
Assertions and Triggers
Rose-Hulman Institute of Technology
Curt Clifton

Assertions
 Like constraints:

 Recall: state IN {'IA', 'MN', 'WI', 'MI', 'IL'}
 But can reference all tables
 Defined by:

 CREATE ASSERTION <name>
CHECK (<condition>);

Example: Assertion
 In Sells(rest, soda, price), no rest may charge

an average of more than $3.
 CREATE ASSERTION NoRipoffs CHECK (

NOT EXISTS (
SELECT rest FROM Sells
GROUP BY rest
HAVING AVG(price) > 3

));

Example: Assertion
 The minimum price charged for products

made by Coca-Cola Co. is $2
 Recall:

 Soda(name, manf)
 Sells(rest, soda, price)

Example: Assertion
 The minimum price charged for products made by

Coca-Cola Co. is $2
 CREATE ASSERTION NoCheapCoke

CHECK(
NOT EXISTS(

SELECT * FROM Sells, Soda
WHERE Sells.soda = Soda.name

AND Soda.manf = 'Coca-Cola Co.'
AND Sells.price < 2.00

))

Timing of Assertion Checks
 Logically, assertions always are true
 So when do we have to check them?

Timing of Assertion Checks
 Logically, assertions always are true
 So when do we have to check them?

 Logically, after any change
 Practically, the DBMS could calculate the set of

important changes

Triggers: Motivation
 All the power of assertions
 But easier to implement:

 Column- and row-based checks
 Programmer specifies when they are activated

 Most DBMS just include triggers, not assertions

What Is a Trigger?
 Associated with a Table
 Invoked Automatically
 Cannot Be Called Directly
 Is Part of a Transaction

 Along with the statement that calls the trigger
 Can ROLLBACK transactions (use with care)

Uses of Triggers
 Cascade Changes Through Related Tables in

a Database
 Enforce More Complex Data Integrity Than a

CHECK Constraint
 Define Custom Error Messages
 Automatically update redundant data
 Compare Before and After States of Data

Under Modification

Creating Triggers
 Requires Appropriate Permissions
 Cannot Contain Certain Statements:

 e.g., DROP DATABASE
Use Northwind
GO
CREATE TRIGGER Empl_Delete ON Employees
FOR DELETE
AS
IF (SELECT COUNT(*) FROM Deleted) > 1
BEGIN
 RAISERROR(
 'You cannot delete more than one employee at a time.', 16, 1)
 ROLLBACK TRANSACTION
END

USE Northwind
GO
ALTER TRIGGER Empl_Delete ON Employees
FOR DELETE
AS
IF (SELECT COUNT(*) FROM Deleted) > 6
BEGIN
 RAISERROR(
 'You cannot delete more than six employees at a time.', 16, 1)
 ROLLBACK TRANSACTION
END

Altering and Dropping Triggers
 Altering a Trigger

 DISABLE TRIGGER Empl_Delete ON Employees
 ENABLE TRIGGER Empl_Delete ON Employees
 DROP TRIGGER Empl_Delete

How Triggers Work
 How an INSERT Trigger Works
 How a DELETE Trigger Works
 How an UPDATE Trigger Works
 How an INSTEAD OF Trigger Works
 How Nested Triggers Work
 Recursive Triggers

How an INSERT Trigger Works
 Consider:

USE Northwind
CREATE TRIGGER OrdDet_Insert
ON [Order Details]
FOR INSERT
AS
UPDATE P SET
UnitsInStock = (P.UnitsInStock – I.Quantity)
FROM Products AS P INNER JOIN Inserted AS I
ON P.ProductID = I.ProductID

INSERT [Order Details] VALUES
(10523, 2, 19.00, 5, 0.2)

Order DetailsOrder Details
OrderID

10522
10523
10524

ProductID

10
41
7

UnitPrice

31.00
9.65
30.00

Quantity

7
9
24

Discount

0.2
0.15
0.0

 5 19.002 0.210523

Insert statement logged
insertedinserted
10523 2 19.00 5 0.2

ProductsProducts
ProductID UnitsInStock … …

1
2
3
4

15
10
65
20

2 5

How an INSERT Trigger Works

How a DELETE Trigger Works
 Consider:

USE Northwind
CREATE TRIGGER Category_Delete
ON Categories
FOR DELETE
AS
UPDATE P SET Discontinued = 1

FROM Products AS P INNER JOIN deleted
AS d

ON P.CategoryID = d.CategoryID

DeletedDeleted
4 Dairy Products Cheeses 0x15…

DELETE statement logged

CategoriesCategories
CategoryID

1
2
3

CategoryName

Beverages
Condiments
Confections

Description

Soft drinks, coffees…
Sweet and savory …
Desserts, candies, …

Picture

0x15…
0x15…
0x15…
 0x15…CheesesDairy Products4

DELETE Categories
WHERE
CategoryID = 4

ProductsProducts
ProductID Discontinued … CategoryID

1
2
3
4

0
0
0
0

1
4
2
3

2 1 4

How a DELETE Trigger Works

How an UPDATE Trigger Works
 Consider:

USE Northwind
GO
CREATE TRIGGER Employee_Update
ON Employees
FOR UPDATE
AS
IF UPDATE (EmployeeID)
BEGIN

RAISERROR ('Transaction cannot be processed.\
***** Employee ID number cannot be modified.',
10, 1)

