[image: image1]
[image: image2]2
RELATIONAL MODEL: CONCEPTS, CONSTRAINTS, LANGUAGES, DESIGN, AND PROGRAMMING
[image: image3]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_4.jpg" * MERGEFORMAT \d [image: image4]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_5.jpg" * MERGEFORMAT \d [image: image5]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_6.jpg" * MERGEFORMAT \d [image: image6]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_7.jpg" * MERGEFORMAT \d [image: image7]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_8.jpg" * MERGEFORMAT \d [image: image8]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_9.jpg" * MERGEFORMAT \d [image: image9]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_10.jpg" * MERGEFORMAT \d [image: image10]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_11.jpg" * MERGEFORMAT \d [image: image11]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_12.jpg" * MERGEFORMAT \d [image: image12]
[image: image13]5
The Relational Data Model and Relational Database Constraints
This chapter opens Part II of the book on relational databases. The relational model was first introduced by Ted Codd of IBM Research in 1970 in a classic research publication "System R4 Relational." (Codd 1970), and attracted immediate attention due to its simplicity, practicality, and mathematical foundation. The model uses the concept of a mathematical relation—which looks somewhat like a table of values—as its basic building block, and has its theoretical basis in set theory and first-order predicate logic. This is a classic example where sound theoretical principles are effectively applied for strong practical advantages. In this chapter we discuss the basic characteristics of the relational model and its constraints.
The first commercial implementations of the relational model became available in the early 1980s, such as the Oracle DBMS and the SQL/DS system on the MVS operating system by IBM. Since then, the model has been implemented in a large number of commercial systems. Current popular relational DBMSs (RDBMSs) include DB2 and Informix Dynamic Server (from IBM), Oracle and Rdb (from Oracle), and SQL Server and Access (from Microsoft). Some other commercial relational DBMSs used are Sybase (also known as Sybase SQL Server), Paradox, and Foxbase. Recently, some open source relational DBMSs, such as MySQL and PostGreSQL have also grown in popularity. At the time this chapter was written, the market share varied depending on platform; with DB2, Oracle, and Microsoft SQL Server dominating the market overall. [Note to editor: Would you like to include TM symbol in all trademarks? Also the small caps formatting, such as SQL and SQL can be made consistent. Personally, I prefer SQL over SQL but am flexible]. Oracle dominates the market in the UNIX world followed by DB2, whereas Microsoft SQL Server dominates the Windows platform market with Oracle coming in second. [Note to editor: this will need to be updated at the time the book goes to press].
Due of the importance of the relational model, we have devoted all of Part II of this textbook to this model and the languages associated with it. Chapter 6 covers the operations of the relational algebra and introduces the relational calculus notation for two types of calculi—tuple calculus and domain calculus. Chapter 7 relates the relational model data structures to the constructs of the ER and EER models, and presents algorithms for designing a relational database schema by mapping a conceptual schema in the ER or EER model (see Chapters 3 and 4) into a relational representation. These mappings are incorporated into many database designs and CASE1 tools.
 CASE tools are increasingly used by database professionals to design and enhance databases using ER or EER models and leave the generation of the database definition scripts to the tool. This facilitates the design and communication process by leaving the code generation to the CASE tool. We will revisit this topic more when we discuss the relevance of a data definition language (DDL) in Section 5.2.3.
In Chapter 8, we describe the
[image: image14]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_15.jpg" * MERGEFORMAT \d [image: image15]
1. CASE stands for computer-aided software engineering.
[image: image16]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_17.jpg" * MERGEFORMAT \d [image: image17]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_18.jpg" * MERGEFORMAT \d [image: image18]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_19.jpg" * MERGEFORMAT \d [image: image19]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_20.jpg" * MERGEFORMAT \d [image: image20]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_21.jpg" * MERGEFORMAT \d [image: image21]
Structured Query Language (SQL), which is the standard for commercial relational DBMSs. Chapter 9 discusses the programming techniques used to access database systems, and presents additional topics concerning the SQL language—constraints, views, and the notion of connecting to relational databases via ODBC and JDBC standard protocols. Chapters 10 and 11 in Part III of the book present another aspect of the relational model, namely the formal constraints of functional and multi-valued dependencies; these dependencies are used to develop a relational database design theory based on the concept known as normalization.
Data models that preceded the relational model include the hierarchical and network models. They were proposed in the 1960s and were implemented in early DBMSs during the 1970s and 1980s. Due to their historical importance and the large existing user base for these DBMSs, we have included a summary of the highlights of these models in appendices, which are available on the Web site for the book. Even though most of the earlier systems were based on the hierarchical and network models, these models are rarely used for designing and implementing new systems. Having said that, these models and systems will be with us for many years, and are now referred to as legacy database systems.
Since databases are used to provide persistent storage for object-oriented systems, relational model has been extended and modified to include object-relational and object-oriented database management systems. These models allow the user to have operations associated with relations as part of the database definition resulting in better integration with OO applications. We defer the detailed discussion of these topics to Chapters 20 through 22.
In this chapter, we concentrate on describing the basic principles of the relational model of data. We begin by defining the modeling concepts and notation of the relational model in Section 5.1. Section 5.2 is devoted to a discussion of relational constraints that are now considered an important part of the relational model and are automatically enforced in most relational DBMSs. Section 5.3 defines the update operations of the relational model and discusses integrity constraints, why they are important, and how violations of integrity constraints are handled.
5.1 RELATIONAL MODEL CONCEPTS
Formally, the relational model represents the database as a collection of relations. Informally, the model is a collection of tables such that each relation resembles a table of values. The words relation and table may be used interchangeably in most cases. The tables (or relations) are named so that they can be uniquely identified in a database. For example, the database shown in Figure 1.2 in Chapter 1 is similar to the relational model representation. However, there are important differences between relations and files, as we shall soon see. [Note to eds: This is the first time files are mentioned… may be there is a need to define them formally?].
When a relation is thought of as a table of values, each row in the table represents a collection of related data values based on their relationship. We introduced entity types and relationship types as concepts for modeling real-world data in Chapter 3. In the relational model, each row in the table represents a fact that typically corresponds to a real-world entity or relationship. The table name and column names are used to help in interpreting the meaning of the values in each row. For example, the first table of Figure 1.2 is called STUDENT because each row represents facts about a particular student entity. The column names—Name, StudentNumber, Class, and Major—specify how to interpret the data values in each row, based on the column each value is in. All values in a column are of the same data type. A couple of example rows in that table may look like:

