
Transactions and Locking
Rose-Hulman Institute of Technology
Curt Clifton

Outline
 ACID Transactions
 COMMIT and ROLLBACK
 Managing Transactions
 Locks

The Setting
 Database systems are normally being accessed by

many users or processes at the same time
 Operating Systems also deal with concurrent access

 OSs allow two people to edit a document at the same time.
 If both write, one’s changes get lost.

 DB can and must do better

Example
 Mom and Dad each deposit $100 from

different ATMs into your account at about the
same time

ACID Transactions
 Atomic

 All or nothing
 Consistent

 Constraints preserved
 Isolated

 (Apparently) one user at a time
 Durable

 Crashes can’t violate the other properties

Transactions in SQL
 SQL supports transactions

 Generic query interface
 Each statement issued is a transaction by itself

 Programming interfaces
 A transaction begins with first SQL statement
 Ends with the procedure end (or an explicit end)

Ending Transactions
 COMMIT completes a transaction

 Modifications are now permanent in the database
 ROLLBACK ends transaction by aborting

 No effects on the database!
 Failures (e.g., division by 0) also cause

ROLLBACK

Another Example
 Assume the usual Sells(rest,soda,price)

relation
 Suppose that Majnoo’s Rest sells only Coke for

$1.50 and Salaam Cola for $1.75.
 Laila is querying Sells for

 the highest and lowest price Majnoo charges.
 Majnoo decides

 to stop selling Coke and Salaam Cola
 to starting only Juice at $2.00

Laila’s Program
 Laila executes the following two SQL

statements
 Call this one “max”:

 SELECT MAX(price) FROM Sells
WHERE rest = 'Majnoo''s Rest';

 “min”:
 SELECT MIN(price) FROM Sells

WHERE rest = 'Majnoo''s Rest';

Majnoo’s Program
 At about the same time, Majnoo executes the

following SQL statements
 “del”

 DELETE FROM Sells
WHERE rest = 'Majnoo''s Rest';

 “ins”
 INSERT INTO Sells

VALUES('Majnoo''s Rest', 'Juice', 2.00);

Interleaving of Statements
 Constraints:

 max must come before min
 del must come before ins

 No other constraints on the order of the
statements

Example: Strange Interleaving
 Suppose the steps execute in the order:

 max del ins min
 What answers does Laila see?

Fixing the Problem: Transactions
 If we group Laila’s statements max min into

one transaction:
 Cannot see this inconsistency
 Will see Majnoo’s prices at some fixed time

Problem: Undoing Changes
 Majnoo executes del ins

 Changes his mind
 Reverses the changes, say by del', ins'

 Suppose the order is:
 del ins max min del' ins'

 What does Laila see?

Solution
 If Majnoo executes del ins as a transaction, its

effect cannot be seen by others until the
transaction executes COMMIT
 Instead of del' ins' he uses ROLLBACK instead
 Effects of transaction can never be seen.

Transactions and Locks in SQL Server
 Transactions Ensure That Multiple Data

Modifications Are Processed Together
 Locks Prevent Update Conflicts

 Transactions are serializable
 Locking is automatic
 Locks allow concurrent use of data

 Concurrency Control

Managing Transactions (outline)
 Transaction Recovery and Checkpoints
 Considerations for Using Transactions
 Setting the Implicit Transactions Option
 Restrictions on User-defined Transactions

Transaction Recovery, Checkpoints
Ti

m
e

(a
nd

 p
la

ce
 in

 lo
g)

Database

Transaction Log

Transaction Log
INSERT …
DELETE …
UPDATE …
…

INSERT …
DELETE …
UPDATE …
…

INSERT …
DELETE …
UPDATE …
…

INSERT …
DELETE …
UPDATE …
…

INSERT …
DELETE …
UPDATE …
…

CHECKPOINT

CRASH!!!

COMMIT

COMMIT

COMMIT

Recovery Needed? NONE

Recovery Needed? ROLL FORWARD

Recovery Needed? ROLL BACK

Recovery Needed? ROLL FORWARD

Recovery Needed? ROLL BACK

ZOT!

Considerations when Using Transactions
 Transaction Guidelines

 Keep transactions as small as possible
 Use caution with certain Transact-SQL

statements
 Avoid transactions that require user interaction

 Issues in Nesting Transactions
 Allowed, but not recommended
 Use @@trancount to determine nesting level

SET IMPLICIT_TRANSACTIONS ON

Implicit Transactions
 Automatically Starts a Transaction When You

Execute Certain Statements
 Nested Transactions Are Not Allowed
 Transaction Must Be Explicitly Completed

with COMMIT or ROLLBACK
 By Default, Setting Is Off

 ALTER DATABASE
 BACKUP LOG
 CREATE DATABASE
 DROP DATABASE
 RECONFIGURE
 RESTORE DATABASE
 RESTORE LOG
 UPDATE STATISTICS

Restrictions on Transactions
 Certain Statements May Not Be Included in a

Transaction:

How much ACID have we done?
 Explicit transactions support Atomicity
 Automatic rollback on errors supports

Consistency
 Transaction log supports Durability

Locks Support Isolation

Lockable Resources
 Item Item Description Description

RID Row identifier

Key Row lock within an index

Page

Extent

Table

Data page or index page

Group of pages

Entire table

Database Entire database

Types of Locks
 Basic Locks

 Shared
 Exclusive

 Special Situation Locks
 Intent
 Update
 Schema
 Bulk update

Lock Compatibility
 Locks May or May Not Be Compatible with

Other Locks
 Examples

 Shared locks are compatible with all locks except
exclusive

 Exclusive locks are not compatible with any other
locks

 Update locks are compatible only with shared
locks

Dynamic
Locking

TablePageRow

Cost

GranularityLocking Cost
Concurrency Cost

Week Eight Deliverables
 Sample Reports

 See rubric on Angel
 First draft due by Friday night (50 points)
 New versions due week nine (100 points)
 Meet with me during lab time today to agree

on reports!

