
Module 13: Optimizing
Query Performance

Overview

 Introduction to the Query Optimizer

 Obtaining Execution Plan Information

 Using an Index to Cover a Query

 Indexing Strategies

 Overriding the Query Optimizer

 Introduction to the Query Optimizer

 Function

 How It Uses Cost-Based Optimization

 How It Works

 Phases

 Caching the Execution Plan

 Setting a Cost Limit

Function of the Query Optimizer

 Determines the Most Efficient Execution Plan

 Determining whether indexes exist and evaluating their
usefulness

 Determining which indexes or columns can be used

 Determining how to process joins

 Using cost-based evaluation of alternatives

 Creating column statistics

 Uses Additional Information

 Produces an Execution Plan

How the Query Optimizer Uses Cost-Based
Optimization

 Limits the Number of Optimization Plans to Optimize in
Reasonable Amount of Time

 Cost is estimated in terms of I/O and CPU cost

 Determines Query Processing Time

 Use of physical operators and sequence of operations

 Use of parallel and serial processing

How the Query Optimizer Works

Parsing Process

Standardization Process

Query Optimization

Compilation

Database Access Routines

Transact-SQL

Results
Set

You are
here!

Useful format for
optimization
(removes

redundancy)

Query Optimization Phases

 Query Analysis

 Identifies the search and join criteria of the query

 Index Selection

 Determines whether an index or indexes exist

 Assesses the usefulness of the index or indexes

 Join Selection

 Evaluates which join strategy to use

Caching the Execution Plan

 Storing a Execution Plan in Memory

 One copy for all serial executions

 Another copy for all parallel executions

 Using an Execution Context

 An existing execution plan is reused, if one exists

 A new execution plan is generated, if one does not exist

 Recompiling Execution Plans

 Changes can cause execution plan to be inefficient or invalid
• For example, a large number of new rows added
• ALTER TABLE/VIEW
• UPDATE STATISTICS
• Dropping an INDEX that is used
• Explicit sp_recompile

Setting a Cost Limit

 Specifying an Upper Limit (based on Estimated Costs)

 Use the query governor to prevent long-running queries
from executing and consuming system resources
• Effectively controls run-away queries

 Specifying Connection Limits

 Use the sp_configure stored procedure

 Execute the SET QUERY_GOVERNOR_COST_LIMIT
statement

 Specify 0 to turn off the query governor

 Obtaining Execution Plan Information

 Viewing STATISTICS Statements Output

 Viewing SHOWPLAN_ALL and SHOWPLAN_TEXT
Output

 Graphically Viewing the Execution Plan

Viewing STATISTICS Statements Output

StatementStatement Output SampleOutput Sample

STATISTICS
TIME

STATISTICS
PROFILE

STATISTICS IO

SQL Server Execution Times:
CPU time = 0 ms, elapsed time = 2 ms.

Rows Executes StmtText StmtId…

47 1 SELECT * FROM [charge] 16
 WHERE (([charge_amt]>=@1)
 .
 .
 .

Table 'member'. Scan count 1,
logical reads 23, physical reads 0,
read-ahead reads 0.

Viewing SHOWPLAN_ALL and SHOWPLAN_TEXT
Output

 Structure of the SHOWPLAN Statement Output

 Returns information as a set of rows

 Forms a hierarchical tree

 Represents steps taken by the query optimizer

 Shows estimated values of how a query was optimized, not the
actual execution plan

 Details of the Execution Steps

 Explore:

 What is the difference Between SHOWPLAN_TEXT and
SHOWPLAN_ALL Output

 Graphically Viewing the Execution Plan

 Elements of the Graphical Execution Plan

 Reading the Graphical Execution Plan Output

 Using the Bookmark Lookup Operation

Elements of the Graphical Execution Plan

 Steps Are Units of Work to Process a Query

 Sequence of Steps Is the Order in Which the Steps Are
Processed

 Logical Operators Describe Relational Algebraic
Operation Used to Process a Statement

 Physical Operators Describe Physical Implementation
Algorithm Used to Process a Statement

Reading Graphical Execution Plan Output

Query Plan

SELECT
Cost: 0%

Bookmark Lookup
Cost: 8%

Hash Match Root…
Cost 28%

Member.corp_no
Cost 9%

Member.fname
Cost: 10%

Filter
Cost: 0%

Sequence of StepsSequence of Steps

Index Seek
Scanning a particular range of rows from a
non-clustered index.