	STUDENT
	Name
	StudentNumber
	Class
	Major

	
	Smith
	17
	1
	CS

	
	Brown
	8
	2
	CS

The first row contains all data values related to one instance of the STUDENT and the second row contains all data values related to a second instance. [Note to editor: I would modify this table to contain the first name, middle name and last name of student as that would be more representative of an actual table, even though for right now it would not have a primary key (a concept introduced later in this chapter). If I make these changes locally here, it will cause several cross-reference errors and cause confusion for the eds at this stage. These things will need to be updated concurrently at the time the next edition is published].
In the formal relational model terminology, a row is called a tuple, a column header is called an attribute, and the table is called a relation. The data type describing the types of values that can appear in each column is represented by a domain of possible values. We use the terms interchangeably in this chapter so that the reader can be familiar with both the formal terms and their informal equivalents used in industry. [Footnote: Most database professionals are comfortable with both terminologies but do not be surprised if you find other technical people in industry that do not know about tuples.] We now define these terms—domain, tuple, attribute, and relation—more precisely.
[image: image22]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_23.jpg" * MERGEFORMAT \d [image: image23]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_24.jpg" * MERGEFORMAT \d [image: image24]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_25.jpg" * MERGEFORMAT \d [image: image25]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_26.jpg" * MERGEFORMAT \d [image: image26]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_27.jpg" * MERGEFORMAT \d [image: image27]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_28.jpg" * MERGEFORMAT \d [image: image28]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_29.jpg" * MERGEFORMAT \d [image: image29]
5.1 Relational Model Concepts | 127
5.1.1 Domains, Attributes, Tuples, and Relations
A domain D is a set of atomic values. By atomic we mean that each value in the domain is indivisible as far as the relational model is concerned. A common method of specifying a domain is to specify a data type from which the data values forming the domain are drawn, along with formatting information. It is also useful to specify a name for the domain, to help in interpreting its values. A domain is usually specified by giving it a name, identifying its data type, and stipulating its format. Some examples of domains follow:
· USA_phone_numbers: The set of ten-digit phone numbers valid in the United States.
· Local_phone_numbers: The set of seven-digit phone numbers valid within a particular area code in the United States.
· Social_security_numbers: The set of valid nine-digit social security numbers.
· Names: The set of character strings that represent names of persons.
· Grade_point_averages: Possible values of computed grade point averages; each must be a real (floating-point) number between 0 and 4.
· Employee_ages: Possible ages of employees of a company; each must be a value between 15 and 99 years old. [Footnote: This is a representation of a articifial company’s policy and the laws may vary by state and country.]
· Academic_department_names: The set of academic department names in a university represented as a string of characters no more than 30 characters, such as Computer Science, Economics, and Physics.
· Academic_department_codes: The set of academic department codes represented as a string of characters no more than 4 characters, such as CS, ECON, and PHYS.
The preceding descriptions are called logical definitions of domains. A data type or format is also specified for each domain. For example, the data type for the domain USA_phone_ numbers can be declared as a character string of the form (ddd)ddd-dddd, where each d is a numeric (decimal) digit and the first three digits, (ddd), form a valid telephone area code and the second three digits, ddd, form a valid exchange and the last 4 digits, dddd, complete a valid phone number. The data type for Employee_ages is an integer number between 15 and 99. For Academic_department_names, the data type is the set of all character strings that represent valid department names. A domain is thus given a name, data type, and format. Additional information for interpreting the values of a domain can also be given; for example, a numeric domain such as Person_weights should have the units of measurement, such as pounds or kilograms. In practice, the domain of a column is usually defined by a data type and a CHECK constraint as explained in Section 5.2.1.
A relation schema2 R, denoted by R(A1, A2, . . . , An), is made up of a relation name R and a list of attributes A1, A2, . . ., An. Each attribute Ai is the name of a role played by some domain D in the relation schema R. This domain D is called the domain of Ai and is denoted by dom(Ai). A relation schema is used to describe a relation; R is called the name of this relation. The degree (or arity) of a relation is the number of attributes n of its relation schema. In informal terms R(A1, A2, . . . , An) can be represented by a table R with n columns: A1, A2, . . . , An.
[image: image30]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_31.jpg" * MERGEFORMAT \d [image: image31]
2. A relation schema is sometimes called a relation scheme.
[image: image32]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_33.jpg" * MERGEFORMAT \d [image: image33]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_34.jpg" * MERGEFORMAT \d [image: image34]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_35.jpg" * MERGEFORMAT \d [image: image35]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_36.jpg" * MERGEFORMAT \d [image: image36]
An example of a relation schema for a relation of degree seven, which describes university students, is the following:
STUDENT(Name, SSN, HomePhone, Address, OfficePhone, Age, GPA)
Using the data type of each attribute, the definition is sometimes written as:
STUDENT(Name: string, SSN: string, HomePhone: string, Address: string, OfficePhone: string, Age: integer, GPA: real)
For this relation schema, STUDENT is the name of the relation, which has seven attributes. In the above definition, for simplicity, we showed assignment of primitive types such as string or integer to the attributes. More precisely, we can specify the following previously defined domains for some of the attributes of the STUDENT relation: dom(Name) = Names; dom(SSN) = Social_security_numbers; dom(HomePhone) = USA_phone_numbers,3 dom(OfficePhone) = USA_phone_numbers, and dom(GPA) = Grade_point_averages. It is also possible to refer to attributes of a relation schema by their position within the relation; thus, the second attribute of the STUDENT relation is SSN, whereas the fourth attribute is Address.
A relation (or relation state)4 r of the relation schema R(A1, A2, . . . , An), also denoted by r(R), is a set of n-tuples r = {t1, t2, . . . , tm}. Each n-tuple t is an ordered list of n values t = <v1, v2, . . . , vn>, where each value vi, 1 ≤ i ≤ n, is an element of dom(Ai) or is a special null value. The ith value in tuple t, which corresponds to the attribute Ai, is referred to as t[Ai] (or t[i] if we use the positional notation). The terms relation intension for the schema R and relation extension for a relation state r(R) are also commonly used.
Figure 5.1 shows an example of a STUDENT relation, which corresponds to the STUDENT schema just specified. Each tuple in the relation represents a particular student entity. We
[image: image37]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_38.jpg" * MERGEFORMAT \d [image: image38]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_39.jpg" * MERGEFORMAT \d [image: image39]
3. With the large increase in phone numbers caused by the proliferation of mobile phones, some metropolitan areas now have multiple area codes, so that seven-digit local dialing has been discontinued. Consequently, we use USA_phone_numbers as the domain. [Note to eds: I can’t easily modify the figure in this image, but when I can, I will represent phone number as an area code plus the number at this stage. I would also represent the name as three fields (last, first, middle.)]
4. This has also been called a relation instance. We will not use this term because instance is also used to refer to a single tuple or row.
[image: image40]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_41.jpg" * MERGEFORMAT \d [image: image41]
[image: image42]
[image: image43]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_44.jpg" * MERGEFORMAT \d [image: image44]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_45.jpg" * MERGEFORMAT \d [image: image45]
5.1 Relational Model Concepts | 129
display the relation as a table, where each tuple is shown as a row and each attribute corresponds to a column header indicating a role or interpretation of the values in that column. Null values represent attributes whose values are unknown or do not exist for some individual STUDENT tuple.
This relation corresponds to a table defined in SQL based on the structure shown in Figure 5.1. As you recall from Section 2.3.1, we use DDL to define the table structure. [Note to eds: I would have introduced some DDL script examples earlier to keep the balance between theoretical foundations and practical learning]. The DDL corresponding to Figure 5.1 is shown below:

CREATE TABLE STUDENT (

NAME

VARCHAR(30)
NOT NULL,

SSN

CHAR(9)
NOT NULL,

HOMEPHONE
VARCHAR(14),

ADDRESS
VARCHAR(40),

OFFICEPHONE
VARCHAR(14),

AGE

INT,

GPA

DECIMAL(4,3)

);
Notice that we have several detailed design decisions to make, such is the requirement that NAME and SSN are required to be non-null, the number of maximum of characters in a name and an address, and the precision of GPA calculation, as well. DECIMAL(i,j) indicates that the field will be stored as a floating point number with a total of i digits (known as the precision) and j digits after the decimal (known as the scale).
The order of the attributes does not matter logically but does usually define the default order in which the columns would be accessed. For example if we run a SELECT * FROM STUDENT query, we will receive the result from the query with columns arranged in the same order as the order specified in the CREATE TABLE statement. [Note to the eds: Students would have seen SELECT statement before in earlier chapters.]
The earlier definition of a relation can be restated more formally as follows. A relation (or relation state) r(R) is a mathematical relation of degree n on the domains dom(A1), dom(A2), . . . , dom(An), which is a subset of the Cartesian product of the domains that define R:
r(R) ((dom(A1) (dom(A2) (. . . (dom(An))
The Cartesian product specifies all possible combinations of values from the underlying domains. Hence, if we denote the total number of values, or cardinality, in a domain D by |D| (assuming that all domains are finite), the total number of tuples in the Cartesian product is
|dom(A1)| (|dom(A2)| (. . . (|dom(An)|
Of all these possible combinations, a relation state at a given time is called the current relation state. The current relation state reflects only the valid tuples that represent a particular state of the real world. In general, as the state of the real world changes, so does the relation, by being transformed into another relation state. However, the schema R is relatively static and does not change except very infrequently—for example, as a result of adding an attribute to represent new information that was not originally stored in the relation.
In order to understand this concept of change, consider the binary relation LOVE with the domain spanning “all human beings” (“all human beings.” As a particular human beings change who (s)he loves, the “current” state of the relation changes with time but the corresponding relation schema LOVE remains static. Also, consider the example of a binary relation STUDENT_COLLEGE spanning “all human beings” (“all colleges.” As a class of students graduates from a college and a new class is admitted to the college, the relation state changes because the student body of the college has changed. However, the relation schema itself remains the same.
It is possible for several attributes to have the same domain. The attributes indicate different roles, or interpretations, for the domain. For example, in the STUDENT relation, the same domain USA_phone_numbers plays the role of HomePhone, referring to the “home phone of a student,” and the role of OfficePhone, referring to the “office phone of the student.”
5.1.2 Characteristics of Relations
The earlier definition of relations implies certain characteristics that make a relation different from a file or a table. We now discuss some of these characteristics.
Ordering of Tuples in a Relation. A relation is defined as a set of tuples. Mathematically, elements of a set have no order among them; hence, tuples in a relation do not have any particular order. However, in a file, records are physically stored on disk (or in memory), so there always is an order among the records. This ordering indicates first, second, ith, and last records in the file. Similarly, when we display a relation as a table, the rows are displayed in a certain order. [Footnote: In a stricter sense, relations are a bag of tuples but we will defer that discussion for the sake of simplicity and clarity.] [Note to eds: Bags are important for theoretical foundations of database and I would definitely add bags to the discussion in Chapter 6.]
Tuple ordering is not part of a relation definition, because a relation attempts to represent facts at a logical or abstract level. Many logical orders can be specified on a relation. For example, tuples in the STUDENT relation in Figure 5.1 could be logically ordered by values of Name, or by SSN, or by Age, or by some other attribute. The definition of a relation does not specify any order: There is no preference for one logical ordering over another. Hence, the relation displayed in Figure 5.2 is considered identical to the one shown in Figure 5.1 because it contains the same rows regardless of the order of the rows. When a relation is implemented as a file or displayed as a table, a particular ordering may be specified on the records of the file or the rows of the table. This ordering may be determined by a sort order or the order of insertion. The retrieval of results may be in default order or may be in order of the sort.
[image: image46]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_47.jpg" * MERGEFORMAT \d [image: image47]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_48.jpg" * MERGEFORMAT \d [image: image48]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_49.jpg" * MERGEFORMAT \d [image: image49]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_50.jpg" * MERGEFORMAT \d [image: image50]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_51.jpg" * MERGEFORMAT \d [image: image51]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_52.jpg" * MERGEFORMAT \d [image: image52]
Ordering of Values within a Tuple, and an Alternative Definition of a Relation. According to the preceding definition of a relation, an n-tuple is an ordered list of n values, so the ordering of values in a tuple—and hence of attributes in a relation schema—is important. However, at a logical level, the order of attributes and their values is not that important as long as the correspondence between attributes and values is maintained.
An alternative definition of a relation can be given, making the ordering of values in a tuple unnecessary. In this definition, a relation schema R = {A1, A2, . . . , An} is a set of attributes, and a relation state r(R) is a finite set of mappings r = {t1, t2, . . . , tm}, where each tuple ti is a mapping from R to D, and D is the union of the attribute domains; that is, D = dom(A1) (dom(A2) (. . . (dom(An). In this definition, t[Ai] must be in dom(Ai) for 1 ≤ i ≤ n for each mapping ti in r. Each mapping t is called a tuple.
According to this definition of tuple as a mapping, a tuple can be considered as a set of (<attribute>, <value>) pairs, where each pair gives the value of the mapping from an attribute Ai to a value vi from dom(Ai). The ordering of attributes is not important, because the attribute name appears with its value. By this definition, the two tuples shown in Figure 5.3 are identical because each and every attribute of one tuple has a value identical to the corresponding attribute of the other tuple despite the order of the attributes as they are listed being different. This makes sense at an abstract or logical level, since there really is no reason to prefer having one attribute value appear before another one in a tuple.
In SQL, we can reference attributes by name, in which case their position does not matter or by their position. For example if we execute the following query on the table then the results will be displayed in a default order of the columns (attributes):
SELECT * FROM STUDENT;
However, we can specify the order of columns then the results will be displayed in the column order specified. For example, consider the following query in which the column order is specified.

