
CSSE 351
Computer Graphics
Clipping

1



Session schedule

• Rendering pipeline

• 2D clipping

• Triangle clipping

• 3D clipping

2



Render pipeline

3



Render pipeline

• Modeling

• Creation of objects in 3D

• Send to GPU

• Can be done in shaders also!
(geometry/tesselation shader)

4



Render pipeline

• Geometry processing

• Apply transforms (view, projection)

• Vertex shader

• Clip against view volume

• Homogenize coordinates

5



Render pipeline

• Rasterization

• Interpolate over objects

• Take discrete samples

• Called scan conversion

• Convert to window coordinates

6



Render pipeline

• Fragments

• Compute color

• Compose fragments

• Final depth sorting

• Output to framebuffer!

7



OpenGL Clipping

• Start in 2D, extend to 3D

• Can clip in any coordinate frame

• OpenGL clips in ‘Clip space’

• Just before homogenization and NDC

8



OpenGL Clipping

• Camera takes vertices to view/camera space

• Projection takes vertices to clip space

• In clip space

• Primitives are clipped

• w is homogenized

• Result is Normalized Device Coords.

9



2D clipping

• Clip against viewport or view window

• Viewport defined by

• x min, x max

• y min, y max

10



2D clipping

• Clip vertex (x,y) against view window

11



2D clipping

• Clipping line (x1, y1) (x2, y2)

• More complex

• 2 points to check

• Can result in new points

• New line segments

12



Cohen-Sutherland 
clipping

• Divide 2D space into 9 regions

• Assign each region ID

• Compute each point’s region ID (outcode)

• Compare outcode to determine clipping

13



Cohen-Sutherland 
clipping

• Space outcodes

• 1bit per half plane

• Outcodes o1, o2 from 
line points

• Tests:

• o1 = o2 = 0 : inside view

• o1 != 0, o2 = 0 : must clip

• o1 & o2 != 0 : outside 
view

• o1 & o2 = 0 : maybe clip

14



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Intersection

• Can use explicit line equation

• y = mx+b

• Find for m, b

• Solve for intersection values

• Handle vertical lines as special case

16



Polygon clipping

• General polygon clipping

• Intersect clip line against polygon

• Insert new vertices

• Create new polygons

17



Polygon clipping

• More complicated if

• Topology restrictions (triangles only!)

• Surface properties (vertex attributes)

18



Triangle clipping

• Triangles must appear as 
single objects

• Tesselate triangle during 
clipping

• Compute vertex 
attributes if needed

19



Clipping pipeline

• Clipping tests are independent

• Can be performed in serial or parallel

• Pipeline line clipping against axes bounds

• Test each axis independently

20



Clipping pipeline

• Final pipeline result is fully clipped polygon

21



3D clipping

• Extend Cohen-Sutherland to 3D?

22



3D Cohen-Sutherland

• 2D case had 4 bounds & 4 bit opcodes

23



3D Cohen-Sutherland
• 3D case has 6 bounds & 

6 bit opcodes

24



3D Clipping

• Can operate in clip space if we assume 
NDC is (-1, -1, -1) : (1, 1, 1)

• Remember, need to homogenize by w

-w≤x≤w
-w≤y≤w
-w≤z≤w

25



OpenGL Clipping

• Start in 2D, extend to 3D

• Can clip in any coordinate frame

• OpenGL clips in ‘Clip space’

• Just before homogenization and NDC

26



OpenGL Clipping

• Camera takes vertices to view/camera space

• Projection takes vertices to clip space

• In clip space

• Primitives are clipped

• w is homogenized

• Result is Normalized Device Coords.

27



Render pipeline

• After homogenization

• All geometry is in NDC

• No geometry out of view volume (NDC)

28



Render pipeline

• Render pipeline changes coordinate/vector 
spaces

• Ready for

• Fragment conversion

• Interpolation

• Depth sorting

29



Rasterization

• Compute fragment locations in window 
coordinates

• Interpolate vertex attributes

• Compute fragment color

• Sort fragments by depth

30



Other methods

• Many other ways to clip

31



Liang-Barsky clipping

• Form parametric equation of line

• Compute entrance and exit from clipping 
region

• Check if order is valid, clip if needed

32



Parametric lines

• Forming parametric line equation

• Given points p1 and p2

• Vector parallel to line is p2-p1

• ‘Start‘ of line is p1

• All valid points on line are in range
p = p1 + a(p2-p1), where 0≤a≤1

33



Parametric lines

• Forming parametric line equation

• Given points p1 and p2

• All valid points in line are
between p1 & p2

• Linearly interpolate between p1 and p2
p = (1-a)p1 + a(p2), where 0≤a≤1

34



Liang-Barsky clipping

• Form parametric equation of line

• Compute entrance and exit from clipping 
region

• Check if order is valid, clip if needed

35



Compute intersect

• Clip region bounded by
x min, x max
y min, y max

• Split line equation into x and y forms:
x = (1-a)x1 + a(x2)
y = (1-a)y1 + a(y2)

• Solve for intersects

36



Compute intersect

• Clip region bounded by

• Solve for intersects

37



Compute intersect

• Set equal to intersect point
y max = (1-a)y1 + a(y2)

• Check if a is bounded by 0 and 1

• Compute a intersects for all clip bounds

38



Compute intersect

• Check if entrance and exit intersects are in 
correct order

• Must enter x or y bound

• Must enter other axis bound

• Then may exit either axes bounds

39



Liang-Barsky clipping

• Form parametric equation of line

• Compute entrance and exit from clipping 
region

• Check if order is valid, clip if needed

40



Clip line segment

• If entrance and exit are valid

• Already have intersect points

• Line is between:
last entrance point and first exit point

41