Physical operation:
Logical operation:
Row count:
Estimated row sizes:
I/O cost:
CPU cost:
Number of executes:
Cost:
Subtree cost:

Index Seek
Index Seek

414
24

0.00706
0.000605

1.0
0.007675(6%)

0.00767

Argument:
OBJECT: ([credit].[dbo].[member].[fname]),
SEEK: ([member],[firstname] >=‘Rb’ AND
[member],[firstname] <‘T’) ORDERED

 Using an Index to Cover a Query

 Covering a Query: Resolving Queries without accessing
the data pages

 Introduction to Indexes

 Locating Data by Using Indexes

 Identifying Whether an Index Can Be Used

 Determining Whether an Index Is Used

 Guidelines for Creating Indexes

Introduction to Indexes That Cover a Query

 Indexes That Cover Queries Retrieve Data Quickly

 Only Nonclustered Indexes Cover Queries

 Indexes Must Contain All Columns Referenced in the
Query

 No Data Page Access Is Required

 Indexed Views Can Pre-Aggregate Data

 Locating Data by Using Indexes That Cover a
Query

 Example of Single Page Navigation

 Example of Partial Scan Navigation

 Example of Full Scan Navigation

Example of Single Page Navigation

Index Pages
Non-Leaf

Level

Leaf Level
(Key Value)

SELECT lastname, firstname
FROM member
WHERE lastname = 'Hall'

Akhtar
Barr
Barr
Borm
Buhl

Sarah
…
…
…
…

Ganio
Hall
Hart
Jones
Jones

Jon
Don
Sherri
Amy
Beverly

Hall Don
Lang
Martin
Martin
Martin
Moris

Eric
…
…
…
…

…

Data Pages

… …

Akhtar
Lang
…
…

Sarah
Eric
…
…

Akhtar
…
Ganio
…

Sarah
…
Jon
…

Lang
…
…
…

Eric
…
…
…

Example of Partial Scan Navigation

Index Pages
Non-Leaf

Level

Leaf Level
(Key Value)

Akhtar
Barr
Barr
Borm
Buhl

…
…
…
…
…

Ganio
Hall
Hart

Jones
Jones

…
…
…
…
…

Morgan
Nash
Nay
Ota

Rudd

…
…
…
…
…

Chai
Con
Con
Cox
Dale

…
…
…
…
…

Dunn
Dunn
Fine
Fort
Funk

…
…
…
…
…

Jordan
Kim
Kim
Koch
Koch

…
…
…
…
…

Lang
Martin
Martin
Martin
Moris

…
…
…
…
…

Smith
Smith
Smith
Smith
Smith

…
…
…
…
…

Data Pages

USE credit
SELECT lastname, firstname
FROM member
WHERE lastname BETWEEN 'Funk' AND 'Lang'

Akhtar
Chai
Dunn
Ganio

…
…
…
…

Jordan
Lang
Morgan
Smith

…
…
…
…

Akhtar

Jordan

…

…

…

…

Example of Full Scan Navigation

Index Pages
Non-Leaf

Level

Leaf Level
(Key Value)

Akhtar
Barr
Barr
Borm
Buhl

…
…
…
…
…

Ganio
Hall
Hart

Jones
Jones

…
…
…
…
…

Morgan
Nash
Nay
Ota

Rudd

…
…
…
…
…

Martin
Smith

…

Akhtar
Ganio

…

Akhtar
…

Martin

Chai
Con
Con
Cox
Dale

…
…
…
…
…

Dunn
Dunn
Fine
Fort
Funk

…
…
…
…
…

Jordan
Kim
Kim
Koch
Koch

…
…
…
…
…

Lang
Martin
Martin
Martin
Moris

…
…
…
…
…

Smith
Smith
Smith
Smith
Smith

…
…
…
…
…

…

Data Pages

USE credit
SELECT lastname, firstname
FROM member

Identifying Whether an Index Can Be Used to Cover a
Query

 All Necessary Data Must Be in the Index

 A Composite Index Is Useful Even if the First Column Is
Not Referenced

 A WHERE Is Not Necessary

 A Nonclustered Index Can Be Used if It Requires Less
I/O Than a Clustered Index Containing a Column
Referenced in the WHERE Clause