SELECT ADDRESS, NAME, SSN, AGE, OFFICE_PHONE, GPA, HOME_PHONE
FROM STUDENT
Similarly, values can be set by attribute names as well. We leave a more detailed discussion of the different approaches in SQL to Chapter 8.
[Note to eds: Reminder-- this is not the first time the students are seeing SQL.]
When a relation is implemented as a file, the attributes are physically ordered as fields within a record. We will generally use the first definition of relation, where the attributes and the values within tuples are ordered, because it simplifies much of the notation. However, the alternative definition given here is more general.5
Values and Nulls in the Tuples. Each value in a tuple is an atomic value; that is, it is not divisible into components within the framework of the basic relational model. Hence, composite and multivalued attributes (see Chapter 3) are not allowed. This
[image: image53]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_54.jpg" * MERGEFORMAT \d [image: image54]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_55.jpg" * MERGEFORMAT \d [image: image55]
5. As we shall see, the alternative definition of relation is useful when we discuss query processing in Chapters 15 and 16.
[image: image56]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_57.jpg" * MERGEFORMAT \d [image: image57]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_58.jpg" * MERGEFORMAT \d [image: image58]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_59.jpg" * MERGEFORMAT \d [image: image59]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_60.jpg" * MERGEFORMAT \d [image: image60]
5.1 Relational Model Concepts | 131
[image: image61]
t = < (Name, Dick Davidson),(SSN, 422-11-2320),(HomePhone, null),(Address, 3452 Elgin Road), (OfficePhone, 749-1253),(Age, 25),(GPA, 3.53)>
t = < (Address, 3452 Elgin Road),(Name, Dick Davidson),(SSN, 422-11-2320),(Age, 25), (OfficePhone,749-1253),(GPA, 3.53),(HomePhone, null)>
[image: image62]
FIGURE 5.3 Two identical tuples when the order of attributes and values is not part of relation definition.
model is sometimes called the flat relational model. Much of the theory behind the relational model was developed with this assumption in mind, which is called the first normal form assumption.6 Hence, multivalued attributes must be represented by separate relations, and composite attributes are represented only by their simple component attributes in the basic relational model.7
An important concept is that of nulls, which are used to represent the values of attributes that may be unknown or may not apply to a tuple. A special value, called null, is used for these cases. For example, in Figure 5.1, some student tuples have null for their office phones because they do not have an office (that is, office phone does not apply to these students). Another student has a null for home phone, presumably because either he does not have a home phone or he has one but we do not know it (value is unknown). In general, we can have several meanings for null values, such as “value unknown,” “value exists but is not available,” or “attribute does not apply to this tuple.” An example of the last type of null will occur if we add an attribute Visa_status to the STUDENT relation that applies only to tuples that represent foreign students. It is possible to devise different codes for different meanings of null values. Incorporating different types of null values into the relational model operations (see Chapter 6) has proven difficult and is outside the scope of our presentation.
Interpretation (Meaning) of a Relation. The relation schema can be interpreted as a declaration or a type of assertion. For example, the schema of the STUDENT relation of Figure 5.1 asserts that, in general, a student entity has a Name, SSN, HomePhone, Address, OfficePhone, Age, and GPA. Each tuple in the relation can then be interpreted as a fact or a particular instance of the assertion. For example, the first tuple in Figure 5.1 asserts the fact that there is a student whose name is Benjamin Bayer, SSN is 305-61-2435, Age is 19, and so on.
Notice that some relations may represent facts about entities, whereas other relations may represent facts about relationships. For example, the relation above represents an entity. The relation schema MAJORS (StudentSSN, DepartmentCode) represents a relationship and asserts that “students” major in “academic departments.” A tuple in this
[image: image63]
1. We discuss this assumption in more detail in Chapter 10.
2. Extensions of the relational model remove these restrictions. For example, object-relational systems allow complex-structured attributes, as do the non-first normal form or nested relational models, as we shall see in Chapter 22.
[image: image64]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_65.jpg" * MERGEFORMAT \d [image: image65]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_66.jpg" * MERGEFORMAT \d [image: image66]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_67.jpg" * MERGEFORMAT \d [image: image67]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_68.jpg" * MERGEFORMAT \d [image: image68]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_69.jpg" * MERGEFORMAT \d [image: image69]
relation relates a student to his or her major department. Hence, the relational model represents facts about both entities and relationships uniformly as relations. This sometimes compromises understandability because one has to guess whether a relation represents an entity type or a relationship type. The mapping procedures in Chapter 7 show how different constructs of the ER and EER models get converted to relations. Informally and briefly, we can summarize Chapter 7 but stating this is done translating the entities into relations that contain all the attributes of the entity and transforming relationships into relations that contain unique identifiers of the two entities involved in the corresponding relationship.
An alternative interpretation of a relation schema is as a predicate; in this case, the values in each tuple are interpreted as values that satisfy the predicate. This interpretation is quite useful in the context of logic programming languages, such as Prolog, because it allows the relational model to be used within these languages (see Section 24.4).
5.1.3 Relational Model Notation
We will use the following notation in our presentation:
· A relation schema R of degree n is denoted by R(A1, A2, . . . , An).
· An n-tuple t in a relation r(R) is denoted by t = <v1, v2, . . . , vn>, where vi is the value corresponding to attribute Ai. The following notation refers to component values of tuples:

1. Both t[Ai] and t.Ai (and sometimes t[i]) refer to the value vi in t for attribute Ai.
2. Both t[Au, Aw, . . . , Az] and t.(Au, Aw, . . . , Az), where Au, Aw, . . . , Az is a list of attributes from R, refer to the subtuple of values <vu, vw, . . . , vz> from t corresponding to the attributes specified in the list.
· The letters Q, R, S denote relation names.
· The letters q, r, s denote relation states.
· The letters t, u, v denote tuples.
· In general, the name of a relation schema such as STUDENT also indicates the current set of tuples in that relation—the current relation state—whereas STUDENT(Name, SSN, . . .) refers only to the relation schema.
· An attribute A can be qualified with the relation name R to which it belongs by using the dot notation R.A—for example, STUDENT.Name or STUDENT.Age. This is needed because the same name may be used for two attributes in different relations. However, all attribute names in a particular relation must be distinct.
As an example, consider the tuple t = <‘Barbara Benson’, ‘533-69-1368’, ‘839-8461’, ‘7384 Fontana Lane’, null, 19, 3.25> from the STUDENT relation in Figure 5.1; we have t[Name] = <‘Barbara Benson’>, and t[SSN, GPA, Age] = <‘533-69-1368’, 3.25, 19>. This is equivalent to a select statement in which you name the columns that you want to retrieve. In this case, the select statements would be: SELECT NAME FROM STUDENT WHERE SSN = ‘533-69-1368’ and SELECT SSN, GPA, AGE FROM STUDENT WHERE SSN = ‘533-69-1368’. Notice that the where clause refers to the column that uniquely identifies the row and we will discuss this in further detail Section 5.2.4.
5.2 RELATIONAL MODEL CONSTRAINTS AND RELATIONAL DATABASE SCHEMAS
So far, we have discussed the characteristics of single relations. In a relational database, there will typically be many relations, and the tuples in those relations are usually related
[image: image70]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_71.jpg" * MERGEFORMAT \d [image: image71]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_72.jpg" * MERGEFORMAT \d [image: image72]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_73.jpg" * MERGEFORMAT \d [image: image73]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_74.jpg" * MERGEFORMAT \d [image: image74]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_75.jpg" * MERGEFORMAT \d [image: image75]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_76.jpg" * MERGEFORMAT \d [image: image76]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_77.jpg" * MERGEFORMAT \d [image: image77]
5.2 Relational Model Constraints and Relational Database Schemas | 133
in various ways. The state of the whole database will correspond to the states of all its relations at a particular point in time. There are generally many restrictions or constraints on the actual values in a database state. These constraints are derived from the rules in the mini-world that the database represents, as we discussed in Section 1.6.8.
In this section, we discuss the various restrictions on data that can be specified on a relational database in the form of constraints. Constraints on databases can generally be divided into three main categories:
1. Constraints that are inherent in the data model. We call these inherent model-based constraints.
2. Constraints that can be directly expressed in the schemas of the data model, typically by specifying them in the DDL (data definition language, see Section 2.3.1). We call these schema-based constraints.
3. Constraints that cannot be directly expressed in the schemas of the data model, and hence must be expressed and enforced by the application programs. We call these application-based constraints.
The characteristics of relations that we discussed in Section 5.1.2 are the inherent constraints of the relational model and belong to the first category. For example, even though we did not explicitly state this in Section 5.1.2, there was an underlying assumption about a constraint that a relation cannot have duplicate tuples is an inherent constraint. The constraints we discuss in this section are of the second category, namely, constraints that can be expressed in the schema of the relational model via the DDL. Constraints in the third category are more general and are difficult to express and enforce within the data model, so they are better checked within application programs.
Another important category of constraints is data dependencies, which include functional dependencies and multivalued dependencies. They are used mainly for testing the “goodness” of the design of a relational database and are utilized in a process called normalization, which is discussed in Chapters 10 and 11.
We now discuss the main types of constraints that can be expressed in the relational model—the schema-based constraints from the second category. These include domain constraints, key constraints, constraints on nulls, entity integrity constraints, and referential integrity constraints.
5.2.1 Domain Constraints
Domain constraints specify that within each tuple, the value of each attribute A must be an atomic value from the domain dom(A). We have already discussed the ways in which domains can be specified in Section 5.1.1. The data types associated with domains typically include standard numeric data types for integers (such as short integer, integer, and long integer) and real numbers (float and double-precision float). Booleans, characters, fixed-length strings, and variable-length strings are also available, as are date, time, timestamp, and, in some cases, money data types. Other possible domains may be described by a subrange of values from a data type or as an enumerated data type in which all possible values are explicitly listed. For example, the GPA in the STUDENT relation must be between 0.0 and 4.0 both inclusive. In practice, this is accomplished by adding a check constraint in the schema definition, for example, CHECK (GPA >= 0.0 AND GPA <= 4.0). Domain constraints are represents in DDL as check constraints. For example in the TABLE definition for STUDENT, we have already included data types. Additionally, we can add a check constraint shown in bold below:

CREATE TABLE STUDENT (

NAME

VARCHAR(30)
NOT NULL,

SSN

CHAR(9)
NOT NULL,

HOMEPHONE
VARCHAR(14),

ADDRESS
VARCHAR(40),

OFFICEPHONE
VARCHAR(14),

AGE

INT,

GPA

DECIMAL(4,3) CHECK (GPA >= 0.0 AND GPA <= 4.0)
);

Rather than describe these in detail here, we discuss the data types offered by the SQL-99 relational standard in Sections 8.1 and 8.2.

