
Module 9: Implementing
Stored Procedures

 Introduction to Stored Procedures

 Creating Executing Modifying Dropping

 Using Parameters in Stored Procedures

 Executing Extended Stored Procedures

 Handling Error Messages

Overview

 Defining

 Initial Processing

 Subsequent Processing

 Advantages

 Introduction to Stored Procedures

Introduction: Defining Stored Procedures

 Named Collections of Transact-SQL Statements

 Accept Input Parameters and Return Values

 Return Status Value to Indicate Success or Failure

 Encapsulate Repetitive Tasks

 Five Types

 System, Local, Temporary, Remote, Extended

Introduction: Initial Processing of Stored Procedures

Entries into sysobjects
 and syscomments tables

 Compiled plan placed in
procedure cacheCompilation

Optimization

CreationCreation

ExecutionExecution
(first time(first time

or recompile)or recompile)

Parsing

Introduction: Subsequent Processing of Stored
Procedures
Execution Plan Retrieved

Unused plan is aged out

Execution Plan Execution Context

SELECT *
FROM
dbo.member
WHERE
member_no = ?

Connection 1

8082

Connection 2

Connection 3

24

1003

Introduction: Advantages of Stored Procedures

 Share Application Logic

 Shield Database Schema Details

 Provide Security Mechanisms

 Improve Performance

 Reduce Network Traffic

 Creating, Executing, Modifying, and Dropping
Stored Procedures

 Creating

 Guidelines for Creating

 Executing

 Altering and Dropping

Creating Stored Procedures

 Create in Current Database Using the CREATE PROCEDURE (or
CREATE PROC) Statement

 Can Nest to 32 Levels

 Use sp_help to Display Information

 sp_help <procedure name>

USE Northwind
GO
CREATE PROC dbo.OverdueOrders
AS
 SELECT *
 FROM dbo.Orders
 WHERE RequiredDate < GETDATE() AND ShippedDate IS Null
GO

Guidelines for Creating Stored Procedures

 dbo User Should Own All Stored Procedures

 E.g., dbo.OverdueOrders

 One Stored Procedure for One Task

 Create, Test, and Troubleshoot

 Avoid sp_ Prefix in Stored Procedure Names

 Used for system store procedures

 Use Same Connection Settings for All Stored Procedures

 Minimize Use of Temporary Stored Procedures

 Never Delete Entries Directly From Syscomments

Executing Stored Procedures

 Executing a Stored Procedure by Itself

 Executing a Stored Procedure Within an INSERT
Statement

EXEC OverdueOrders

INSERT INTO Customers
EXEC EmployeeCustomer

Inserts the results
from the Query in

EmployeeCustomer

Altering and Dropping Stored Procedures

 Altering Stored Procedures

 Include any options in ALTER PROCEDURE (or ALTER PROC)

 Does not affect nested stored procedures

 Dropping stored procedures

 Execute the sp_depends stored procedure to determine whether objects
depend on the stored procedure

USE Northwind
GO
ALTER PROC dbo.OverdueOrders
AS
SELECT CONVERT(char(8), RequiredDate, 1) RequiredDate,
 CONVERT(char(8), OrderDate, 1) OrderDate,
 OrderID, CustomerID, EmployeeID
 FROM Orders
WHERE RequiredDate < GETDATE() AND ShippedDate IS Null
ORDER BY RequiredDate
GO

 Using Parameters in Stored Procedures

 Using Input Parameters

 Executing Using Input Parameters

 Returning Values Using Output Parameters

 Explicitly Recompiling

Using Input Parameters

 Validate All Incoming Parameter Values First

 Highly recommended since testing and fixing is harder

 Provide Appropriate Default Values and Include Null
Checks

CREATE PROCEDURE dbo.[Year to Year Sales]
 @BeginningDate DateTime, @EndingDate DateTime
AS
IF @BeginningDate IS NULL OR @EndingDate IS NULL
BEGIN
 RAISERROR('NULL values are not allowed', 14, 1)
 RETURN
END
SELECT O.ShippedDate,
 O.OrderID,
 OS.Subtotal,
 DATENAME(yy,ShippedDate) AS Year
FROM ORDERS O INNER JOIN [Order Subtotals] OS
 ON O.OrderID = OS.OrderID
WHERE O.ShippedDate BETWEEN @BeginningDate AND @EndingDate
GO

Executing Stored Procedures Using Input Parameters

 Passing Values by Parameter Name

 Passing Values by Position

EXEC AddCustomer 'ALFKI2', 'Alfreds
Futterkiste', 'Maria Anders', 'Sales
Representative', 'Obere Str. 57', 'Berlin',
NULL, '12209', 'Germany', '030-0074321'

EXEC AddCustomer
 @CustomerID = 'ALFKI',
 @ContactName = 'Maria Anders',
 @CompanyName = 'Alfreds Futterkiste',
 @ContactTitle = 'Sales Representative',
 @Address = 'Obere Str. 57',
 @City = 'Berlin',
 @PostalCode = '12209',
 @Country = 'Germany',
 @Phone = '030-0074321'

More robust but requires
parameter names and
tighter coordination
between developers.

Less robust but supports
“programming to interfaces.”

Returning Values Using Output Parameters

CREATE PROCEDURE dbo.MathTutor
 @m1 smallint,
 @m2 smallint,
 @result smallint OUTPUT
AS
 SET @result = @m1* @m2
GO

DECLARE @answer smallint
EXECUTE MathTutor 5,6, @answer OUTPUT
SELECT 'The result is: ', @answer

The result is: 30Results of StoredResults of Stored
ProcedureProcedure

Executing StoredExecuting Stored
ProcedureProcedure

Creating Stored Creating Stored
ProcedureProcedure

Explicitly Recompiling Stored Procedures

 Recompile When the Execution Plan Changes

 Stored procedure returns widely varying result sets

 A new index is added to an underlying table

 The parameter value is atypical

 Recompile by Using

 CREATE PROCEDURE [WITH RECOMPILE]

 EXECUTE [WITH RECOMPILE]

 sp_recompile <procedure name>

Executing Extended Stored Procedures

 Are Programmed Using Open Data Services API

 Can Include C, C++, Java Features

 Can Contain Multiple Functions

 Can Be Called from a Client or SQL Server

 Can Be Added to the master Database Only

EXEC master..xp_cmdshell 'dir c:\'

E.g., Execute a
command in cmdshell.

Handling Error Messages

 RETURN Statement Exits Query or Procedure
Unconditionally

 sp_addmessage Creates Custom Error Messages

 @@error Contains Error Number for Last Executed
Statement

 RAISERROR Statement

 Returns user-defined or system error message

 Sets system flag to record error

Performance Considerations

 Windows 2000 System Monitor

 Object: SQL Server: Cache Manager

 Object: SQL Statistics

 SQL Profiler

 Can monitor events

 Can test each statement in a stored procedure

Recommended Practices

Design Each Stored Procedure to Accomplish a Single Task

Validate Data Before You Begin Transactions

Verify Input Parameters

Use the Same Connection Settings for All Stored Procedures

Use WITH ENCRYPTION to Hide Text of Stored Procedures

 Introduction to Stored Procedures

 Creating Executing Modifying Dropping

 Using Parameters in Stored Procedures

 Executing Extended Stored Procedures

 Handling Error Messages

Review

