Functions
	Control Flow Statements
	Uniforms
	Uniform Blocks
	Vertex and Fragment Shader Inputs/Outputs
	Interpolation Qualifiers
	Preprocessor and Directives
	Uniform and Interpolator Packing
	Precision Qualifiers
	Invariance
	Summary

	6. Vertex Attributes, Vertex Arrays, and Buffer Objects
	Specifying Vertex Attribute Data
	Constant Vertex Attribute
	Vertex Arrays

	Declaring Vertex Attribute Variables in a Vertex Shader
	Binding Vertex Attributes to Attribute Variables in a Vertex Shader

	Vertex Buffer Objects
	Vertex Array Objects
	Mapping Buffer Objects
	Flushing a Mapped Buffer

	Copying Buffer Objects
	Summary

	7. Primitive Assembly and Rasterization
	Primitives
	Triangles
	Lines
	Point Sprites

	Drawing Primitives
	Primitive Restart
	Provoking Vertex
	Geometry Instancing
	Performance Tips

	Primitive Assembly
	Coordinate Systems
	Perspective Division
	Viewport Transformation

	Rasterization
	Culling
	Polygon Offset

	Occlusion Queries
	Summary

	8. Vertex Shaders
	Vertex Shader Overview
	Vertex Shader Built-In Variables
	Precision Qualifiers
	Number of Uniforms Limitations in a Vertex Shader

	Vertex Shader Examples
	Matrix Transformations
	Lighting in a Vertex Shader

	Generating Texture Coordinates
	Vertex Skinning
	Transform Feedback
	Vertex Textures
	OpenGL ES 1.1 Vertex Pipeline as an ES 3.0 Vertex Shader
	Summary

	9. Texturing
	Texturing Basics
	2D Textures
	Cubemap Textures
	3D Textures
	2D Texture Arrays
	Texture Objects and Loading Textures
	Texture Filtering and Mipmapping
	Automatic Mipmap Generation
	Texture Coordinate Wrapping
	Texture Swizzles
	Texture Level of Detail
	Depth Texture Compare (Percentage Closest Filtering)
	Texture Formats
	Using Textures in a Shader
	Example of Using a Cubemap Texture
	Loading 3D Textures and 2D Texture Arrays

	Compressed Textures
	Texture Subimage Specification
	Copying Texture Data from the Color Buffer
	Sampler Objects
	Immutable Textures
	Pixel Unpack Buffer Objects
	Summary

	10. Fragment Shaders
	Fixed-Function Fragment Shaders
	Fragment Shader Overview
	Built-In Special Variables
	Built-In Constants
	Precision Qualifiers

	Implementing Fixed-Function Techniques Using Shaders
	Multitexturing
	Fog
	Alpha Test (Using Discard)
	User Clip Planes

	Summary

	11. Fragment Operations
	Buffers
	Requesting Additional Buffers
	Clearing Buffers
	Using Masks to Control Writing to Framebuffers

	Fragment Tests and Operations
	Using the Scissor Test
	Stencil Buffer Testing

	Blending
	Dithering
	Multisampled Anti-Aliasing
	Centroid Sampling

	Reading and Writing Pixels to the Framebuffer
	Pixel Pack Buffer Objects

	Multiple Render Targets
	Summary

	12. Framebuffer Objects
	Why Framebuffer Objects?
	Framebuffer and Renderbuffer Objects
	Choosing a Renderbuffer Versus a Texture as a Framebuffer Attachment
	Framebuffer Objects Versus EGL Surfaces

	Creating Framebuffer and Renderbuffer Objects
	Using Renderbuffer Objects
	Multisample Renderbuffers
	Renderbuffer Formats

	Using Framebuffer Objects
	Attaching a Renderbuffer as a Framebuffer Attachment
	Attaching a 2D Texture as a Framebuffer Attachment
	Attaching an Image of a 3D Texture as a Framebuffer Attachment
	Checking for Framebuffer Completeness

	Framebuffer Blits
	Framebuffer Invalidation
	Deleting Framebuffer and Renderbuffer Objects
	Deleting Renderbuffer Objects That Are Used as Framebuffer Attachments
	Reading Pixels and Framebuffer Objects

	Examples
	Performance Tips and Tricks
	Summary

	13. Sync Objects and Fences
	Flush and Finish
	Why Use a Sync Object?
	Creating and Deleting a Sync Object
	Waiting for and Signaling a Sync Object
	Example
	Summary

	14. Advanced Programming with OpenGL ES 3.0
	Per-Fragment Lighting
	Lighting with a Normal Map
	Lighting Shaders
	Lighting Equations

	Environment Mapping
	Particle System with Point Sprites
	Particle System Setup
	Particle System Vertex Shader
	Particle System Fragment Shader

	Particle System Using Transform Feedback
	Particle System Rendering Algorithm
	Particle Emission with Transform Feedback
	Rendering the Particles

	Image Postprocessing
	Render-to-Texture Setup
	Blur Fragment Shader

	Projective Texturing
	Projective Texturing Basics
	Matrices for Projective Texturing
	Projective Spotlight Shaders

	Noise Using a 3D Texture
	Generating Noise
	Using Noise

	Procedural Texturing
	A Procedural Texture Example
	Anti-Aliasing of Procedural Textures
	Further Reading on Procedural Textures

	Rendering Terrain with Vertex Texture Fetch
	Generating a Square Terrain Grid
	Computing Vertex Normal and Fetching Height Value in Vertex Shader
	Further Reading on Large Terrain Rendering

	Shadows Using a Depth Texture
	Rendering from the Light Position Into a Depth Texture
	Rendering from the Eye Position with the Depth Texture

	Summary

	15. State Queries
	OpenGL ES 3.0 Implementation String Queries
	Querying Implementation-Dependent Limits
	Querying OpenGL ES State
	Hints
	Entity Name Queries
	Nonprogrammable Operations Control and Queries
	Shader and Program State Queries
	Vertex Attribute Queries
	Texture State Queries
	Sampler Queries
	Asynchronous Object Queries
	Sync Object Queries
	Vertex Buffer Queries
	Renderbuffer and Framebuffer State Queries
	Summary

	16. OpenGL ES Platforms
	Building for Microsoft Windows with Visual Studio
	Building for Ubuntu Linux
	Building for Android 4.3+ NDK (C++)
	Prerequisites
	Building the Example Code with Android NDK

	Building for Android 4.3+ SDK (Java)
	Building for iOS 7
	Prerequisites
	Building the Example Code with Xcode 5

	Summary

	A. GL_HALF_FLOAT
	16-Bit Floating-Point Number
	Converting a Float to a Half-Float

	B. Built-In Functions
	Angle and Trigonometry Functions
	Exponential Functions
	Common Functions
	Floating-Point Pack and Unpack Functions
	Geometric Functions
	Matrix Functions
	Vector Relational Functions
	Texture Lookup Functions
	Fragment Processing Functions

	C. ES Framework API
	Framework Core Functions
	Transformation Functions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