[image: image78]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_79.jpg" * MERGEFORMAT \d [image: image79]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_80.jpg" * MERGEFORMAT \d [image: image80]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_81.jpg" * MERGEFORMAT \d [image: image81]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_82.jpg" * MERGEFORMAT \d [image: image82]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_83.jpg" * MERGEFORMAT \d [image: image83]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_84.jpg" * MERGEFORMAT \d [image: image84]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_85.jpg" * MERGEFORMAT \d [image: image85]
5.2.2 Key Constraints and Constraints on Null Values
A relation is defined as a set of tuples. By definition, all elements of a set are distinct; hence, all tuples in a relation must also be distinct. This means that no two tuples can have the same combination of values for all their attributes. Usually, there are other subsets of attributes of a relation schema R with the property that no two tuples in any relation state r of R should have the same combination of values for these attributes. Suppose that we denote one such subset of attributes by SK; then for any two distinct tuples t1 and t2 in a relation state r of R, we have the constraint that
t1[SK] (t2[SK]
Any such set of attributes SK is called a superkey of the relation schema R. A superkey SK specifies a uniqueness constraint that no two distinct tuples in any state r of R can have the same value for SK. Every relation has at least one default superkey which can also be called the trivial superkey—the set of all its attributes. A superkey can have redundant attributes, however, so a more useful concept is that of a key, which has no redundancy. A key K of a relation schema R is a superkey of R with the additional property that removing any attribute A from K leaves a set of attributes K’ that is not a superkey of R any more. Hence, a key satisfies two constraints:
1. Two distinct tuples in any state of the relation cannot have identical values for (all) the attributes in the key.
2. It is a minimal superkey—that is, a superkey from which we cannot remove any attributes and still have the uniqueness constraint in condition 1 hold.
The first condition applies to both keys and superkeys. The second condition is required only for keys. For example, consider the STUDENT relation of Figure 5.1. The attribute set {SSN} is a key of STUDENT because no two student tuples can have the same value for SSN assuming all the SSNs in the database are legal and valid.8 Any set of attributes that includes SSN—for example, {SSN, Name, Age}—is a superkey. However, the superkey {SSN, Name, Age} is not a key of STUDENT, because removing Name or Age or both from the set still leaves us with a superkey. In general, any superkey formed from a single attribute is also a key. A key with multiple attributes must require all its attributes to have the uniqueness property hold.
The value of a key attribute can be used to identify uniquely each tuple in the relation. For example, the SSN value 305-61-2435 identifies uniquely the tuple corresponding to Benjamin Bayer in the STUDENT relation. Notice that a set of attributes constituting a key is a property of the relation schema; it is a constraint that should hold on every valid relation state of the schema. A key is determined from the meaning of the attributes, and the property is time-invariant: It must continue to hold when we insert new tuples in the relation. For example, we cannot and should not designate the Name attribute of the STUDENT relation in Figure 5.1 as a key, because it is possible that two students with identical names will exist at some point in a valid state.9
[image: image86]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_87.jpg" * MERGEFORMAT \d [image: image87]
8. Note that SSN is also a superkey.
9. Names are sometimes used as keys, but then some artifact—such as appending an ordinal number—must be used to distinguish between identical names.
[image: image88]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_89.jpg" * MERGEFORMAT \d [image: image89]
5.2 Relational Model Constraints and Relational Database Schemas | 135
[image: image90]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_91.jpg" * MERGEFORMAT \d [image: image91]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_92.jpg" * MERGEFORMAT \d [image: image92]
EngineSerialNumber.
In general, a relation schema may have more than one key. In this case, each of the keys is called a candidate key. For example, the CAR relation in Figure 5.4 has two candidate keys: LicenseNumber and EngineSerialNumber. It is common to designate one of the candidate keys as the primary key of the relation. This is the candidate key whose values are used to identify tuples in the relation. We use the convention that the attributes that form the primary key of a relation schema are underlined, as shown in Figure 5.4. Notice that when a relation schema has several candidate keys, the choice of one to become the primary key is arbitrary; however, it is usually better to choose a primary key with a single attribute or a small number of attributes.

The STUDENT tuple can also have more than one key, SSN and StudentID. Recent changes in privacy laws have prohibited organizations from non-essential use of SSNs. Hence, StudentID would be used in most student records except if there is a need for SSN in case such as a student being paid by the university. In practice, StudentID is likely to be used as the key rather than SSN since it is usable across all aspects of the system.
It is worth mentioning that if we use name as a key and the name changes then the primary key changes. Changing the primary key is acceptable but can be inefficient as any references to this key in the database are appropriately updated, and that can take a long time in a large database. Also, the new primary key must remains unique. [Footnote: Name change is an example of where our database must be able to model the natural world. In this case, we recognize that the name change can occur regardless of whether it is a consequence of a religious and/or spiritual conversion, or due to marriage, or for any other reason.]
The challenge of choosing an invariant primary key from the natural data items leads to the concept of generated keys, also known as surrogate keys. Specifically, we can use surrogate keys instead of keys that occur naturally in the database. Some database professionals believe that it is best to use keys that uniquely generated by the database, for example each row may have a primary key that is generated in the sequence of creation of rows (tuples). There are many advantages and disadvantages that have been argued in countless design sessions. The main advantage is that it gives us an invariant key without any worries about choosing a unique primary key. The main disadvantages of surrogate keys are that they don’t have a business meaning (making some aspects of database management challenging) and that they are slightly less inefficient (because they require another pass when inserting a row because the key often needs to bereturned to the application after a row is inserted).
Another constraint on attributes specifies whether null values are or are not permitted. For example, if every STUDENT tuple must have a valid, non-null value for the Name attribute, then Name of STUDENT is constrained to be NOT NULL. This is typically used in cases to enforce requiring a certain piece of information about a tuple, such as name of the student is required in a meaningful tuple of STUDENT. Notice that by default all primary keys are non-null.
5.2.3 Relational Databases and Relational Database Schemas
The definitions and constraints we have discussed so far apply to single relations and their attributes. A relational database usually contains many relations, with tuples in relations that are related in various ways. In this section we define a relational database and a relational database schema.
A relational database schema S is a set of relation schemas S = {R1, R2, . . . , Rm} and a set of integrity constraints IC. A relational database state10 DB of S is a set of relation states DB = {r1, r2, . . . , rm} such that each ri is a state of Ri and such that the ri relation states satisfy the integrity constraints specified in IC. Figure 5.5 shows a relational database schema that we call COMPANY = {EMPLOYEE, DEPARTMENT, DEPT_LOCATIONS, PROJECT, WORKS_ON, DEPENDENT}. The underlined attributes represent primary keys. [Note to the eds: the paragraph break encourages readers to pause and look at the figures]

Figure 5.6 shows a relational database state corresponding to the COMPANY schema. We will use this schema and database state in this chapter and in Chapters 6 through 9 for developing example queries in different relational languages. When we refer to a relational database,
[image: image93]
10. A relational database state is sometimes called a relational database instance. However, as we mentioned earlier, we will not use the term instance since it also applies to single tuples.
[image: image94]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_95.jpg" * MERGEFORMAT \d [image: image95]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_96.jpg" * MERGEFORMAT \d [image: image96]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_97.jpg" * MERGEFORMAT \d [image: image97]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_98.jpg" * MERGEFORMAT \d [image: image98]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_99.jpg" * MERGEFORMAT \d [image: image99]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_100.jpg" * MERGEFORMAT \d [image: image100]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_101.jpg" * MERGEFORMAT \d [image: image101]
we implicitly include both its schema and its current state. A database state that does not obey all the integrity constraints is called an invalid state, and a state that satisfies all the constraints in IC is called a valid state.
In Figure 5.5, the DNUMBER attribute in both DEPARTMENT and DEPT_LOCATIONS stands for the same real-world concept—the number given to a department. That same concept is called DNO in EMPLOYEE and DNUM in PROJECT. Attributes that represent the same real-world concept may or may not have identical names in different relations. Alternatively, attributes that represent different concepts may have the same name in different relations. For example, we could have used the attribute name NAME for both PNAME of PROJECT and DNAME of DEPARTMENT; in this case, we would have two attributes that share the same name but represent different real-world concepts—project names and department names. [Note to the eds: I would have used DEPT_NUMBER or DEPARTMENT_NUMBER for the attributes/columns because in database world as in any world, we should take the time (and space) to use descriptive variable names. I was tempted to change that here but the resulting disconnect with the figures would be hard to read.]
In some early versions of the relational model, it was recommended that the same real-world concept, when represented by an attribute, would have identical attribute names in all relations. This recommendation was soon retracted because it creates problems when the same real-world concept is used in different roles (meanings) in the same relation. For example, the concept of social security number appears twice in the EMPLOYEE relation of Figure 5.5: once in the role of the employee’s social security number, and once in the role of the supervisor’s social security number. We gave them distinct attribute names—SSN and or FK_SUPERVISOR (or FK_SUPERVISOR_SSN), respectively— in order to distinguish their meaning. The naming convention can be informally specified as FK followed by the referenced relationship (SUPERVISOR in this example) or relation name (not used as it can be misleading in this example), and optionally followed by the primary key of the referenced table (SSN in this example). This foreign key naming convention is frequently used in large databases. [Footnote: Informally, the references table is the external table that forms the basis of the relationship. Formally, we will define the referenced tuple in Section 5.2.4.] Sometimes this produces very long column names but it pays off by facilitating readability for database professionals by using more descriptive names.
[image: image102]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_103.jpg" * MERGEFORMAT \d [image: image103]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_104.jpg" * MERGEFORMAT \d [image: image104]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_105.jpg" * MERGEFORMAT \d [image: image105]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_106.jpg" * MERGEFORMAT \d [image: image106]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_107.jpg" * MERGEFORMAT \d [image: image107]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_108.jpg" * MERGEFORMAT \d [image: image108]
5.2 Relational Model Constraints and Relational Database Schemas | 137
[image: image109]
Each relational DBMS must have a data definition language (DDL) for defining a relational database schema. Current relational DBMSs are mostly using SQL for this purpose. We present the SQL DDL in Sections 8.1 through 8.3. The DDL for the schema for the above database is shown in Figure 8.1.
Integrity constraints are specified on a database schema and are expected to hold on every valid database state of that schema. In addition to domain, key, and NOT NULL constraints, two other types of constraints are considered part of the relational model: entity integrity and referential integrity.
[image: image110]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_111.jpg" * MERGEFORMAT \d [image: image111]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_112.jpg" * MERGEFORMAT \d [image: image112]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_113.jpg" * MERGEFORMAT \d [image: image113]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_114.jpg" * MERGEFORMAT \d [image: image114]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_115.jpg" * MERGEFORMAT \d [image: image115]
5.2.4 Entity Integrity, Referential Integrity, and Foreign Keys
The entity integrity constraint states that no primary key value can be null. [Footnote: This is in addition to the constraint that the primary key has to be unique.] This is because the primary key value is used to identify individual tuples in a relation. Having null values for the primary key implies that we cannot identify some tuples. For example, if two or more tuples had null for their primary keys, we might not be able to distinguish them if we tried to reference them from other relations. Even one tuple having a null value is a cause of concern since it means that a null value uniquely identifies a tuple and by some stretch of imagination, this is conceptually similar to using null as a valid address for a pointer.
In our running example of STUDENT table, we can specify SSN to be a primary key by including the primary key constraint in the DDL. Note that once SSN is designated to be primary key then it has to be NON NULL as well, and hence specifying it to be NON NULL is redundant. There are two ways to specify the primary key constraint. The first is to specify it as part of the column definition. This works fairly well when the primary key is based on a single column.

