
CSSE 351
Computer Graphics
DDAs and line drawing

1

Session schedule

• Rasterization

• DDAs

• Line drawing

2

Render pipeline

• All geometry is in NDC

• No geometry out of view volume (NDC)

• Convert to fragments (pixels)

3

Render pipeline

• Render pipeline changes coordinate/vector
spaces

• Ready for

• Fragment conversion

• Interpolation

• Depth sorting

4

Rasterization

• Compute fragment locations in window
coordinates

• Interpolate vertex attributes

• Compute fragment color

• Sort fragments by depth

5

On screen display

• Write some data to frame buffer

• Starting from geometric data

6

Draw points

• Simplest data is to show points

• Transform vertices

• Convert to NDC, then viewport

• Clamp/round to pixel value, show on
screen!

7

Draw points

8

Drawing lines

• Transform vertices

• Convert to NDC, clip, convert to viewport

• Now have sets of lines in 2D space

• Need to convert 2D geometry into
pixels

9

Drawing lines

• Convert endpoints to pixel values
x1, y1
x2, y2

• Draw line between pixel values

• Use DDA (Digital Difference Analyzer)

10

DDA

• Compute line differential

• Restrict slope to

• Vertical change is then

11

m =
y2 � y1

x2 � x1
=

�y

�x

0 m 1

�y = m�x

DDA

• Using vertical change, make unit steps in x

• Vertical change is then

• Algorithm to draw line is...

12

�y = m�x

�y = m

�x = 1

DDA line drawing

13

m = (y2-y1)/(x2-x1)

for x = x1 to x2
 y+=m
 color_pixel(x, round(y))

DDA line drawing

14

DDA

• Requires floating point operations

• Possible to draw lines with only integers

• Bresenham’s line drawing algorithm

• We will cover simpler midpoint version

15

Midpoint line drawing

• Make some assumptions

• x1 < x2 (swap if needed)

• Slope is (0,1]

• Lines have no gaps, diagonal pixels
connect

• How does this help?

16

Midpoint line drawing

• Lines must go right or right+up!

• Just draw increasing x, and move up sometimes

17

Midpoint line drawing

• Resulting code:

18

y = y0
for x = x0 to x1
 draw(x, y)
 if(some condition)
 y = y + 1

Midpoint condition

•

19

Midpoint condition

• Closest pixel is ‘on the line’

• Orange dots are pixel centers

20

Midpoint condition

• Check if line is above or below midpoint

21

Midpoint condition

• Check if line is above or below test point

• Use implicit line equation

• 0 when on the line

• < 0 when below line

• > 0 when above line

22

Midpoint condition
• Compute implicit line equation for 2D line

• Test next pixel midpoint

• If line above midpoint, move up+right

• If line below midpoint, move right

23

Midpoint line drawing

• Condition checks if line above midpoint

• By seeing if midpoint is below line

• If so, move right and move up

24

Midpoint line drawing

• Code becomes (with line equation f):

25

y = y0
for x = x0 to x1
 draw(x, y)
 if(f(x+1, y+0.5) < 0)
 y = y + 1

Optimize
• Avoid evaluating full line equation

• Precompute midpoint and increment

• Line:

• Move right:

• Move up+right:

26

Incremental midpoint

• Code:

27

y = y0
d = f(x0 + 1, y0 + 0.5)
for x = x0 to x1
 draw(x, y)
 if(d < 0)
 y = y + 1
 d = d + (x1-x0) + (y0-y1)
 else
 d = d + (y0-y1)

Optimize

• Last optimization is to remove floating
point...

• Might discuss much later

28

Using midpoint &
DDAs

• But, but, but!

• Other slopes?

• Swap order of line endpoints

• Symmetric around origin

• Swap x and y, minor adjustment to
calculations (plus vs. minus)

29

