
Module 13: Optimizing
Query Performance

Overview

 Introduction to the Query Optimizer

 Obtaining Execution Plan Information

 Using an Index to Cover a Query

 Indexing Strategies

 Overriding the Query Optimizer

 Introduction to the Query Optimizer

 Function

 How It Uses Cost-Based Optimization

 How It Works

 Phases

 Caching the Execution Plan

 Setting a Cost Limit

Function of the Query Optimizer

 Determines the Most Efficient Execution Plan

 Determining whether indexes exist and evaluating their
usefulness

 Determining which indexes or columns can be used

 Determining how to process joins

 Using cost-based evaluation of alternatives

 Creating column statistics

 Uses Additional Information

 Produces an Execution Plan

How the Query Optimizer Uses Cost-Based
Optimization

 Limits the Number of Optimization Plans to Optimize in
Reasonable Amount of Time

 Cost is estimated in terms of I/O and CPU cost

 Determines Query Processing Time

 Use of physical operators and sequence of operations

 Use of parallel and serial processing

How the Query Optimizer Works

Parsing Process

Standardization Process

Query Optimization

Compilation

Database Access Routines

Transact-SQL

Results
Set

You are
here!

Useful format for
optimization
(removes

redundancy)

Query Optimization Phases

 Query Analysis

 Identifies the search and join criteria of the query

 Index Selection

 Determines whether an index or indexes exist

 Assesses the usefulness of the index or indexes

 Join Selection

 Evaluates which join strategy to use

Caching the Execution Plan

 Storing a Execution Plan in Memory

 One copy for all serial executions

 Another copy for all parallel executions

 Using an Execution Context

 An existing execution plan is reused, if one exists

 A new execution plan is generated, if one does not exist

 Recompiling Execution Plans

 Changes can cause execution plan to be inefficient or invalid
• For example, a large number of new rows added
• ALTER TABLE/VIEW
• UPDATE STATISTICS
• Dropping an INDEX that is used
• Explicit sp_recompile

Setting a Cost Limit

 Specifying an Upper Limit (based on Estimated Costs)

 Use the query governor to prevent long-running queries
from executing and consuming system resources
• Effectively controls run-away queries

 Specifying Connection Limits

 Use the sp_configure stored procedure

 Execute the SET QUERY_GOVERNOR_COST_LIMIT
statement

 Specify 0 to turn off the query governor

 Obtaining Execution Plan Information

 Viewing STATISTICS Statements Output

 Viewing SHOWPLAN_ALL and SHOWPLAN_TEXT
Output

 Graphically Viewing the Execution Plan

Viewing STATISTICS Statements Output

StatementStatement Output SampleOutput Sample

STATISTICS
TIME

STATISTICS
PROFILE

STATISTICS IO

SQL Server Execution Times:
CPU time = 0 ms, elapsed time = 2 ms.

Rows Executes StmtText StmtId…

47 1 SELECT * FROM [charge] 16
 WHERE (([charge_amt]>=@1)
 .
 .
 .

Table 'member'. Scan count 1,
logical reads 23, physical reads 0,
read-ahead reads 0.

Viewing SHOWPLAN_ALL and SHOWPLAN_TEXT
Output

 Structure of the SHOWPLAN Statement Output

 Returns information as a set of rows

 Forms a hierarchical tree

 Represents steps taken by the query optimizer

 Shows estimated values of how a query was optimized, not the
actual execution plan

 Details of the Execution Steps

 Explore:

 What is the difference Between SHOWPLAN_TEXT and
SHOWPLAN_ALL Output

 Graphically Viewing the Execution Plan

 Elements of the Graphical Execution Plan

 Reading the Graphical Execution Plan Output

 Using the Bookmark Lookup Operation

Elements of the Graphical Execution Plan

 Steps Are Units of Work to Process a Query

 Sequence of Steps Is the Order in Which the Steps Are
Processed

 Logical Operators Describe Relational Algebraic
Operation Used to Process a Statement

 Physical Operators Describe Physical Implementation
Algorithm Used to Process a Statement

Reading Graphical Execution Plan Output

Query Plan

SELECT
Cost: 0%

Bookmark Lookup
Cost: 8%

Hash Match Root…
Cost 28%

Member.corp_no
Cost 9%

Member.fname
Cost: 10%

Filter
Cost: 0%

Sequence of StepsSequence of Steps

Index Seek
Scanning a particular range of rows from a
non-clustered index.