CREATE TABLE STUDENT (

NAME

VARCHAR(30)
NOT NULL,

SSN

CHAR(9)
PRIMARY KEY,

HOMEPHONE
VARCHAR(14),

ADDRESS
VARCHAR(40),

OFFICEPHONE
VARCHAR(14),

AGE

INT,

GPA

DECIMAL(4,3) CHECK (GPA >= 0.0 AND GPA <= 4.0)
);

In cases where primary key is multiple columns it is necessary to specify the primary key separately. In that case, the syntax used includes separate entry for the constraints.

CREATE TABLE STUDENT (

NAME

VARCHAR(30)
NOT NULL,

SSN

CHAR(9),

HOMEPHONE
VARCHAR(14),

ADDRESS
VARCHAR(40),

OFFICEPHONE
VARCHAR(14),

AGE

INT,

GPA

DECIMAL(4,3) CHECK (GPA >= 0.0 AND GPA <= 4.0),

CONSTRAINT STUDENT_KEY PRIMARY KEY(SSN)
);

A multiple column primary key can be easily specified by listing all the columns in place of SSN above, such as PRIMARY_KEY(COL1, COL2, …, COLN). In the example above, if we want to use the combination of NAME and OFFICEPHONE as the key, we will specify it as

CONSTRAINT STUDENT_KEY PRIMARY KEY(NAME, OFFICEPHONE),
instead of

CONSTRAINT STUDENT_KEY PRIMARY KEY(SSN).
Key constraints and entity integrity constraints are specified on individual relations. The referential integrity constraint is specified between two relations and is used to maintain the consistency among tuples in the two relations. Informally, the referential integrity constraint states that a tuple in one relation that refers to another relation must refer to an existing and unique tuple in that relation. For example, in Figure 5.6, the attribute DNO of EMPLOYEE gives the department number for which each employee works; hence, its value in every EMPLOYEE tuple must match the DNUMBER value of some tuple in the DEPARTMENT relation.
To define referential integrity more formally, we first define the concept of a foreign key. The conditions for a foreign key, given below, specify a referential integrity constraint between the two relation schemas R1 and R2. A set of attributes FK in relation schema R1 is a foreign key of R1 that references relation R2 if it satisfies the following two rules:
1. The attributes in FK have the same domain(s) as the primary key attributes (PK) of R2; the attributes FK are said to reference or refer to the relation R2.
2. A value of FK in a tuple t1 of the current state r1(R1) either occurs as a value of PK for some tuple t2 in the current state r2(R2) or is null. In the former case, we have t1[FK] = t2[PK], and we say that the tuple t1 references or refers to the tuple t2.
In this definition, R1 is called the referencing relation and R2 is the referenced relation. If these two conditions hold, a referential integrity constraint from R1 to R2 is said to hold. In a database of many relations, there are usually many referential integrity constraints to make sure that the database has stored meaningful and accurate information about the relationships between entities.
To specify these constraints, we must first have a clear understanding of the meaning or role that each set of attributes plays in the various relation schemas of the database. Referential integrity constraints typically arise from the relationships among the entities represented by the relation schemas. Without referential integrity, we can not be assured that the database can relate the information it holds in a meaningful way. For example, consider the database shown in Figure 5.6. In the EMPLOYEE relation, the attribute DNO refers to the department for which an employee works; hence, we designate DNO to be a foreign key of EMPLOYEE referring to the DEPARTMENT relation. This means that a value of DNO in any tuple t1 of the EMPLOYEE relation must match a value of the primary key of DEPARTMENT—the DNUMBER attribute—in some tuple t2 of the DEPARTMENT relation, or the value of DNO can be null if the employee does not belong
[image: image116]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_117.jpg" * MERGEFORMAT \d [image: image117]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_118.jpg" * MERGEFORMAT \d [image: image118]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_119.jpg" * MERGEFORMAT \d [image: image119]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_120.jpg" * MERGEFORMAT \d [image: image120]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_121.jpg" * MERGEFORMAT \d [image: image121]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_122.jpg" * MERGEFORMAT \d [image: image122]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_123.jpg" * MERGEFORMAT \d [image: image123]
5.2 Relational Model Constraints and Relational Database Schemas | 139
to a department. In Figure 5.6 the tuple for employee ‘John Smith’ references the tuple for the ‘Research’ department, indicating that ‘John Smith’ works for this department.
Notice that a foreign key can refer to its own relation. For example, the attribute SUPERSSN in EMPLOYEE refers to the supervisor of an employee; this is another employee, represented by a tuple in the EMPLOYEE relation. Hence, SUPERSSN is a foreign key that references the EMPLOYEE relation itself. In Figure 5.6 the tuple for employee ‘John Smith’ references the tuple for employee ‘Franklin Wong,’ indicating that ‘Franklin Wong’ is the supervisor of ‘John Smith.’ So what do we do for the SUPERSSN for the head of the organization, such as a CEO? We can establish a convention that it will always be NULL or be the SSN of the head himself/herself. [Note to the eds: I would like to use more interrogative style, where appropriate, in order to engage the students if eds are supportive.]
We can diagrammatically display referential integrity constraints by drawing a directed arc from each foreign key to the relation it references. For clarity, the arrowhead may point to the primary key of the referenced relation and away from the foreign key attribute (column) in the referencing relation. Figure 5.7 shows the schema in Figure 5.5 with the referential integrity constraints displayed in this manner.
All integrity constraints should be specified on the relational database schema if we want to enforce these constraints on the database states. Hence, the DDL includes provisions for specifying the various types of constraints so that the DBMS can automatically enforce them. Most relational DBMSs support key and entity integrity constraints, and make provisions to support referential integrity. These constraints are specified as a part of data definition.
At this time, you can glance at Figure 8.1 and 8.2 to see how constraints are represented in the database. For example, the constraint that an employee’s supervisor is another employee is denoted as:
CREATE TABLE EMPLOYEE (

FNAME

VARCHAR(15)

NOT NULL,

MINIT

CHAR,

LNAME

VARCHAR(15)

NOT NULL,

SSN

CHAR(9)

NOT NULL,

BDATE

DATE,

ADDRESS
VARCHAR(30),

SEX

CHAR,

SALARY
DECIMAL(10,2),

SUPERSSN
CHAR(9),

DNO

INT

NOT NULL,

CONSTRAINT
PK_EMPLOYEE

PRIMARY KEY(SSN),

CONSTRAINT EMPLOYEE_SUPERVISOR_FK

FOREIGN KEY (SUPERSSN) REFERENCES EMPLOYEE(SSN),
CONSTRAINT EMPLOYEE_DEPARTMENT_FK

FOREIGN KEY (DNO) REFERENCES DEPARTMENT(DNUMBER)

)
[Note to the eds: I would like to integrate SQL from the beginning so that this syntax here appears natural.]

[image: image124]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_125.jpg" * MERGEFORMAT \d [image: image125]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_126.jpg" * MERGEFORMAT \d [image: image126]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_127.jpg" * MERGEFORMAT \d [image: image127]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_128.jpg" * MERGEFORMAT \d [image: image128]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_129.jpg" * MERGEFORMAT \d [image: image129]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_130.jpg" * MERGEFORMAT \d [image: image130]
5.2.5 Other Types of Constraints
The preceding integrity constraints do not include a large class of general constraints, sometimes called semantic integrity constraints, that may have to be specified and enforced on a relational database. Examples of such constraints are “the salary of an employee should not exceed the salary of the employee’s supervisor” and “the maximum number of hours an employee can work on all projects per week is 56.” Such constraints can be specified and enforced within the application programs that update the database, or by using a general-purpose constraint specification language. Mechanisms called triggers and assertions can be used. A trigger is a sequence of SQL statements that automatically executes when a specific operation takes place. In most DBMSs, a trigger can be programmed to be activated when an INSERT, DELETE, or UPDATE operation is encountered. We refer the reader to Section 24.1 for a detailed discussion of triggers.
In SQL-99, a CREATE ASSERTION statement is used for this purpose (see Chapters 8 and 9). It is more common to check for these types of constraints within the application programs than to use constraint specification languages, because the latter are difficult and complex to use correctly, as we discuss in Section 24.1. From a practical perspective, assertions are very inefficient since they need to be checked on all changes to the database. Consequently, assertions are not very popular in large scale databases.