ROLLBACK TRANSACTION
END

UPDATE Employees
SET EmployeeID = 17
WHERE EmployeeID = 2 EmployeesEmployees

EmployeeID LastName FirstName Title HireDate

1
2
3
4

Davolio
Barr
Leverling
Peacock

Nancy
Andrew
Janet
Margaret

Sales Rep.
R
Sales Rep.
Sales Rep.

~~~
~~~
~~~
~~~

2 Fuller Andrew Vice Pres. ~~~

UPDATE Statement logged as INSERT and DELETE Statements
insertedinserted

17 Fuller Andrew Vice Pres. ~~~

deleteddeleted
2 Fuller Andrew Vice Pres. ~~~

 Transaction cannot be processed.
 ***** Member number cannot be modified

EmployeesEmployees
EmployeeID LastName FirstName Title HireDate

1
2
3
4

Davolio
Barr
Leverling
Peacock

Nancy
Andrew
Janet
Margaret

Sales Rep.
R
Sales Rep.
Sales Rep.

~~~
~~~
~~~
~~~

2 Fuller Andrew Vice Pres. ~~~

How an UPDATE Trigger Works

INSTEAD OF Triggers
 INSTEAD OF trigger lets us interpret view

modifications that wouldn’t be allowed
 Example view:

 CREATE VIEW Synergy(cust,soda,rest)
AS
SELECT Likes.customer, Sells.soda, Sells.rest
FROM Likes, Sells, Frequents
WHERE Likes.customer = Frequents.customer

AND Sells.soda = Likes.soda
AND Sells.rest = Frequents.rest

Interpreting a View Insertion
 INSERT INTO Synergy(cust, soda, rest)

VALUES ('Molly', 'Sunkist', 'Regal Beagle')
 What does that mean?
 Can use INSTEAD OF trigger to decide

The Trigger
 CREATE TRIGGER SynergyInsert ON Synergy

INSTEAD OF INSERT
AS
DECLARE @c nvarchar(30)
DECLARE @s nvarchar(30)
DECLARE @r nvarchar(30)
SELECT @c=cust, @s=soda, @r=rest

From Inserted
INSERT INTO Likes VALUES(@c, @s)
INSERT INTO Frequents VALUES(@c, @r)
INSERT INTO Sells VALUES(@r, @s, null)

INSTEAD OF Triggers
 Can use them on views to define action
 Can also use them on regular tables

 Optionally perform or ignore actions

How Nested Triggers Work

UnitsInStock + UnitsOnOrder
is < ReorderLevel for ProductID 2

OrDe_Update

Placing an order causes the
OrDe_Update trigger to
execute

Executes an UPDATE
statement on the Products
table

InStock_Update
ProductsProducts

ProductID UnitsInStock … …

1

3
4

15
10
65
20

2 15

InStock_Update trigger
executes

Sends message

Order_DetailsOrder_Details
OrderID

10522
10523
10524

ProductID

10
41
7

UnitPrice

31.00
9.65
30.00

Quantity

7
9
24

Discount

0.2
0.15
0.0

 10525 19.002 0.25

Recursive Triggers
 Activating a Trigger Recursively

 See ALTER DATABASE command
 Types of Recursive Triggers

 Direct recursion occurs when a trigger fires and performs
an action that causes the same trigger to fire again

 Indirect recursion occurs when a trigger fires and
performs an action that causes a trigger on another table
to fire that … causes the original trigger to fire again

Examples of Triggers
 Enforcing Data Integrity
 Enforcing Business Rules

CREATE TRIGGER BackOrderList_Delete
ON Products FOR UPDATE

AS
IF (SELECT BO.ProductID FROM BackOrders AS BO JOIN

Inserted AS I ON BO.ProductID = I.Product_ID
) > 0

BEGIN
DELETE BO FROM BackOrders AS BO
INNER JOIN Inserted AS I
ON BO.ProductID = I.ProductID

END

ProductsProducts
ProductID UnitsInStock … …

1

3
4

15
10
65
20

2 15 Updated

BackOrdersBackOrders
ProductID UnitsOnOrder …

1
12
3

15
10
65

2 15 Trigger Deletes Row

ProductsProducts
ProductID UnitsInStock … …

1
2
3
4

15
10
65
20

 Products with Outstanding Orders Cannot Be Deleted

IF (Select Count (*)
 FROM [Order Details] INNER JOIN deleted
 ON [Order Details].ProductID = deleted.ProductID
) > 0
ROLLBACK TRANSACTION

DELETE statement executed on
Product table

Trigger code
checks the Order Details
table Order DetailsOrder Details

OrderID

10522
10523
10524
10525

ProductID

10
2
41
7

UnitPrice

31.00
19.00
9.65
30.00

Quantity

7
9
24

Discount

0.2
0.15
0.0

9

'Transaction cannot be processed'
'This product has order history'

Transaction
rolled back

ProductsProducts
ProductID UnitsInStock … …

1

3
4

15
10
65
20

2 0

Considerations for Using Triggers
 Triggers vs. Constraints

 Constraints are proactive
 Triggers reactive (FOR) or proactive (INSTEAD OF)
 Constraints checked before triggers

 Can have multiple triggers for any action
 Use sp_settriggerorder to designate order
 Views and temporary tables may only have

INSTEAD OF triggers

Performance Considerations
 Triggers Work Quickly — Inserted and

Deleted Tables Are in Cache
 Execution Time Is Determined by:

 Number of tables that are referenced
 Number of rows that are affected

 Actions Contained in Triggers Implicitly Are
Part of Transaction

