Module 11:
Implementing Triggers

Overview

= Introduction
= Defining
e Create, drop, alter triggers
= How Triggers Work
= Examples
= Performance Considerations

e Analyze performance issues related to triggers

@ Introduction to Triggers

= What Is a Trigger?
m Uses

m Considerations for Using Triggers

What Is a Trigger?

m Associated with a Table
= Invoked Automatically
m Cannot Be Called Directly
= Is Part of a Transaction
e Along with the statement that calls the trigger

e Can ROLLBACK transactions (use with care)

Uses of Triggers

m Cascade Changes Through Related Tables in
a Database

e A delete or update trigger can cascade changes to related tables:
Soda name change to change in soda name in Sells table

m Enforce More Complex Data Integrity Than a
CHECK Constraint

e Change prices in case of price rip-offs.
m Define Custom Error Messages
= Maintain Denormalized Data

e Automatically update redundant data.

= Compare Before and After States of Data Under Modification

Considerations for Using Triggers

m Triggers Are Reactive; Constraints Are Proactive
m Constraints Are Checked First
= Tables Can Have Multiple Triggers for Any Action

= Table Owners Can Designate the First and Last Trigger
to Fire

= You Must Have Permission to Perform All Statements
That Define Triggers

= Table Owners Cannot Create AFTER Triggers on Views
or Temporary Tables

@ Defining Triggers

= Creating Triggers

m Altering and Dropping Triggers

Creating Triggers

= Requires Appropriate Permissions

m Cannot Contain Certain Statements

Use Northwind
GO
CREATE TRIGGER Empl_Delete ON Employees
FOR DELETE
AS
IF (SELECT COUNT(*) FROM Deleted) > 1
BEGIN
RAISERROR(
'You cannot delete more than one employee at a time.', 16, 1)
ROLLBACK TRANSACTION
END

Altering and Dropping Triggers

m Altering a Trigger
e Changes the definition without dropping the trigger
e Can disable or enable a trigger

USE Northwind

GO
ALTER TRIGGER Empl1_Delete ON Employees
FOR DELETE
AS
IF (SELECT COUNT(*) FROM Deleted) > 6
BEGIN
RAISERROR(
'You cannot delete more than six employees at a time.', 16, 1
ROLLBACK TRANSACTION
END

= Dropping a Trigger

€ How Triggers Work

= How an INSERT Trigger Works

= How a DELETE Trigger Works

= How an UPDATE Trigger Works

= How an INSTEAD OF Trigger Works
= How Nested Triggers Work

= Recursive Triggers

How an INSERT Trigger Works

@ INSERT Statement to a Table with an INSERT
Trigger Defined

12 INSERT Statement Logged

3 Trigger Actions Executed

How a DELETE Trigger Works

@ DELETE Statement to a Table with a DELETE
Statement Defined

12 DELETE Statement Logged

3/ Trigger Actions Executed

How an UPDATE Trigger Works

@ UPDATE Statement to a Table with an UPDATE
Trigger Defined

@ UPDATE Statement Logged as INSERT and
DELETE Statements

(3 Trigger Actions Executed

How an INSTEAD OF Trigger Works

@ INSTEAD OF Trigger Can Be on a Table or View
© The Action That Initiates the Trigger Does NOT Occur

© Allows Updates to Views Not Previously Updateable

How Nested T

OrDe_Update

InStock_Update

riggers Work
Order_Details
OrderID|ProductID\UnitPrice| Quantity| Discount
10522 10 31.00 7 0.2
10523 41 9.65 9 0.15
10524 7 30.00 [24 0.0
10525|| 2 | 19.00 | 5 0.2

mﬂ l

ProductID |UnitsInStock| ...| ...
1 15
2 15
3 65
4 20

v

UnitsinStock + UnitsOnOrd
is < ReorderlLevel for ProductID 2

er

Placing an order causes the
OrDe_Update trigger to
execute

Executes an UPDATE
statement on the Products
table

InStock_Update trigger
executes

Sends message

Recursive Triggers

m Activating a Trigger Recursively
= Types of Recursive Triggers

e Direct recursion occurs when a trigger fires and performs
an action that causes the same trigger to fire again

e Indirect recursion occurs when a trigger fires and
performs an action that causes a trigger on another table
to fire

= Determining Whether to Use Recursive Triggers

€& Examples of Triggers

= Enforcing Data Integrity

= Enforcing Business Rules

Enforcing Data Integrity

CREATE TRIGGER BackOrderList_Delete
ON Products FOR UPDATE
AS
IF (SELECT BO.ProductID FROM BackOrders AS BO JOIN
Inserted AS I ON BO.ProductID = I.Product_ID
) >0
BEGIN
DELETE BO FROM BackOrders AS BO
INNER JOIN Inserted AS I
ON BO.ProductID = I.ProductID

END
BAcKOrders
ProductID |UnitsinStock| ...| ... ProductiD| UnitsOnOrder

1 15 v 1 15

2 15 NUpdated 12 10

3 65 3 65

4 20 Trigger Deletes Row 9 15

I

Enforcing Business Rules

Products with Outstanding Orders Cannot Be Deleted

IF (Select Count (*)
FROM [Order Details] INNER JOIN deleted
ON [Order Details].ProductID = deleted.ProductID

) >0
ROLLBACK TRANSACTION

DELETE statement executed on Trigger code <: Transaction
Product table checks the Order Details rolled back
mr./ucfs - g Defa]/s -
ProductID |UnitsinStock| ...| ... OrderID|ProductID\UnitPrice| Quantity| Discount

1 15 105221 10 31.00 / 0.2

2 0 :)0523 2 1900 [C9)| 0.15 L

3 65 10524| 41 | 965 | 24 | 00 |

4 20 10525| 7 | 3000 \v/

=3

'Transaction cannot be processed'

'This product has order history

Performance Considerations

= Triggers Work Quickly Because the Inserted and
Deleted Tables Are in Cache

m Execution Time Is Determined by:
e Number of tables that are referenced
e Number of rows that are affected

m Actions Contained in Triggers Implicitly Are Part of
a Transaction

Recommended Practices

Use Triggers Only When Necessary

Keep Trigger Definition Statements as Simple as Possible

Include Recursion Termination Check Statements in
Recursive Trigger Definitions

Minimize Use of ROLLBACK Statements in Triggers

Review

= Introduction
= Defining
e Create, drop, alter triggers
= How Triggers Work
= Examples
= Performance Considerations

e Analyze performance issues related to triggers

