
Query Processing and
Optimization
Rose-Hulman Institute of Technology
Curt Clifton

Outline
 Basic Optimization Approach
 Algorithms for Processing Queries
 Pipelining
 Techniques for Automatic Query

Optimization

Introduction to Query Processing
 What is query

optimization?
 Typically intermediate

form is a query tree

From SQL to Relational Algebra
 Query block: the basic unit that can be

translated into the algebraic operators and
optimized

 Nested queries become separate query blocks
 Aggregate operators in SQL require extended

algebra
 Example…

Example Translation
SELECT LNAME, FNAME
FROM EMPLOYEE
WHERE SALARY > (SELECT MAX (SALARY)

FROM EMPLOYEE
WHERE DNO = 5);

SELECT LNAME, FNAME
FROM EMPLOYEE
WHERE SALARY > C

SELECT MAX (SALARY)
FROM EMPLOYEE
WHERE DNO = 5

πLNAME, FNAME (σSALARY>C(EMPLOYEE)) ℱMAX SALARY (σDNO=5 (EMPLOYEE))

What Next?
 Queries reduced to query trees in relational

algebra
 DBMS considers various algorithms for

processing query
 Rewrites tree to use “best” algorithms
 Variety of algorithms exist to solve various

query problems

Problem: Sorting Huge Datasets
 Use external sorting
 Phase 1:

 Load n pages into memory, as many as fit (a “run”)
 Sort them and save back to disk
 Repeat until all runs are sorted

 Phase 2:
 Perform an (n-1)-way merge

 One page for “top” of each of n-1 runs
 One page for “bottom” of merge results

 Repeat until done

Problem: Selecting Subset of Rows
 Linear search:

 Last resort, unless file is small
 Binary search:

 For ordered data without an index
 Using an index for equality comparisons:

 Just look up the record

Problem: Selecting Subset of Rows
 Using a primary index for order comparisons:

 Find edge of range using index
 Scan from there

 Using a secondary index for order
comparisons:
 Find edge of range using index
 Scan leaf nodes of index from there, loading data

based on pointers

Select With Complex Condition
 Simple conjunctive selection:

 Pick one condition for which some previous
method would work

 Use brute force to filter those results based on
other conditions

 Conjunctive selection with a composite index:
 Works if index covers all attributes in the

complex condition

Select With Complex Condition
 Conjunctive selection by intersection of

record pointers:
 Suppose:

 Secondary indexes are several fields in condition
 Indexes include record pointers

 Then:
 Use indexes to get sets of the record pointers for

conjuncts
 Take intersection of pointer sets
 Then retrieve actual records

Problem: Joining Two Tables
 Nested-loop join (brute force):

 Last resort unless tables are small
 Single-loop join when one table has index

 Loop over one table
 Use index to find matches in other table

Problem: Joining Two Tables
 Sort-merge join when both tables sorted by

join attributes
 Scan both files matching the records that have the

same values for join attributes

Problem: Combining Multiple Ops.
 Generating and saving temporary files is time

expensive
 So, avoid constructing temporary results
 Pipeline the data through multiple operations:

 Pass the result of a previous operator to the next
 Page-by-page instead of operation-by-operation

 Example…

Pipelining Example
 SELECT (FName + ' ' + LName) AS Name

FROM Employee e JOIN Department d
ON e.DNo = d.DNumber

WHERE e.Salary < 50000
AND d.Location <> 'Houston'

 What are the individual operations for this?
 How many ways could this be pipelined?

Picking Algorithms and Plans
 Heuristics
 Cost estimation

Using Heuristics
 Uses pattern matching to transform parts of

query tree to a “best” shape
 Patterns based on transformations that are

likely to be more efficient:
 E.g., Apply selection before applying join
 Why is that likely (naively) to be more efficient?

Cost-based Optimization
 Estimate the costs of a variety of different

versions of the query based on:

Cost-based Optimization
 Estimate the costs of a variety of different

versions of the query based on:
 Available indexes
 Specificity of conditions
 Statistics on data
 Disk speed
 Memory available
 Block and record sizes
 Index blocking factors

Issues in Cost-based Optimization
 Accuracy of statistics
 Cost of calculating costs
 Accuracy of estimates of disk speed, memory

available
 Shear number of possible execution strategies

Which is Used?
 Cost-based optimization is “taking over”
 SQL Server uses cost-based optimization
 Does NOT try to minimize total cost!

Which is Used?
 Cost-based optimization is “taking over”
 SQL Server uses cost-based optimization
 Does NOT try to minimize total cost!
 Tries to minimize time to initial results

