CSSE 35I
 Computer Graphics

DDAs and line drawing

Session schedule

- Rasterization
- DDAs
- Line drawing

Render pipeline

- All geometry is in NDC
- No geometry out of view volume (NDC)
- Convert to fragments (pixels)

Render pipeline

- Render pipeline changes coordinate/vector spaces
- Ready for
- Fragment conversion
- Interpolation
- Depth sorting

Rasterization

- Compute fragment locations in window coordinates
- Interpolate vertex attributes
- Compute fragment color
- Sort fragments by depth

On screen display

- Write some data to frame buffer
- Starting from geometric data

Draw points

- Simplest data is to show points
- Transform vertices
- Convert to NDC, then viewport
- Clamp/round to pixel value, show on screen!

Draw points

Drawing lines

- Transform vertices
- Convert to NDC, clip, convert to viewport
- Now have sets of lines in 2D space
- Need to convert 2D geometry into pixels

Drawing lines

- Convert endpoints to pixel values xI,yl
$x 2, y 2$
- Draw line between pixel values
- Use DDA (Digital Difference Analyzer)

DDA

- Compute line differential

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\Delta y}{\Delta x}
$$

- Restrict slope to

$$
0 \leq m \leq 1
$$

- Vertical change is then

$$
\Delta y=m \Delta x
$$

DDA

- Using vertical change, make unit steps in x

$$
\begin{aligned}
& \Delta y=m \Delta x \\
& \Delta x=1
\end{aligned}
$$

- Vertical change is then

$$
\Delta y=m
$$

- Algorithm to draw line is...

DDA line drawing

$$
\begin{aligned}
& m=(y 2-y 1) /(x 2-x 1) \\
& \text { for } x=x 1 \text { to } x 2 \\
& \quad \begin{array}{l}
y+=m
\end{array} \\
& \quad \text { } \quad \text { color_pixel }(x, \text { round }(y))
\end{aligned}
$$

DDA line drawing

DDA

- Requires floating point operations
- Possible to draw lines with only integers
- Bresenham's line drawing algorithm
- We will cover simpler midpoint version

Midpoint line drawing

- Make some assumptions
- $x l<x 2$ (swap if needed)
- Slope is $(0, I]$
- Lines have no gaps, diagonal pixels connect
- How does this help?

Midpoint line drawing

- Lines must go right or right+up!
- Just draw increasing x, and move up sometimes

Midpoint line drawing

- Resulting code:

$$
\begin{aligned}
& y=y 0 \\
& \text { for } x=x 0 \text { to } x 1 \\
& \operatorname{draw}(x, y) \\
& \text { if(some condition) } \\
& y=y+1
\end{aligned}
$$

Midpoint condition

Midpoint condition

- Closest pixel is 'on the line'
- Orange dots are pixel centers

Midpoint condition

- Check if line is above or below midpoint

Midpoint condition

- Check if line is above or below test point
- Use implicit line equation
- 0 when on the line
- < 0 when below line
- > 0 when above line

$$
f(x, y) \equiv\left(y_{0}-y_{1}\right) x+\left(x_{1}-x_{0}\right) y+x_{0} y_{1}-x_{1} y_{0}=0
$$

Midpoint condition

- Compute implicit line equation for 2D line
- Test next pixel midpoint
- If line above midpoint, move up+right
- If line below midpoint, move right

Midpoint line drawing

- Condition checks if line above midpoint
- By seeing if midpoint is below line

$$
f(x+1, y+0.5)<0
$$

- If so, move right and move up

Midpoint line drawing

- Code becomes (with line equation f):

$$
\begin{aligned}
& y=y 0 \\
& \text { for } x=x 0 \text { to } x 1 \\
& \quad \operatorname{draw}(x, y) \\
& \quad \operatorname{if(}(x(x+1, y+0.5)<0) \\
& \quad y=y+1
\end{aligned}
$$

Optimize

- Avoid evaluating full line equation
- Precompute midpoint and increment
- Line:

$$
f(x, y) \equiv\left(y_{0}-y_{1}\right) x+\left(x_{1}-x_{0}\right) y+x_{0} y_{1}-x_{1} y_{0}=0
$$

- Move right:

$$
f(x+1, y)=f(x, y)+\left(y_{0}-y_{1}\right)
$$

- Move up+right:

$$
f(x+1, y+1)=f(x, y)+\left(y_{0}-y_{1}\right)+\left(x_{1}-x_{0}\right)
$$

Incremental midpoint

- Code:

$$
\begin{aligned}
& y=y 0 \\
& d=f(x 0+1, y 0+0.5) \\
& \text { for } x=x 0 \text { to } x 1 \\
& \quad \operatorname{draw}(x, y) \\
& \quad i f(d<0) \\
& y=y+1 \\
& d=d+(x 1-x 0)+(y 0-y 1) \\
& \text { else } \\
& \quad d=d+(y 0-y 1)
\end{aligned}
$$

Optimize

- Last optimization is to remove floating point...
- Might discuss much later

Using midpoint \& DDAs

- But, but, but!
- Other slopes?
- Swap order of line endpoints
- Symmetric around origin
- Swap x and y, minor adjustment to calculations (plus vs. minus)

