Module 13: Optimizing
Query Performance

Overview

= Introduction to the Query Optimizer

= Obtaining Execution Plan Information
m Using an Index to Cover a Query

= Indexing Strategies

m Overriding the Query Optimizer

@ Introduction to the Query Optimizer

m Function

m How It Uses Cost-Based Optimization
= How It Works

m Phases

m Caching the Execution Plan

m Setting a Cost Limit

Function of the Query Optimizer

m Determines the Most Efficient Execution Plan

e Determining whether indexes exist and evaluating their
usefulness

e Determining which indexes or columns can be used
e Determining how to process joins
e Using cost-based evaluation of alternatives

e Creating column statistics
m Uses Additional Information
m Produces an Execution Plan

How the Query Optimizer Uses Cost-Based
Optimization

m Limits the Number of Optimization Plans to Optimize in
Reasonable Amount of Time

e Cost is estimated in terms of I/O and CPU cost
m Determines Query Processing Time
e Use of physical operators and sequence of operations

e Use of parallel and serial processing

How the Query Optimizer Works

Transact-SQL } Parsing Process

Useful format for

. optimization
r Standardization Process F()remo\,eg,

You are redundancy)
here!

r Compilation

§

r Database Access Routines }Ress’“t'ts
e

Query Optimization Phases

= Query Analysis

e |dentifies the search and join criteria of the query
m Index Selection

e Determines whether an index or indexes exist

e Assesses the usefulness of the index or indexes
= Join Selection

e Evaluates which join strategy to use

Caching the Execution Plan

m Storing a Execution Plan in Memory

e One copy for all serial executions

e Another copy for all parallel executions
m Using an Execution Context

e An existing execution plan is reused, if one exists

e A new execution plan is generated, if one does not exist
m Recompiling Execution Plans

e (Changes can cause execution plan to be inefficient or invalid
* For example, a large number of new rows added
* ALTER TABLE/VIEW
« UPDATE STATISTICS
* Dropping an INDEX that is used
* Explicit sp_recompile

Setting a Cost Limit

m Specifying an Upper Limit (based on Estimated Costs)

e Use the query governor to prevent long-running queries
from executing and consuming system resources

« Effectively controls run-away queries
m Specifying Connection Limits
e Use the sp_configure stored procedure

e Execute the SET QUERY_GOVERNOR_COST LIMIT
statement

e Specify 0 to turn off the query governor

€ Obtaining Execution Plan Information

m Viewing STATISTICS Statements Output

m Viewing SHOWPLAN_ALL and SHOWPLAN_TEXT
Output

m Graphically Viewing the Execution Plan

Viewing STATISTICS Statements Output

Statement

Output Sample

STATISTICS SQL Server Execution Times:
TIME CPU time = 0 ms, elapsed time = 2 ms.
STATISTICS Rows Executes StmtText StmtId..
PROFILE | oo
47 1 SELECT * FROM [charge] 16
WHERE (([charge_amt]>=@1)
STATISTICS IO | Table 'member'. Scan count 1,

logical reads 23, physical reads O,
read-ahead reads O.

Viewing SHOWPLAN_ALL and SHOWPLAN_TEXT

Output

m Structure of the SHOWPLAN Statement Output

Returns information as a set of rows
Forms a hierarchical tree
Represents steps taken by the query optimizer

Shows estimated values of how a query was optimized, not the
actual execution plan

m Details of the Execution Steps

m Explore:

What is the difference Between SHOWPLAN_ TEXT and
SHOWPLAN_ALL Output

€ Graphically Viewing the Execution Plan

m Elements of the Graphical Execution Plan

m Reading the Graphical Execution Plan Output

m Using the Bookmark Lookup Operation

Elements of the Graphical Execution Plan

m Steps Are Units of Work to Process a Query

m Sequence of Steps Is the Order in Which the Steps Are
Processed

m Logical Operators Describe Relational Algebraic
Operation Used to Process a Statement

m Physical Operators Describe Physical Implementation
Algorithm Used to Process a Statement

Reading Graphical Execution Plan Output

Query Plan

SIEIS |
=== S ﬂq|
= -
Member.corp no
Cost 9%
|
SELECT Bookmark Lookup Hash Match Root..
Cost: 0% Cost: 8% Cost 28% E{: |-%H|
Index Seek .
Scanning a particular range of rows from a Filter Member.fname
non-clustered index. Cost: 0% Cost: 10%
Physical operation: Index Seek
Logical operation: Index Seek
Row count: 414
Estimated row sizes: 24
/0 cost: 0.00706
CPU cost: 0.000605
Number of executes: 1.0
Cost: 0.007675(6%)
Subtree cost: 0.00767
Argument:
OBJECT: ([credit].[dbo].[member].[fname]),
SEEK: ([member],[firsthame] >=‘Rb’ AND
[member],[firsthame] <‘T’) ORDERED