Physical operation:
Logical operation:
Row count:
Estimated row sizes:
I/O cost:
CPU cost:
Number of executes:
Cost:
Subtree cost:

Index Seek
Index Seek

414
24

0.00706
0.000605

1.0
0.007675(6%)

0.00767

Argument:
OBJECT: ([credit].[dbo].[member].[fname]),
SEEK: ([member],[firstname] >=‘Rb’ AND
[member],[firstname] <‘T’) ORDERED

 Using an Index to Cover a Query

 Covering a Query: Resolving Queries without accessing
the data pages

 Introduction to Indexes

 Locating Data by Using Indexes

 Identifying Whether an Index Can Be Used

 Determining Whether an Index Is Used

 Guidelines for Creating Indexes

Introduction to Indexes That Cover a Query

 Indexes That Cover Queries Retrieve Data Quickly

 Only Nonclustered Indexes Cover Queries

 Indexes Must Contain All Columns Referenced in the
Query

 No Data Page Access Is Required

 Indexed Views Can Pre-Aggregate Data

 Locating Data by Using Indexes That Cover a
Query

 Example of Single Page Navigation

 Example of Partial Scan Navigation

 Example of Full Scan Navigation

Example of Single Page Navigation

Index Pages
Non-Leaf

Level

Leaf Level
(Key Value)

SELECT lastname, firstname
FROM member
WHERE lastname = 'Hall'

Akhtar
Barr
Barr
Borm
Buhl

Sarah
…
…
…
…

Ganio
Hall
Hart
Jones
Jones

Jon
Don
Sherri
Amy
Beverly

Hall Don
Lang
Martin
Martin
Martin
Moris

Eric
…
…
…
…

…

Data Pages

… …

Akhtar
Lang
…
…

Sarah
Eric
…
…

Akhtar
…
Ganio
…

Sarah
…
Jon
…

Lang
…
…
…

Eric
…
…
…

Example of Partial Scan Navigation

Index Pages
Non-Leaf

Level

Leaf Level
(Key Value)

Akhtar
Barr
Barr
Borm
Buhl

…
…
…
…
…

Ganio
Hall
Hart

Jones
Jones

…
…
…
…
…

Morgan
Nash
Nay
Ota

Rudd

…
…
…
…
…

Chai
Con
Con
Cox
Dale

…
…
…
…
…

Dunn
Dunn
Fine
Fort
Funk

…
…
…
…
…

Jordan
Kim
Kim
Koch
Koch

…
…
…
…
…

Lang
Martin
Martin
Martin
Moris

…
…
…
…
…

Smith
Smith
Smith
Smith
Smith

…
…
…
…
…

Data Pages

USE credit
SELECT lastname, firstname
FROM member
WHERE lastname BETWEEN 'Funk' AND 'Lang'

Akhtar
Chai
Dunn
Ganio

…
…
…
…

Jordan
Lang
Morgan
Smith

…
…
…
…

Akhtar

Jordan

…

…

…

…

Example of Full Scan Navigation

Index Pages
Non-Leaf

Level

Leaf Level
(Key Value)

Akhtar
Barr
Barr
Borm
Buhl

…
…
…
…
…

Ganio
Hall
Hart

Jones
Jones

…
…
…
…
…

Morgan
Nash
Nay
Ota

Rudd

…
…
…
…
…

Martin
Smith

…

Akhtar
Ganio

…

Akhtar
…

Martin

Chai
Con
Con
Cox
Dale

…
…
…
…
…

Dunn
Dunn
Fine
Fort
Funk

…
…
…
…
…

Jordan
Kim
Kim
Koch
Koch

…
…
…
…
…

Lang
Martin
Martin
Martin
Moris

…
…
…
…
…

Smith
Smith
Smith
Smith
Smith

…
…
…
…
…

…

Data Pages

USE credit
SELECT lastname, firstname
FROM member

Identifying Whether an Index Can Be Used to Cover a
Query

 All Necessary Data Must Be in the Index

 A Composite Index Is Useful Even if the First Column Is
Not Referenced

 A WHERE Is Not Necessary

 A Nonclustered Index Can Be Used if It Requires Less
I/O Than a Clustered Index Containing a Column
Referenced in the WHERE Clause

