
From Relational Algebra to the
Structured Query Language

Rose-Hulman Institute of Technology
Curt Clifton

Review – Relational Integrity
 Entity Integrity Constraints:

 Primary key values cannot be null
 Referential Integrity Constraints:

 Foreign key values must either:
 Match the primary key values of some tuple, or
 Be null

Review – Relational Algebra
 Intersection: R1 ∩ R2
 Union: R1 ∪ R2
 Difference: R1 - R2
 Selection: σBDATE < 1970-1-1 (EMPLOYEE)
 Projection: πFNAME, BDATE(EMPLOYEE)
 Theta-Join:
 Natural Join: R1 * R2

Why Relational Algebra?
 Foundational knowledge
 Used by query optimizers

 Finer grained than SQL
 Can be formally reasoned about

 Formal basis for semantics of SQL

Homework Problem 6.18
 Parts a–d and g
 Begin in class, may work in groups of 2–3

 Please note your partners on the sheet

Sets versus Bags
 Sets

 Order doesn’t matter
 No duplicates

 Examples
 {1,2,3} = {2,1,3}
 {1,2} ∪ {2} = {1,2}

 Bags (or multi-sets)
 Order doesn’t matter
 Duplicates allowed

 Examples
 {1,2,3} = {2,1,3}
 {1,2} ∪ {2} = {1,2,2}
 {1,2,3} ≠ {1,2,2,3}

Why Bags? Efficiency!
 Eliminating duplicates can be expensive
 By default SQL uses bags

Bag Union
 “Just dump all the elements into a single bag”
 An element appears in the union of two bags

the sum of the number of times it appears in
each bag

Bag Intersection
 “Whichever bag has the fewest, has the

answer”
 An element appears in the intersection of two

bags the minimum number of times it appears
in either.

Bag Difference
 “Take elements out of the first if they’re in the

second”
 An element appears in the difference of two

bags as many times as it appears in the first,
minus the number of times it appears in the
second, but no less than 0 times

Bag Selection

21
65
21
BAR

 Like set selection
 But input and output

can be bags

Bag Projection

21
65
21
BAR

 Unlike set project, can
turn a set into a bag

Bag Theta-Join

21
65
21
BAR

 Pair each tuple of first
table with each tuple of
second

 Check condition
 Don’t eliminate

duplicates
87
43
CBS

Introducing SQL
 Pronounced:

 “ess queue ell”
 Or “sequel”

 Benefits:
 Designed for the relational model
 Easily optimized by DBMS
 Standard (well, sort of, a little bit, sometimes)

http://sqlfairy.sourceforge.net

Running Example – The SodaBase
 Soda(name, manf)
 Rest(name, addr, contract)
 Customer(name, addr, phone)
 Likes(customer, soda)
 Sells(rest, soda, price)
 Frequents(customer, rest)

The Basic SQL Query
 SELECT attributes

FROM table
WHERE condition

 Semantics: πattributes(σcondition(table))

Example
 Find all the names of all sodas made by

PepsiCo

Example
 Find all the names of all sodas made by

PepsiCo
 SELECT name

FROM Soda
WHERE manf = 'PepsiCo'

 (note single quotes)

Select *
 For getting all attributes…
 SELECT *

FROM table
WHERE condition

 Semantics: σcondition(table)

Example
 SELECT *

FROM Soda
WHERE manf = 'PepsiCo'

Renaming Attributes
 SELECT attribute1 AS newName1, …

FROM table
WHERE condition

 Semantics:
ρnewName1, …(πattribute1, …(σcondition(table)))

Example
 SELECT name AS soda, manf AS maker

FROM Soda
WHERE manf = 'PepsiCo'

Expressions in SELECT Clauses
 Can use expressions on attributes in SELECT
 SELECT f(attributes), …

FROM table
WHERE condition

 More powerful than the relational algebra
we’ve seen
 Would need functions on tuples

Example
 Show selling prices in Yen

Example
 Show selling prices in Yen
 SELECT rest, soda,

price * 115 AS priceInYen
FROM Sells

Another Example: Constants
 SELECT customer,

'likes Pepsi' AS promotion
FROM Likes
WHERE soda = 'Pepsi'

Example: Complex Conditions
 Find the price that Joe’s Sushi charges for

Pepsi

Example: Complex Conditions
 Find the price that Joe’s Sushi charges for Pepsi
 SELECT price

FROM Sells
WHERE rest = 'Joe''s Sushi'

AND soda = 'Pepsi'
 Note:

 Double apostrophe inside string
 AND, OR, NOT
 Case insensitive

Pattern Matching
 WHERE clauses can compare string to pattern

 Attribute LIKE pattern
 Attribute NOT LIKE pattern

 Pattern syntax:
 Pattern is a string
 % in string represents any number of characters
 _ in string represent any single character

Example
 Find the customers with exchange 555,

regardless of area code

Example
 Find the customers with exchange 555,

regardless of area code
 SELECT name

FROM Customer
WHERE phone LIKE '%555-____'

-- That’s four underscores

Dealing with Null
 Why might a tuple have a null value?
 SQL uses three-valued logic to handle null

 A boolean expression can be
true, false, or unknown

 Comparison with null yields unknown
instead of error

 WHERE clause must be true to match

Three-Valued Logic
 True = 1
 False = 0
 Unknown = 1/2
 x AND y = min(x, y)
 x OR y = max(x, y)
 NOT x = 1 - x

Consider
 SELECT rest

FROM Sells
WHERE price < 2.00 OR price >= 2.00

 If the Sells relation has the value:

 Beware of nulls!

nullPepsiJoe's

pricesodarest

Combining Relations
 List multiple tables in FROM
 Use Relation.Attribute to distinguish
 SELECT soda

FROM Likes, Frequents
WHERE
 Frequents.customer = Likes.customer

AND rest = 'Joe''s'
 Semantics:

Tuple Variables
 Can distinguish two copies of same relation
 Example: Find all pairs of sodas by the same

manufacturer…
 Omitting trivial pairs like (Pepsi, Pepsi)
 Omitting permutations of same sodas by listing

members of pair alphabetically

Solution
 SELECT s1.name, s2.name

FROM Soda s1, Soda s2
WHERE s1.manf = s2.manf

AND s1.name < s2.name

The Story Thus Far
 SELECT … FROM … WHERE
 SELECT * …
 SELECT Foo AS Bar …
 SELECT expression …
 SELECT … FROM … WHERE … LIKE …
 SELECT … FROM Foo, Bar …
 SELECT … FROM Foo f1, Foo f2 …