 Indexes Can Be Joined to Cover a Query

Determining Whether an Index Is Used to Cover a
Query

 Observing the Execution Plan Output

 Displays the phrase “Scanning a non-clustered index
entirely or only a range”

 Comparing I/O

 Nonclustered index
•Total number of levels in the non–leaf level
•Total number of pages that make up the leaf level
•Total number of rows per leaf-level page
•Total number of rows per data page

 Total number of pages that make up the table

Guidelines for Creating Indexes That Cover a Query

 Add Columns to Indexes

 Minimize Index Key Size

 Maintain Row-to-Key Size Ratio

 Indexing Strategies

 Evaluating I/O for Queries That Access a Range of Data

 Indexing for Multiple Queries

 Guidelines for Creating Indexes

Access methodAccess method

Table scan

Clustered index on the charge_amt column

Nonclustered index on the charge_amt column

Composite index on charge_amt, charge_no
columns

Page I/OPage I/O

10,417

 1042

100,273

 273

Evaluating I/O for Queries That Access a Range of
Data

SELECT charge_no
FROM charge
WHERE charge_amt BETWEEN 20 AND 30

Each data page is read multiple times

Covering Query

Indexing for Multiple Queries

USE credit
SELECT charge_no, charge_dt, charge_amt
FROM charge
WHERE statement_no = 19000 AND member_no = 3852

USE credit
SELECT member_no, charge_no, charge_amt
FROM charge
WHERE charge_dt between '07/30/1999'
AND '07/31/1999' AND member_no = 9331

Example 1

Example 2

Guidelines for Creating Indexes

 Determine the Priorities of All of the Queries

 Determine the Selectivity for Each Portion of the WHERE Clause of
Each Query

 Determine Whether to Create an Index

 Based on priority, selectivity, column width

 Identify the Columns That Should Be Indexed

 Determine the Best Column Order of Composite Indexes

 Determine What Other Indexes Are Necessary

 Test the Performance of the Queries

 SET SHOWPLAN ON SET STATISCTICS IO ON
SET STATISTICS TIME ON

Overriding the Query Optimizer

 Determining When to Override the Query Optimizer

 Using Hints and SET FORCEPLAN Statement

 Confirming Query Performance After Overriding the
Query Optimizer

Determining When to Override the Query Optimizer

 Limit Optimizer Hints

 Leads Optimizer in a certain direction

 Use only if Optimizer is not doing a good job

 Explore Other Alternatives Before Overriding the Query
Optimizer by:

 Updating statistics

 Recompiling stored procedures

 Reviewing the queries or search arguments

 Evaluating the possibility of building different indexes

Using Hints and SET FORCEPLAN Statement

 Table Hints

 Forces use of an Index

 Join Hints

 Forces what time of JOIN to use. E.g., MERGE-JOIN

 Query Hints

 Forces a query to use a particular aspect of the plan

 SET FORCEPLAN Statement

Confirming Query Performance After Overriding the
Query Optimizer

 Verify That Performance Improves

 Document Reasons for Using Optimizer Hints

 Retest Queries Regularly

Recommended Practices

Have a Thorough Understanding of the Data and How Queries
Gain Access to Data

Establish Indexing Strategies for Individual and Multiple Queries

Use the Query Governor to Prevent Long-Running Queries from
Consuming System Resources

Create Indexes That Cover the Most Frequently Used Queries

Avoid Overriding the Query Optimizer

Review

 Introduction to the Query Optimizer

 Obtaining Query Plan Information

 Using an Index to Cover a Query

 Indexing Strategies

 Overriding the Query Optimizer