We shall briefly introduce the syntax for assertion for the reader’s reference. Let us say an assertion statement states that the number of EMPLOYEEs must more than the number of DEPARTMENTs:
CREATE ASSERTION MORE_EMPLOYEES CHECK (

(SELECT COUNT(*) FROM EMPLOYEE) ≥

(SELECT COUNT(*) FROM DEPARTMENT)

);

Another type of constraint is the functional dependency constraint, which establishes a functional relationship among two sets of attributes X and Y. This constraint specifies that the value of X determines the value of Y in all states of a relation; it is denoted as a functional dependency X → Y. We use functional dependencies and other types of dependencies in Chapters 10 and 11 as tools to analyze the quality of relational designs and to “normalize” relations to improve their quality.
The types of constraints we discussed so far may be called state constraints, because they define the constraints that a valid state of the database must satisfy. Another type of constraint, called transition constraints, can be defined to deal with state changes in the database.11 An example of a transition constraint is: “the salary of an employee can only increase.” Such constraints are typically enforced by the application programs or specified using active rules and triggers, as we discuss in Section 24.1.
5.3 UPDATE OPERATIONS AND DEALING WITH CONSTRAINT VIOLATIONS
The operations of the relational model can be categorized into retrievals and updates. The relational algebra operations, which can be used to specify retrievals, are discussed in detail in Chapter 6. A relational algebra expression forms a new relation after applying a number of algebraic operators to an existing set of relations; its main use is for querying a database. The user formulates a query that specifies the data of interest, and a new relation is formed by applying relational operators to retrieve this data. That relation
[image: image131]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_132.jpg" * MERGEFORMAT \d [image: image132]
11. State constraints are sometimes called static constraints, and transition constraints are sometimes called dynamic constraints.
[image: image133]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_134.jpg" * MERGEFORMAT \d [image: image134]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_135.jpg" * MERGEFORMAT \d [image: image135]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_136.jpg" * MERGEFORMAT \d [image: image136]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_137.jpg" * MERGEFORMAT \d [image: image137]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_138.jpg" * MERGEFORMAT \d [image: image138]
5.3 Update Operations and Dealing with Constraint Violations | 141
becomes the answer to the user’s query. Chapter 6 also introduces the language called relational calculus, which is used to declaratively define the new relation without giving a specific order of operations.
In this section, we concentrate on the database modification or update operations. There are three basic update operations on relations: insert, delete, and modify. Insert is used to insert a new tuple or tuples in a relation, Delete is used to delete tuples, and Update (or Modify) is used to change the values of some attributes in existing tuples. Whenever these operations are applied, the integrity constraints specified on the relational database schema should not be violated. In this section we discuss the types of constraints that may be violated by each update operation and the types of actions that may be taken if an update does cause a violation. We use the database shown in Figure 5.6 for examples and discuss only key constraints, entity integrity constraints, and the referential integrity constraints shown in Figure 5.7. For each type of update, we give some example operations and discuss any constraints that each operation may violate.
 Database professionals frequently refer to relations as tables. These logical operations of Insert, Delete, and Update on relations translate into SQL operations of INSERT, DELETE, and UPDATE.
5.3.1 The Insert Operation
The Insert operation provides a list of attribute values for a new tuple t that is to be inserted into a relation R. Insert can violate any of the four types of constraints discussed in the previous section:

Here are some examples to illustrate this discussion.
1. Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, ‘677678989’, ‘1960-04-05’, ‘6537 Windy Lane, Katy, TX’, Z, 28000, null, 4> into EMPLOYEE.
•
This insertion violates the domain constraint for gender (7th attribute) since Z is not a valid entry for Gender.
2. Insert <’Alicia’, ‘J’, ‘Zelaya’, ‘99988777’, ‘1960-04-05’, ‘6537 Windy Lane, Katy, TX’, F, 28000, ‘987654321’, 4> into EMPLOYEE.
•
This insertion violates the key constraint because another tuple with the same SSN value (‘999887777’) already exists in the EMPLOYEE relation, and so it is rejected.
3. Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, null, ‘1960-04-05’, ‘6537 Windy Lane, Katy, TX’, F, 28000, null, 4> into EMPLOYEE. The SQL equivalent of this statement would be: INSERT INTO STUDENTS VALUES (‘Cecilia’, ‘F’, ‘Kolonsky’, null, ‘1960-04-05’, ‘6537 Windy Lane, Katy, TX’, F, 28000, null, 4).
•
This insertion violates the entity integrity constraint (null for the primary key SSN in the 4th position), so it is rejected.
4. Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, ‘677678989’, ‘1960-04-05’, ‘6537 Windswept, Katy, TX’, F, 28000, ‘987654321’, 7> into EMPLOYEE.
•
This insertion violates the referential integrity constraint specified on DNO because no DEPARTMENT tuple exists with DNUMBER = 7 (the last attribute).
5. Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, ‘677678989’, ‘1960-04-05’, ‘6537 Windy Lane, Katy, TX’, F, 28000, null, 4> into EMPLOYEE.
•
This insertion satisfies all constraints, so it is acceptable.

[Note to eds: I have added an example on domain constraint violation and order the examples in the same order as the listing of corresponding violation below. I have also moved the illustrate examples before the violation concepts.]

[image: image139]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_140.jpg" * MERGEFORMAT \d [image: image140]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_141.jpg" * MERGEFORMAT \d [image: image141]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_142.jpg" * MERGEFORMAT \d [image: image142]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_143.jpg" * MERGEFORMAT \d [image: image143]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_144.jpg" * MERGEFORMAT \d [image: image144]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_145.jpg" * MERGEFORMAT \d [image: image145]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_146.jpg" * MERGEFORMAT \d [image: image146]
1. Domain constraints can be violated if an attribute value is given that does not appear in the corresponding domain.

2. Key constraints can be violated if a key value in the new tuple t already exists in another tuple in the relation r(R).

3. Entity integrity can be violated if the primary key of the new tuple t is null.

4. Referential integrity can be violated if the value of any foreign key in t refers to a tuple that does not exist in the referenced relation.

If an insertion violates one or more constraints, the default option is to reject the insertion. In this case, it would be useful if the DBMS could explain to the user why the insertion was rejected. Another option is to attempt to correct the reason for rejecting the insertion, but this is typically not used for violations caused by Insert; rather, it is used more often in correcting violations for Delete and Update. In operation 1 above, the DBMS could ask the user to provide a value for SSN and could accept the insertion if a valid SSN value were provided. In operation 3, the DBMS could either ask the user to change the value of DNO to some valid value (or set it to null), or it could ask the user to insert a DEPARTMENT tuple with DNUMBER = 7 and could accept the original insertion only after such an operation was accepted. Notice that in the latter case the insertion violation can cascade back to the EMPLOYEE relation if the user attempts to insert a tuple for department 7 with a value for MGRSSN that does not exist in the EMPLOYEE relation. Cascading is a very powerful concept and needs to be used with care. We will discuss this in more detail in Chapter 8. [Note to eds: I would like to expand the discussion on cascade in Chapter 8 since it is an important concept that can be used easily but also abused easily.]
In most industrial databases, one of more of the following columns is included to help audit and track the changes: “create date”, created by”, “modified date”, and “modified by.” This method also provides an ability to recover to a previous state in case of unplanned changes.

5.3.2 The Delete Operation
The Delete operation can violate only referential integrity, if the tuple being deleted is referenced by the foreign keys from other tuples in the database. To specify deletion, a condition on the attributes of the relation selects the tuple (or tuples) to be deleted. Here are some examples.
1. Delete the WORKS_ON tuple with ESSN = ‘999887777’ and PNO = 10.
•
This deletion is acceptable.
2. Delete the EMPLOYEE tuple with SSN = ‘999887777’.
•
This deletion is not acceptable, because tuples in WORKS_ON refer to this tuple. Hence, if the tuple is deleted, referential integrity violations will result.
3. Delete the EMPLOYEE tuple with SSN = ‘333445555’.
•
This deletion will result in even worse referential integrity violations, because the tuple involved is referenced by tuples from the EMPLOYEE, DEPARTMENT, WORKS_ON, and DEPENDENT relations.
Several options are available if a deletion operation causes a violation.
1. The first option is to reject the deletion.
2. The second option is to attempt to cascade (or propagate) the deletion by deleting tuples that reference the tuple that is being deleted. For example, in operation 2, the DBMS could automatically delete the offending tuples from WORKS_ON with ESSN = ‘999887777’.
3. A third option is to modify the referencing attribute values that cause the violation; each such value is either set to null or changed to reference another valid tuple. Notice that if a referencing attribute that causes a violation is part of the primary key, it cannot be set to null; otherwise, it would violate entity integrity. This option must be used with care since the change has to be meaningful in the world modeled.
If no policy is specified then the default policy is to reject the changed. In order to specify another policy, one can include in the table definition’s foreign key part, ON DELETE SET NULL or ON DELETE CASCADE. In order to set default values DELETE triggers are needed to capture the delete and compute the default values to set. For example in our running example of the employee table, let us say that we want to SET NULL if the employee’s supervisor is deleted and CASCADE if the employee department is deleted, then the resulting DDL will be as follows:[Footnote: this example is not realistic since deleting a department does not mean that we are deleting all employees in the department.]
 CREATE TABLE EMPLOYEE (

FNAME

VARCHAR(15)

NOT NULL,

MINIT

CHAR,

LNAME

VARCHAR(15)

NOT NULL,

SSN

CHAR(9)

NOT NULL,

BDATE

DATE,

ADDRESS
VARCHAR(30),

SEX

CHAR,

SALARY
DECIMAL(10,2),

SUPERSSN
CHAR(9),

DNO

INT

NOT NULL,

CONSTRAINT
PK_EMPLOYEE

PRIMARY KEY(SSN),

CONSTRAINT EMPLOYEE_SUPERVISOR_FK

FOREIGN KEY (SUPERSSN) REFERENCES EMPLOYEE(SSN)

ON DELETE SET NULL,

CONSTRAINT EMPLOYEE_DEPARTMENT_FK

FOREIGN KEY (DNO) REFERENCES DEPARTMENT(DNUMBER)

ON DELETE CASCADE

)

Combinations of these three options are also possible. For example, to avoid having operation 3 cause a violation, the DBMS may automatically delete all tuples from WORKS_ON and DEPENDENT with ESSN = ‘333445555’. Tuples in EMPLOYEE with SUPERSSN = ‘333445555’ and the tuple in DEPARTMENT with MGRSSN = ‘333445555’ can have their SUPERSSN and MGRSSN values changed to other valid values or to null. Although it may make sense to delete
[image: image147]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_148.jpg" * MERGEFORMAT \d [image: image148]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_149.jpg" * MERGEFORMAT \d [image: image149]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_150.jpg" * MERGEFORMAT \d [image: image150]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_151.jpg" * MERGEFORMAT \d [image: image151]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_152.jpg" * MERGEFORMAT \d [image: image152]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_153.jpg" * MERGEFORMAT \d [image: image153]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_154.jpg" * MERGEFORMAT \d [image: image154]
5.4 Summary | 143
automatically the WORKS_ON and DEPENDENT tuples that refer to an EMPLOYEE tuple, it may not make sense to delete other EMPLOYEE tuples or a DEPARTMENT tuple. [Note to eds: I would change the attribute names here and in the figures once I have access to figures].
In general, when a referential integrity constraint is specified in the DDL, the DBMS will allow the user to specify which of the options applies in case of a violation of the constraint. We discuss how to specify these options in the SQL-99 DDL in Chapter 8.

