
CSSE 351
Computer Graphics
Clipping
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Session schedule

• Rendering pipeline

• 2D clipping

• Triangle clipping

• 3D clipping
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Render pipeline
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Render pipeline

• Modeling

• Creation of objects in 3D

• Send to GPU

• Can be done in shaders also!
(geometry/tesselation shader)
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Render pipeline

• Geometry processing

• Apply transforms (view, projection)

• Vertex shader

• Clip against view volume

• Homogenize coordinates
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Render pipeline

• Rasterization

• Interpolate over objects

• Take discrete samples

• Called scan conversion

• Convert to window coordinates
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Render pipeline

• Fragments

• Compute color

• Compose fragments

• Final depth sorting

• Output to framebuffer!
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OpenGL Clipping

• Start in 2D, extend to 3D

• Can clip in any coordinate frame

• OpenGL clips in ‘Clip space’

• Just before homogenization and NDC
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OpenGL Clipping

• Camera takes vertices to view/camera space

• Projection takes vertices to clip space

• In clip space

• Primitives are clipped

• w is homogenized

• Result is Normalized Device Coords.
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2D clipping

• Clip against viewport or view window

• Viewport defined by

• x min, x max

• y min, y max
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2D clipping

• Clip vertex (x,y) against view window
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2D clipping

• Clipping line (x1, y1) (x2, y2)

• More complex

• 2 points to check

• Can result in new points

• New line segments
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Cohen-Sutherland 
clipping

• Divide 2D space into 9 regions

• Assign each region ID

• Compute each point’s region ID (outcode)

• Compare outcode to determine clipping
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Cohen-Sutherland 
clipping

• Space outcodes

• 1bit per half plane

• Outcodes o1, o2 from 
line points

• Tests:

• o1 = o2 = 0 : inside view

• o1 != 0, o2 = 0 : must clip

• o1 & o2 != 0 : outside 
view

• o1 & o2 = 0 : maybe clip
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Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Example

15



Intersection

• Can use explicit line equation

• y = mx+b

• Find for m, b

• Solve for intersection values

• Handle vertical lines as special case
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Polygon clipping

• General polygon clipping

• Intersect clip line against polygon

• Insert new vertices

• Create new polygons
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Polygon clipping

• More complicated if

• Topology restrictions (triangles only!)

• Surface properties (vertex attributes)
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Triangle clipping

• Triangles must appear as 
single objects

• Tesselate triangle during 
clipping

• Compute vertex 
attributes if needed
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Clipping pipeline

• Clipping tests are independent

• Can be performed in serial or parallel

• Pipeline line clipping against axes bounds

• Test each axis independently
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Clipping pipeline

• Final pipeline result is fully clipped polygon
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3D clipping

• Extend Cohen-Sutherland to 3D?
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3D Cohen-Sutherland

• 2D case had 4 bounds & 4 bit opcodes
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3D Cohen-Sutherland
• 3D case has 6 bounds & 

6 bit opcodes
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3D Clipping

• Can operate in clip space if we assume 
NDC is (-1, -1, -1) : (1, 1, 1)

• Remember, need to homogenize by w

-w≤x≤w
-w≤y≤w
-w≤z≤w
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OpenGL Clipping

• Start in 2D, extend to 3D

• Can clip in any coordinate frame

• OpenGL clips in ‘Clip space’

• Just before homogenization and NDC
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OpenGL Clipping

• Camera takes vertices to view/camera space

• Projection takes vertices to clip space

• In clip space

• Primitives are clipped

• w is homogenized

• Result is Normalized Device Coords.
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Render pipeline

• After homogenization

• All geometry is in NDC

• No geometry out of view volume (NDC)
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Render pipeline

• Render pipeline changes coordinate/vector 
spaces

• Ready for

• Fragment conversion

• Interpolation

• Depth sorting
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Rasterization

• Compute fragment locations in window 
coordinates

• Interpolate vertex attributes

• Compute fragment color

• Sort fragments by depth
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Other methods

• Many other ways to clip
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Liang-Barsky clipping

• Form parametric equation of line

• Compute entrance and exit from clipping 
region

• Check if order is valid, clip if needed
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Parametric lines

• Forming parametric line equation

• Given points p1 and p2

• Vector parallel to line is p2-p1

• ‘Start‘ of line is p1

• All valid points on line are in range
p = p1 + a(p2-p1), where 0≤a≤1
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Parametric lines

• Forming parametric line equation

• Given points p1 and p2

• All valid points in line are
between p1 & p2

• Linearly interpolate between p1 and p2
p = (1-a)p1 + a(p2), where 0≤a≤1
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Liang-Barsky clipping

• Form parametric equation of line

• Compute entrance and exit from clipping 
region

• Check if order is valid, clip if needed
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Compute intersect

• Clip region bounded by
x min, x max
y min, y max

• Split line equation into x and y forms:
x = (1-a)x1 + a(x2)
y = (1-a)y1 + a(y2)

• Solve for intersects
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Compute intersect

• Clip region bounded by

• Solve for intersects
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Compute intersect

• Set equal to intersect point
y max = (1-a)y1 + a(y2)

• Check if a is bounded by 0 and 1

• Compute a intersects for all clip bounds
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Compute intersect

• Check if entrance and exit intersects are in 
correct order

• Must enter x or y bound

• Must enter other axis bound

• Then may exit either axes bounds
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Liang-Barsky clipping

• Form parametric equation of line

• Compute entrance and exit from clipping 
region

• Check if order is valid, clip if needed
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Clip line segment

• If entrance and exit are valid

• Already have intersect points

• Line is between:
last entrance point and first exit point
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