€ Using an Index to Cover a Query

m Covering a Query: Resolving Queries without accessing
the data pages

e Introduction to Indexes

e Locating Data by Using Indexes

e |dentifying Whether an Index Can Be Used
e Determining Whether an Index Is Used

e Guidelines for Creating Indexes

Introduction to Indexes That Cover a Query

= Indexes That Cover Queries Retrieve Data Quickly
m Only Nonclustered Indexes Cover Queries

m Indexes Must Contain All Columns Referenced in the
Query

e No Data Page Access Is Required

= Indexed Views Can Pre-Aggregate Data

€ Locating Data by Using Indexes That Cover a
Query

m Example of Single Page Navigation
m Example of Partial Scan Navigation

m Example of Full Scan Navigation

Example of Single Page Navigation

SELECT Tastname, firstname
‘ FROM member

Index Pages Ahtar | Sarah WHERE Tastname = 'Hall
I .
Lan Eric
: Non-Leaf
Level
Akhtar ~ Sarah Lang Eric
Ganio Jon
Leaf Level
(Key Value)
Akhtar ~ Sarah
Barr
Barr
Borm
Buhl

Data Pages

JE8 I I A

Example of Partial Scan Navigation

Index Pages

USE credit
SELECT lastname, firstname
FROM member

Akhtar
Jordan

ERE Tastname BETWEEN 'Funk' AND 'Lang'

Non-Leaf
Level

Leaf Level

(Key Value)
Smith ...

Data Pages

BN EEEEEE

Example of Full Scan Navigation

USE credit
SELECT Tastname, firstname

Index Pages AKhtar FROM member
Mé'r'tin Non-Leaf
Level

Akhta
Ganio

Leaf Level

)

Akhtar | & jordan]| ...

Data Pages

ENEENEEEEEEE

Identifying Whether an Index Can Be Used to Cover a
Query

m All Necessary Data Must Be in the Index

m A Composite Index Is Useful Even if the First Column Is
Not Referenced

m A WHERE Is Not Necessary

m A Nonclustered Index Can Be Used if It Requires Less
/O Than a Clustered Index Containing a Column
Referenced in the WHERE Clause

= Indexes Can Be Joined to Cover a Query

Determining Whether an Index Is Used to Cover a
Query

m Observing the Execution Plan Output

e Displays the phrase “Scanning a non-clustered index
entirely or only a range’

m Comparing l/O

e Nonclustered index
*Total number of levels in the non—leaf level
*Total number of pages that make up the leaf level
*Total number of rows per leaf-level page
*Total number of rows per data page

e Total number of pages that make up the table

Guidelines for Creating Indexes That Cover a Query

m Add Columns to Indexes

m Minimize Index Key Size

= Maintain Row-to-Key Size Ratio

® Indexing Strategies

m Evaluating I/O for Queries That Access a Range of Data
= Indexing for Multiple Queries

m Guidelines for Creating Indexes

[E)v?luating /O for Queries That Access a Range of
ata

SELECT charge_no
FROM charge
WHERE charge_amt BETWEEN 20 AND 30

Access method Page l/O

Table scan 10,417
Clustered index on the charge_amt column 1042
Nonclustered index on the charge amt column 100,273

Each data page is read multiple times™

Composite index on charge_amt, charge_no
columns Covering Query

273

Indexing for Multiple Queries
|

Example 1

USE credit

SELECT charge_no, charge_dt, charge_amt

FROM charge

WHERE statement_no = 19000 AND member_no = 3852

Example 2

USE credit
SELECT member_no, charge_no, charge_amt
FROM charge

WHERE charge_dt between '07/30/1999'
AND '07/31/1999' AND member_no = 9331

Guidelines for Creating Indexes

m Determine the Priorities of All of the Queries

m Determine the Selectivity for Each Portion of the WHERE Clause of
Each Query

m Determine Whether to Create an Index
e Based on priority, selectivity, column width
m |dentify the Columns That Should Be Indexed

m Determine the Best Column Order of Composite Indexes

m Determine What Other Indexes Are Necessary
m Test the Performance of the Queries

e SET SHOWPLAN ON SET STATISCTICS IO ON
SET STATISTICS TIME ON

@ Overriding the Query Optimizer

m Determining When to Override the Query Optimizer
m Using Hints and SET FORCEPLAN Statement

m Confirming Query Performance After Overriding the
Query Optimizer

Determining When to Override the Query Optimizer

m Limit Optimizer Hints
e Leads Optimizer in a certain direction
e Use only if Optimizer is not doing a good job

m Explore Other Alternatives Before Overriding the Query
Optimizer by:

e Updating statistics
e Recompiling stored procedures
e Reviewing the queries or search arguments

e Evaluating the possibility of building different indexes

Using Hints and SET FORCEPLAN Statement

m Table Hints

e Forces use of an Index
= Join Hints

e Forces what time of JOIN to use. E.g., MERGE-JOIN
= Query Hints

e Forces a query to use a particular aspect of the plan
m SET FORCEPLAN Statement

Confirming Query Performance After Overriding the
Query Optimizer

m Verify That Performance Improves
m Document Reasons for Using Optimizer Hints

m Retest Queries Regularly

Recommended Practices

Use the Query Governor to Prevent Long-Running Queries from
Consuming System Resources

Have a Thorough Understanding of the Data and How Queries
Gain Access to Data

Create Indexes That Cover the Most Frequently Used Queries

Establish Indexing Strategies for Individual and Multiple Queries

Avoid Overriding the Query Optimizer

Review

= Introduction to the Query Optimizer
m Obtaining Query Plan Information

m Using an Index to Cover a Query

= Indexing Strategies

m Overriding the Query Optimizer

