
Structured Query Language –
Continued

Rose-Hulman Institute of Technology
Curt Clifton

The Story Thus Far
 SELECT … FROM … WHERE
 SELECT * …
 SELECT Foo AS Bar …
 SELECT expression …
 SELECT … FROM … WHERE … LIKE …
 SELECT … FROM Foo, Bar …
 SELECT … FROM Foo f1, Foo f2 …

Next Up: Subqueries
 As values
 As relations

Subqueries as Values
 Only allowed when subquery evaluates to

single value
 Run-time error otherwise

 Example: Find the restaurants that sell Slice
for the price the Joe's charges for Pepsi

Subqueries as Relations – in FROM
 SELECT Likes.customer,

mix.soda1, mix.soda2
FROM Likes,

(SELECT s1.name AS soda1,
 s2.name AS soda2

FROM Soda s1, Soda s2
WHERE s1.manf = s2.manf

AND s1.name < s2.name)
AS mix

WHERE Likes.soda = mix.soda1

Subqueries as Relations – in WHERE
 value IN relation
 Evaluates to true if relation contains value
 SELECT *

FROM Soda
WHERE name IN (SELECT soda

FROM Likes
WHERE
 customer = 'Fred')

Subqueries as Relations – in WHERE
 EXISTS relation
 Evaluates to true if relation is non-empty
 Find every soda where its manufacturer does not

make anything else
 SELECT name

FROM Soda s1
WHERE NOT EXISTS (

SELECT *
FROM Soda s2
WHERE s2.manf = s1.manf

AND s2.name <> s1.name)

Subqueries as Relations – in WHERE
 ANY

 x comp ANY(relation)
 comp can be <, >, =, <>, >=, <=
 Evaluates to true if comparison holds for any tuple in

relation
 ALL

 x comp ALL(relation)
 comp can be <, >, =, <>, >=, <=
 Evaluates to true if comparison holds for every tuple in

relation

Example
 SELECT soda

FROM Sells
WHERE price >= ALL(SELECT price

FROM Sells)

Subqueries Summary
 As values
 As relations in FROM clause
 As relations in WHERE clause

 IN
 EXISTS
 ANY
 ALL

Combining Relations
 Union, Intersection, Difference
 Joins

Union, Intersection, and Difference
 Union

 (subquery) UNION (subquery)
 Intersection

 (subquery) INTERSECT (subquery)
 Difference

 (subquery) EXCEPT (subquery)

SQL Goofiness – Sets vs. Bags
 Bags by default

 SELECT
 Sets by default

 UNION
 INTERSECT
 EXCEPT

 Overriding defaults
 SELECT DISTINCT

 UNION ALL
 Cannot override
 Cannot override

Example
 Find all the different prices charged for sodas

Example
 Find all the different prices charged for sodas

 SELECT DISTINCT price
FROM Sells

Theta Join
 Syntax:
 SELECT …

FROM table1 JOIN table2 ON condition
…

Example
 Give name and phone number of all

customers that frequent Joe's Sushi

Example
 SELECT name, phone

FROM Customer JOIN Frequents
ON name = customer

WHERE rest = 'Joe''s Sushi'
 Compare:

 SELECT name, phone
FROM Customer, Frequents
WHERE name = customer

AND rest = 'Joe''s Sushi'

Natural Join
 Not in SQL Server
 But some DBMS allow:

 SELECT …
FROM table1 NATURAL JOIN table2

Outer Joins
 Recall: solution to dangling tuple problem
 Make sure every tuple shows up, even if no

“mate”, by inserting nulls if needed
 Three basic forms:

 SELECT … FROM t1 LEFT OUTER JOIN t2
 SELECT … FROM t1 RIGHT OUTER JOIN t2
 SELECT … FROM t1 OUTER JOIN t2

Cross Product
 Possible, though less common
 SELECT …

FROM table1 CROSS JOIN table2
 Or just write:

 SELECT …
FROM table1, table2

Reporting
 Aggregation
 Grouping

Aggregation
 Calculations over rows
 Example:

 SELECT AVG(price)
FROM Sells
WHERE soda = 'Pepsi'

 Other aggregations:
 SUM
 AVG
 COUNT, COUNT(*)
 MIN, MAX “Let me explain. No, would take

too long. Let me sum up.”

Aggregation and Duplicates
 Can use DISTINCT inside an aggregation
 Example – Find the number of different prices

charged for Pepsi

Aggregation and Duplicates
 Can use DISTINCT inside an aggregation
 Example – Find the number of different prices

charged for Pepsi
 SELECT COUNT(DISTINCT price)

FROM Sells
WHERE soda = 'Pepsi'

Grouping
 For aggregating

subsections of result
 SELECT …

FROM …
WHERE …
GROUP BY attr,…

Example: Grouping
 Find the average price for each soda

Example: Grouping
 Find the average price for each soda
 SELECT soda, AVG(price)

FROM Sells
GROUP BY soda

Having
 Like a WHERE clause for groups
 SELECT …

FROM …
WHERE … -- filter rows
GROUP BY … -- group rows
HAVING … -- filter groups

Example: Having
 Find the average price of those sodas that are

served by at least three restaurants

Example: Having
 Find the average price of those sodas that are

served by at least three restaurants
 SELECT soda, AVG(price)

FROM Sells
GROUP BY soda
HAVING COUNT(rest) >= 3

Modifying the Database
 Insert
 Delete
 Update

Insertion
 Single tuple, quick and dirty:

 INSERT INTO table
VALUES (value1, …)

 Single tuple, more robust:
 INSERT INTO table(attr1, …)

VALUES (value1, …)
 Many tuples:

 INSERT INTO table (subquery)

Deletion
 Single tuple:

 DELETE FROM table WHERE condition
 All tuples (zoinks!):

 DELETE FROM table

Updates
 Syntax:

 UPDATE table
SET attr1 = expr1, … -- attributes, new values
WHERE condition -- rows to change

Example
 Change Fred's phone number to 555-1212

Example
 Change Fred's phone number to 555-1212
 UPDATE Customer

SET phone = '555-1212'
WHERE name = 'Fred'

Example
 Raise all prices by 10%

Example
 Raise all prices by 10%
 UPDATE Sells

SET price = (price * 1.10)

