Introduction to Introduction to Database Systems

Rose-Hulman Institute of Technology
Curt Clifton

Role Call

- □ Please...
 - Correct my mispronunciations
 - Let me know your preferred name

Introductions

- □ Name
- Major
- □ Hometown
- □ An interesting fact about you that others at Rose probably don't know

Course Overview

- Materials on Angel
 - Most also on web and AFS:
 www.rose-hulman.edu/Class/csse/csse333
- □ Test-first teaching
- □ Syllabus
- □ Schedule

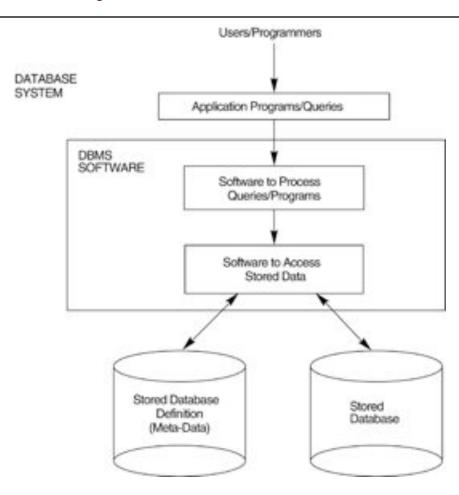
What databases do you interact with in a typical week?

Types of Databases

- □ Traditional (numeric, textual)
- Multimedia
- □ Geographic Information Systems
- Data Warehouses
- □ Active Databases

Database: A Collection of Data with Three Properties

- □ Abstraction of "real world"
- □ Logically coherent
- Designed to fulfill a purpose


Some Other Terms

- □ Data
 - Known facts with implicit meaning
- □ Mini-world
 - Part of "real" world about which data is stored
- □ DBMS or Database Management System
 - Software system for creating/maintaining a computerized database
- □ Database System
 - DBMS + data + applications

DBMS Must Allow

- □ **Definition** of data types, structures, constraints
- □ Construction of database on physical media
- Manipulation to answer queries and add, delete, or modify data
- □ Concurrent access for multiple users
- □ Secure access to sensitive data
- Active processing in response to data changes

Database System Architecture

Running Example: University DB

- Entities
 - The **things** that the database tracks
- Relationships
 - How the entities go together

Sample University Data

- □ Typically a table for each kind of entity
- Rows represent entities
- Columns represent attributes
- □ Example...

STUDENT	Name	Number	Class	Major
	Smith	6152	2006	CS
	Jones	8941	2007	CS

Views

- □ Ways of looking at data
- □ Not necessarily stored in actual tables

)	TRANSCRIPT	StudentName	Student Transcript				
			CourseNumber	Grade	Semester	Year	SectionId
		9.8	CS1310	С	Fall	99	119
		Smith	MATH2410	В	Fall	99	112
		Brown	MATH2410	A	Fall	98	85
			CS1310	A	Fall	98	92
			CS3320	В	Spring	99	102
			CS3380	A	Fall	99	135

(b)	PREREQUISITES	CourseName	CourseNumber	Prerequisites	
		Databasa	000000	CS3320	
		Database	CS3380	MATH2410	
		Data Structures	CS3320	CS1310	

Why use databases at all?

Database Stakeholders

- Workers behind the scenes
- □ Workers on the scene
- □ End Users
- Other stakeholders

Workers Behind the Scenes

- □ DBMS designers
- □ Tool developers

Workers on the Scene

- □ DBAs—Database Administrators
 - Control access
 - Monitor use
 - Acquire resources
 - Monitor efficiency
- Database Designers
 - Communicate with end users
 - Define content, structure, and constraints on data

End Users (1/2)

- Casual end users
 - Occasional access as needed
- □ Naïve (or parametric) end users
 - Use "canned transactions"
 - E.g, bank teller, airline desk agent
 - Typically majority of database use is by naïve end users

End Users (2/2)

- Sophisticated End Users
 - Write custom queries against database
 - E.g., business analysts, scientists, engineers
- □ Stand-alone End Users
 - Maintain personal databases using COTS packages
 - E.g., iTunes, TurboTax

Database Advantages

- □ Are Self-describing
- □ Provide Program-Data Independence
- □ Require Data Abstraction
- □ Show Multiple Views
- □ Allow Multi-user Data Sharing

Other Database Advantages

- Control of redundancy
- □ Security enforcement
- Persistence
- Efficient data retrieval
- Robustness
- Representation of complex relationships
- Data integrity

- Referential integrity
- Deductive capability
- □ Standards enforcement
- Fast application development
- □ Flexibility
- Concurrency management
- □ Economies of scale

Database Disadvantages

- □ Significant initial financial investment
- □ Can increase system overhead
- Limit rapid prototyping
- Don't handle rapid changes in data collected
- □ Require support resources

Don't Use a Database When System...

- □ Has no need for persistence
- □ Is computationally, not data, intensive
- ☐ Has a single user and simple data
- □ Uses very static data