In most industrial databases, the DELETE operation is seldom used on any remotely important table. Most often, rows “expired” and new rows inserted. This keeps a log of the changes. The expiration of rows is indicated by either an expired date column or an expired flag column. Both these columns remain NULL until a row is expired. Sometimes, for tracking and auditing purposes, a column to store the id, such as “modified by” of the responsible party is also included.

5.3.3 The Update Operation
The Update (or Modify) operation is used to change the values of one or more attributes in a tuple (or tuples) of some relation R. It is necessary to specify a condition on the attributes of the relation to select the tuple (or tuples) to be modified. Here are some examples.
1. Update the SALARY of the EMPLOYEE tuple with SSN = ‘999887777’ to 28000.
•
Acceptable.
2. Update the DNO of the EMPLOYEE tuple with SSN = ‘999887777’ to 1.
•
Acceptable.
3. Update the DNO of the EMPLOYEE tuple with SSN = ‘999887777’ to 7.
•
Unacceptable, because it violates referential integrity because at this time there is no DNUMBER with the value 7 (and hence there the foreign key constraint disallows DNO = 7.
4. Update the SSN of the EMPLOYEE tuple with SSN = ‘999887777’ to ‘987654321’.
•
Unacceptable, because it violates primary key constraint because ‘987654321’ is already the SSN of another tuple and referential integrity constraint because this SSN is referenced by the tuple containing information about SSN ‘999887777’ (Alicia Zelaya).
Updating an attribute that is neither a primary key nor a foreign key usually causes no problems; the DBMS need only check to confirm that the new value is of the correct data type and domain. Modifying a primary key value is logically similar to deleting one tuple and inserting another in its place, because we use the primary key to identify tuples. Hence, the issues discussed earlier in both Sections 5.3.1 (Insert) and 5.3.2 (Delete) come into play. If a foreign key attribute is modified, the DBMS must make sure that the new value refers to an existing tuple in the referenced relation (or is null). Similar options exist to deal with referential integrity violations caused by Update as those options discussed for the Delete operation. In fact, when a referential integrity constraint is specified in the DDL, the DBMS may allow the user, depending on the user’s authorization level, to choose separate options, from the options allowable to the user, to deal with a violation caused by Delete and a violation caused by Update (see Section 8.2). In our running example of the employee table, let us say that we want to CASCADE if the employee’s supervisor is updated and SET NULL if the employee department is deleted, the resulting DDL will be as follows:
 CREATE TABLE EMPLOYEE (

FNAME

VARCHAR(15)

NOT NULL,

MINIT

CHAR,

LNAME

VARCHAR(15)

NOT NULL,

SSN

CHAR(9)

NOT NULL,

BDATE

DATE,

ADDRESS
VARCHAR(30),

SEX

CHAR,

SALARY
DECIMAL(10,2),

SUPERSSN
CHAR(9),

DNO

INT

NOT NULL,

CONSTRAINT
PK_EMPLOYEE

PRIMARY KEY(SSN),

CONSTRAINT EMPLOYEE_SUPERVISOR_FK

FOREIGN KEY (SUPERSSN) REFERENCES EMPLOYEE(SSN)

ON DELETE SET NULL ON UPDATE CASCADE,

CONSTRAINT EMPLOYEE_DEPARTMENT_FK

FOREIGN KEY (DNO) REFERENCES DEPARTMENT(DNUMBER)

ON DELETE CASCADE ON UPDATE SET NULL
)

In most industrial databases, the UPDATE operation is implemented by “expiring” the old rows and inserting a new one. Hence, UPDATE becomes a combination of DELETE and INSERT operation. The DELETE operation “expires” a row and usually tags it with the id of who expired it and the INSERT operation inserts a new row. This provides tracking and auditing by keeping a log of the changes.
Now that we have talked about all operations, a practical way of looking at all important tables is to have five columns that store information about “who created the row”, “when was it created”, “who was the last one to modify the row”, “when was it modified”, and “expired on.” This can be accomplished by columns titled CREATED_BY, CREATED_ON, MODIFIED_BY, MODIFIED_ON and EXPIRED_ON.
An INSERT operation initializes CREATED_BY, CREATED_ON, MODIFIED_BY, and MODIFIED_ON to the inserter’s ID, inserted time, inserter’s ID, and inserted time, respectively. EXPIRED_ON is appropriately set to NULL. Note that in this case the inserter is the modifier as well.
A DELETE operation sets MODIFIED_BY, MODIFIED_ON, and EXIPIRED_ON to the deleter’s ID, deleted time, and deleter’s ID, respectively. CREATED_BY and CREATED_ON remain unchanged.

An UPDATE operation takes the original row and copies it with a new key and keeps the CREATED_BY and CREATED_ON unchanged while setting MODIFIED_BY, MODIFIED_ON, and EXIPIRED_ON to the updater’s ID, update time, and updater’s ID, respectively. It also updates the original row and changes the MODIFIED_BY and MODIFIED_ON to the updater’s ID and update time, respectively.

5.4 INTERACTIVE EXERCISES

We saw several concepts in this chapter that warrant hands-on exercises, So it is time to whip out your CD as we examine how the concepts of this chapter affect some of our example databases. Before we get into exploring databases, let us remind ourselves most DBMSs refer to relations as tables, tuples as rows, and attributes as columns. [Note to the eds: I considered intertwining this with reading but since many students may be reading the book without immediate access to the computer, it is best to lump these exercises in one section].
5.4.1 Relational Model Questions
1. Refer to the UNIVERSITY database and run a simple SELECT query on the STUDENT table:
· SELECT * FROM STUDENT and then run the same query again.
· You will see that the rows in the table STUDENT are displayed in the same order both times. This means that the rows are stored in particular order.

2. Now, instead of SELECT * run the following SELECT operation:
· SELECT ADDRESS, NAME, SSN, AGE, OFFICE_PHONE, GPA, HOME_PHONE FROM STUDENT

· You will see that the result is a row similar to order given in the last tuple in Figure 5.3.
[Note to the eds: I would like to expand this section with more hands-on exercises if I have your support].
5.5 SUMMARY
In this chapter we presented the modeling concepts, data structures, and constraints provided by the relational model of data. We started by introducing the concepts of domains, attributes, and tuples. Subsequently, we defined a relation schema as a list of attributes that describe the structure of a relation. A relation, or relation state, is a set of tuples that conforms to the schema.
[image: image155]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_156.jpg" * MERGEFORMAT \d [image: image156]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_157.jpg" * MERGEFORMAT \d [image: image157]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_158.jpg" * MERGEFORMAT \d [image: image158]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_159.jpg" * MERGEFORMAT \d [image: image159]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_160.jpg" * MERGEFORMAT \d [image: image160]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_161.jpg" * MERGEFORMAT \d [image: image161]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_162.jpg" * MERGEFORMAT \d [image: image162]
Several characteristics differentiate relations from ordinary tables or files. The first is that tuples in a relation are not ordered. The second involves the ordering of attributes in a relation schema and the corresponding ordering of values within a tuple. We gave an alternative definition of relation that does not require these two orderings, but we continued to use the first definition, which requires attributes and tuple values to be ordered, for convenience. We also discussed values in tuples and introduced null values to represent missing or unknown information.
We classified database constraints into inherent model-based constraints, schema-based constraints and application-based constraints. We also discussed the schema constraints pertaining to the relational model, starting with domain constraints, then key constraints, including the concepts of superkey, candidate key, and primary key, and the NOT NULL constraint on attributes. We defined relational databases and relational database schemas. Additional relational constraints include the entity integrity constraint, which prohibits primary key attributes from being null. We described the interrelation referential integrity constraint, which is used to maintain consistency of references among tuples from different relations. We supplemented the discussion of the fundamentals by a flavor of the practical aspects of database design and implementation.
The modification operations on the relational model are Insert, Delete, and Update. Each operation may violate certain types of constraints. These operations were discussed in Section 5.3. Whenever an operation is applied, the database state after the operation is executed must be checked to ensure that no constraints have been violated. We briefly discussed how one may handle such violations if they occur. We also provided a practical insight on how these basic operations are handled in industry-strength databases.
Review Questions
1. Define the following terms: domain, attribute, n-tuple, relation schema, relation state, degree of a relation, relational database schema, relational database state.
2. Why are tuples in a relation not ordered?
3. Why are duplicate tuples not allowed in a relation?
4. What is the difference between a key and a superkey?
5. Why do we designate one of the candidate keys of a relation to be the primary key?
6. Discuss the characteristics of relations that make them different from ordinary tables and files.
7. Discuss the various situations that lead to the occurrence of null values in relations.
8. Discuss the entity integrity and referential integrity constraints. Why is each considered important? How can each be violated?
9. Define foreign key. What is this concept used for?
10. Define primary key. What is this concept used for?
11. How do entities and relationships in an ER or EER model translate in a relationship model? How is this translation similar and how is this different?