 Indexes Can Be Joined to Cover a Query

Determining Whether an Index Is Used to Cover a
Query

 Observing the Execution Plan Output

 Displays the phrase “Scanning a non-clustered index
entirely or only a range”

 Comparing I/O

 Nonclustered index
•Total number of levels in the non–leaf level
•Total number of pages that make up the leaf level
•Total number of rows per leaf-level page
•Total number of rows per data page

 Total number of pages that make up the table

Guidelines for Creating Indexes That Cover a Query

 Add Columns to Indexes

 Minimize Index Key Size

 Maintain Row-to-Key Size Ratio

 Indexing Strategies

 Evaluating I/O for Queries That Access a Range of Data

 Indexing for Multiple Queries

 Guidelines for Creating Indexes

Access methodAccess method

Table scan

Clustered index on the charge_amt column

Nonclustered index on the charge_amt column

Composite index on charge_amt, charge_no
columns

Page I/OPage I/O

10,417

 1042

100,273

 273

Evaluating I/O for Queries That Access a Range of
Data

SELECT charge_no
FROM charge
WHERE charge_amt BETWEEN 20 AND 30

Each data page is read multiple times

Covering Query

Indexing for Multiple Queries

USE credit
SELECT charge_no, charge_dt, charge_amt
FROM charge
WHERE statement_no = 19000 AND member_no = 3852

USE credit
SELECT member_no, charge_no, charge_amt
FROM charge
WHERE charge_dt between '07/30/1999'
AND '07/31/1999' AND member_no = 9331

Example 1

Example 2

Guidelines for Creating Indexes

 Determine the Priorities of All of the Queries

 Determine the Selectivity for Each Portion of the WHERE Clause of
Each Query

 Determine Whether to Create an Index

 Based on priority, selectivity, column width

 Identify the Columns That Should Be Indexed

 Determine the Best Column Order of Composite Indexes

 Determine What Other Indexes Are Necessary

 Test the Performance of the Queries

 SET SHOWPLAN ON SET STATISCTICS IO ON
SET STATISTICS TIME ON

Overriding the Query Optimizer

 Determining When to Override the Query Optimizer

 Using Hints and SET FORCEPLAN Statement

 Confirming Query Performance After Overriding the
Query Optimizer

Determining When to Override the Query Optimizer

 Limit Optimizer Hints

 Leads Optimizer in a certain direction

 Use only if Optimizer is not doing a good job

 Explore Other Alternatives Before Overriding the Query
Optimizer by:

 Updating statistics

 Recompiling stored procedures

 Reviewing the queries or search arguments

 Evaluating the possibility of building different indexes

Using Hints and SET FORCEPLAN Statement

 Table Hints

 Forces use of an Index

 Join Hints

 Forces what time of JOIN to use. E.g., MERGE-JOIN

 Query Hints

 Forces a query to use a particular aspect of the plan

 SET FORCEPLAN Statement

Confirming Query Performance After Overriding the
Query Optimizer

 Verify That Performance Improves

 Document Reasons for Using Optimizer Hints

 Retest Queries Regularly

Recommended Practices

Have a Thorough Understanding of the Data and How Queries
Gain Access to Data

Establish Indexing Strategies for Individual and Multiple Queries

Use the Query Governor to Prevent Long-Running Queries from
Consuming System Resources

Create Indexes That Cover the Most Frequently Used Queries

Avoid Overriding the Query Optimizer

Review

 Introduction to the Query Optimizer

 Obtaining Query Plan Information

 Using an Index to Cover a Query

 Indexing Strategies

 Overriding the Query Optimizer