12. What is the difference between a domain constraint and a key constraint?

13. What are the choices available to you when a key constraint is violated based on a DELETE or an UPDATE?
Exercises
5.10. Suppose that each of the following update operations is applied directly to the database state shown in Figure 5.6. Discuss all integrity constraints violated by each operation, if any, and the different ways of enforcing these constraints.
a. Insert <‘Robert’, “F’, ‘Scott’, ‘943775543’, ‘1952-06-21’, ‘2365 Newcastle Rd, Bellaire, TX’, M, 58000, ‘888665555’, 1> into EMPLOYEE.
b. Insert into <‘Online Banking System’, 4, ‘Bellaire’, 2> into PROJECT.

[Note to the eds: the formatting on the remaining question got scrambled and I am leaving this question without changes right now since it was fine orginally .]

[image: image163]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_164.jpg" * MERGEFORMAT \d [image: image164]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_165.jpg" * MERGEFORMAT \d [image: image165]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_166.jpg" * MERGEFORMAT \d [image: image166]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_167.jpg" * MERGEFORMAT \d [image: image167]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_168.jpg" * MERGEFORMAT \d [image: image168]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_169.jpg" * MERGEFORMAT \d [image: image169]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_170.jpg" * MERGEFORMAT \d [image: image170]
	
	Exercises
	|
	145

	c.
	Insert into DEPARTMENT.
	
	
	

	d.
	Insert into WORKS_ON.
	
	
	

	e.
	Insert SPOUSE’> into DEPENDENT.
	
	
	

	f.
	Delete the WORKS_ON tuples with ESSN = ‘333445555’.
	
	
	

	g.
	Delete the EMPLOYEE tuple with SSN = ‘987654321’.
	
	
	

h.
Delete the PROJECT tuple with PNAME = ‘RoboBases’.
i.
Modify the MGRSSN and MGRSTARTDATE of the DEPARTMENT tuple with DNUMBER = 5 to ‘123456789’ and ‘1999-10-01’, respectively.
j.
Modify the SUPERSSN attribute of the EMPLOYEE tuple with SSN = ‘999887777’ to ‘943775543’.
k.
Modify the HOURS attribute of the WORKS_ON tuple with ESSN = ‘999887777’ and PNO = 10 to ‘5.0’.
5.11. Consider the AIRLINE relational database schema shown in Figure 5.8, which describes a database for airline flight information. Each FLIGHT is identified by a flight NUMBER, and consists of one or more FLIGHT_LEGS with LEG_NUMBERs 1, 2, 3, and so on. Each leg has scheduled arrival and departure times and airports and has many LEG_INSTANCES—one for each DATE on which the flight travels. FARES are kept for each flight. For each leg instance, SEAT_RESERVATIONS are kept, as are the AIRPLANE used on the leg and the actual arrival and departure times and airports. An AIRPLANE is identified by an AIRPLANE_ID and is of a particular AIRPLANE_TYPE. CAN_LAND relates AIRPLANE_TYPEs to the AIRPORTs in which they can land. An AIRPORT is identified by an AIRPORT_CODE. Consider an update for the AIRLINE database to enter a reservation on a particular flight or flight leg on a given date.
a.
Give the operations for this update.
b.
What types of constraints would you expect to check? How would you design your database to respond in case any of these constraints are violated?
c.
Which of these constraints are key, entity integrity, and referential integrity constraints, and which are not?
d.
Specify all the referential integrity constraints that hold on the schema shown in Figure 5.8.
1. Consider the relation CLASS(Course#, Univ_Section#, InstructorName, Semester, BuildingCode, Room#, TimePeriod, Weekdays, CreditHours). This represents classes taught in a university, with unique Univ_Section#. Identify what you think should be various candidate keys, and write in your own words the constraints under which each candidate key would be valid.
2. Consider the following six relations for an order-processing database application in a company: CUSTOMER(Cust#, Cname, City) ORDER(Order#, Odate, Cust#, Ord_Amt) ORDER_ITEM(Order#, Item#, Qty) ITEM(Item#, Unit_price)
SHIPMENT(Order#, Warehouse#, Ship_date) WAREHOUSE(Warehouse#, City)
[image: image171]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_172.jpg" * MERGEFORMAT \d [image: image172]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_173.jpg" * MERGEFORMAT \d [image: image173]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_174.jpg" * MERGEFORMAT \d [image: image174]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_175.jpg" * MERGEFORMAT \d [image: image175]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_176.jpg" * MERGEFORMAT \d [image: image176]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_177.jpg" * MERGEFORMAT \d [image: image177]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_178.jpg" * MERGEFORMAT \d [image: image178]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_179.jpg" * MERGEFORMAT \d [image: image179]
Here, Ord_Amt refers to total dollar amount of an order; Odate is the date the order was placed; Ship_date is the date an order is shipped from the warehouse. Assume that an order can be shipped from several warehouses. Specify the foreign keys for this schema, stating any assumptions you make.
5.14. Consider the following relations for a database that keeps track of business trips of
salespersons in a sales office: SALESPERSON(SSN, Name, Start_Year, Dept_No)
[image: image180]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_181.jpg" * MERGEFORMAT \d [image: image181]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_182.jpg" * MERGEFORMAT \d [image: image182]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_183.jpg" * MERGEFORMAT \d [image: image183]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_184.jpg" * MERGEFORMAT \d [image: image184]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_185.jpg" * MERGEFORMAT \d [image: image185]
Selected Bibliography | 147
TRIP(SSN, From_City, To_City, Departure_Date, Return_Date, Trip_ ID) EXPENSE(Trip_ID, Account#, Amount) Specify the foreign keys for this schema, stating any assumptions you make.
5.15. Consider the following relations for a database that keeps track of student enrollment in courses and the books adopted for each course:
STUDENT(SSN, Name, Major, Bdate)
COURSE(Course#, Cname, Dept)
ENROLL(SSN, Course#, Quarter, Grade)
BOOK_ADOPTION(Course#, Quarter, Book_ISBN)
TEXT(Book_ISBN, Book_Title, Publisher, Author)
Specify the foreign keys for this schema, stating any assumptions you make.
5.16. Consider the following relations for a database that keeps track of auto sales in a car dealership (Option refers to some optional equipment installed on an auto):
 CAR(Serial-No, Model, Manufacturer, Price)
OPTIONS(Serial-No, Option-Name, Price)
SALES(Salesperson-id, Serial-No, Date, Sale-price)
SALESPERSON(Salesperson-id, Name, Phone)

First, specify the foreign keys for this schema, stating any assumptions you make. Next, populate the relations with a few example tuples. Then give an example of an insertion in the SALES and SALESPERSON relations that violates the referential integrity constraints and of another insertion that does not.
5.17.
Convert the following expressions into SQL statements.

a. Insert <’Alicia’, ‘J’, ‘Zelaya’, ‘99988777’, ‘1960-04-05’, ‘6537 Windy Lane, Katy, TX’, F, 28000, ‘987654321’, 4> into EMPLOYEE.
b. Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, ‘677678989’, ‘1960-04-05’, ‘6537 Windswept, Katy, TX’, F, 28000, ‘987654321’, 7> into EMPLOYEE.

c. Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, ‘677678989’, ‘1960-04-05’, ‘6537 Windy Lane, Katy, TX’, F, 28000, null, 4> into EMPLOYEE.
5.18.
Run the SQL statements on the sample database UNIVERSITY. When a statement succeeds, report the resulting effect and if the statement fails, identify the reason it failed.
5.19.
Convert the following expressions into SQL statements.

a. Delete the WORKS_ON tuple with ESSN = ‘999887777’ and PNO = 10.
b. Delete the EMPLOYEE tuple with SSN = ‘999887777’.
c. Delete the EMPLOYEE tuple with SSN = ‘333445555’.
5.20.
Run the SQL statements on the sample database UNIVERSITY. When a statement succeeds, report the resulting effect and if the statement, fails identify the reason it failed.
5.21.
Give the DDL for constructing a new table BUDGET in the COMPANY database. Every budget has an amount that has been allocated to the department at the beginning of the year. This table also stores the current amount available as of a certain date.

5.22.
Give the DDL for constructing a new table HEALTHPLAN in the COMPANY database. There are several health plans available to an employee with the constraint that an employee’s dependents must have the same health plan as the employee. The health plan has a name of an insurance company along with a plan description.

Selected Bibliography
The relational model was introduced by Codd (1970) in a classic paper. Codd also introduced relational algebra and laid the theoretical foundations for the relational model in a series of papers (Codd 1971, 1972, 1972a, 1974). He was later given the Turing award, the highest honor of the ACM, for his work on the relational model. In a later paper, Codd (1979) discussed extending the relational model to incorporate more meta-data and semantics about the relations. He also proposed a three-valued logic to deal with uncertainty in relations and incorporating NULLs in the relational algebra. The resulting model is known as RM/T. Childs (1968) had earlier used set theory to model databases and later Codd (1990) published a book examining over 300 features of the relational data model and database systems.
Since Codd’s pioneering work, much research has been conducted on various aspects of the relational model. Todd (1976) describes an experimental DBMS called PRTV that directly implements the relational algebra operations. Schmidt and Swenson’s work (1975) introduces additional semantics into the relational model by classifying different types of relations. Chen’s (1976) entity-relationship model, which is discussed in Chapter 3, is a means to communicate the real-world semantics of a relational database at the conceptual level. Wiederhold and Elmasri’s work (1979) introduces various types of connections between relations to enhance its constraints. Extensions of the relational model are discussed in Chapter 24. Additional bibliographic notes for other aspects of the relational model and its languages, systems, extensions, and theory are given in Chapters 6 to 11, 15, 16, 17, and 22 to 25.
[image: image186]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_187.jpg" * MERGEFORMAT \d [image: image187]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_188.jpg" * MERGEFORMAT \d [image: image188]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_189.jpg" * MERGEFORMAT \d [image: image189]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_190.jpg" * MERGEFORMAT \d [image: image190]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_191.jpg" * MERGEFORMAT \d [image: image191]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_192.jpg" * MERGEFORMAT \d [image: image192]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_193.jpg" * MERGEFORMAT \d [image: image193]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_194.jpg" * MERGEFORMAT \d [image: image194]

INCLUDEPICTURE "../../../../Application%20Data/Microsoft/Word/images/0123-01482_img_195.jpg" * MERGEFORMAT \d [image: image195]
