
Creating Tables, Defining
Constraints
Rose-Hulman Institute of Technology
Curt Clifton

Outline
 Data Types
 Creating and Altering Tables
 Constraints

 Primary and Foreign Key Constraints
 Row and Tuple Checks

 Generating Column Values
 Generating Scripts

Data Types

System-supplied Data Types
 Numeric

 Integer
 Exact numeric
 Approximate numeric
 Monetary

 Date and Time
 Character and Unicode Character
 Binary
 Other

Slide based on MS-CreatingTables.ppt

User-defined Data Types
 Simple, self-documenting short-hand
 Creating:

 CREATE TYPE ssn
FROM varchar(11) NOT NULL

 Dropping:
 DROP TYPE ssn

 Advanced use: C# objects

Guidelines for Data Types
 If Column Length Varies, Use a Variable

Data Type
 Use tinyint Appropriately
 For Numeric Data Types, Commonly Use

decimal
 Use money for Currency
 Do Not Use float or real as Primary Keys

Slide based on MS-CreatingTables.ppt

Creating and Altering Tables

Creating Tables
 Need:

 Table name
 Column names and types

 Basic Example:
 CREATE TABLE Soda(

name CHAR(20),
manf CHAR(20)

);

Header Fixed Data NB VB Variable Data

Null
Block

Variable
Block

4 bytes

Data

How SQL Server Organizes Data

Slide based on MS-CreatingTables.ppt

A Single Data Row

Data row
TextText

PointerPointer

Root Structure

Intermediate Node Intermediate Node

block 1 block 2 block 1 block 2

Big @$$ Data

Slide based on MS-CreatingTables.ppt

Altering Tables
 Adding columns:

 ALTER TABLE Soda
ADD msrp float;

 Changing columns:
 ALTER TABLE Soda

ALTER COLUMN msrp money;
 Dropping columns:

 ALTER TABLE Soda
DROP COLUMN manf;

Dropping Tables
 DROP TABLE Soda;

Constraints
 A requirement on data elements or the

relationship between data elements that the
DBMS is required to enforce

Kinds of Constraints
 Primary keys (entity integrity)
 Foreign keys (referential integrity)
 Attribute-based

 Restrictions on the value of a single attribute
 Row-based

 Restrictions on the value of one attribute in row based on
value of other attributes

 Assertions
 Later…

Specifying Primary Key Constraint
 Examples:

 CREATE TABLE Soda (
name CHAR(20) PRIMARY KEY,
manf CHAR(20)

);
 CREATE TABLE Likes(

customer CHAR(30),
soda CHAR(20),
PRIMARY KEY(customer, soda)

);

Foreign Key Constraints
 Consider foreign keys in Sells relation…

Specifying Foreign Key Constraints
 CREATE TABLE Sells(

rest CHAR(20) REFERENCES Rest(name),
soda CHAR(20) REFERENCES Soda(name),
price money); or

 CREATE TABLE Sells(
rest CHAR(20),
soda CHAR(20),
price money,
FOREIGN KEY(rest) REFERENCES Rest(name),
FOREIGN KEY(soda) REFERENCES Soda(name));

Foreign Key Restriction
 Referenced attributes must be either:

 PRIMARY KEY or else
 UNIQUE (another element constraint)

Enforcing Foreign-Key Constraints
 What changes to the SodaBase data might

break referential integrity?

Change to Table with Foreign Key
 How should we handle an insert or update to

the table with the foreign key that would
break referential integrity?

Change to Table with Primary Key
 How should we handle an update or delete to

the table with the primary key that would
break referential integrity?

3 Solutions to Primary Key Change
 Reject!

 This is the default
 Cascade

 Make same change to foreign key
 Set null

 Set foreign key to null

Example: Default Policy
 Suppose ‘Coke’ is referenced by Sells…

 We attempt to delete ‘Coke’ from Soda table
 Rejected!

 We attempt to update ‘Coke’ row, changing
‘Coke’ to ‘Coca-Cola’
 Rejected!

 Forces Sells table to be changed first

Example: Cascade Policy
 Suppose we delete Coke row from Soda

 Then automatically delete all rows for Coke from
Sells

 Suppose we update the Coke row, changing
‘Coke’ to ‘Coca-Cola’
 Then automatically change all rows in Sells

referencing Coke to reference Coca-Cola instead

Example: “Set Null” Policy
 Suppose we delete Coke row from Soda

 Then automatically change all rows referencing
Coke in Sells to have nulls

 Suppose we update the Coke row, changing
‘Coke’ to ‘Coca-Cola’
 Then automatically change all rows in Sells

referencing Coke to have nulls

Choosing a Policy
 Can independently choose policy…

 For update
 For delete

 What policy should we use for…
 Deleting soda? Why?
 Updating soda name? Why?

Specifying a Policy
 Follow foreign-key declaration with:

 [ON UPDATE {SET NULL | CASCADE}]
[ON DELETE {SET NULL | CASCADE}]

 Omitted clause means default policy

Example
 CREATE TABLE Sells(

rest CHAR(20) REFERENCES Rest(name)
ON DELETE CASCADE
ON UPDATE CASCADE,

soda CHAR(20) REFERENCES Soda(name)
ON DELETE SET NULL
ON UPDATE CASCADE,

price money
);

Attribute-based Checks
 Can constrain single attribute values
 Syntax:

 CHECK(condition)
 Condition can use:

 Name of checked attribute
 Subqueries

 Checked only upon insertion, update

Example
 CREATE TABLE Customer(

name CHAR(20) PRIMARY KEY,
addr CHAR(50),
phone CHAR(8)
 CHECK (phone LIKE

'[0-9][0-9][0-9]-[0-9][0-9][0-9][0-9]')
);

Same or Different?
 CREATE TABLE Sells (

rest CHAR(20),

soda CHAR(20)
 REFERENCES

Soda(name),

price money
);

 CREATE TABLE Sells (
rest CHAR(20),

soda CHAR(20)
 CHECK (
 soda IS NULL
 OR soda IN
 (SELECT name

FROM Soda)),

price money
);

Row-Based Checks
 Can also put CHECK at end of table

declaration
 Can reference any attribute in table
 CHECK for each tuple…

 Inserted or
 Updated

Example
 Only Joe’s can sell Coke for more than $2
 CREATE TABLE Sells (

rest CHAR(20),
soda CHAR(20),
price money,
CHECK(condition)

);
 What should condition be?

Generating Column Values
 Table identity columns
 Globally unique identifiers

Table Identity Column
 Constraint on single column of table
 Column must be integer or decimal data type
 Syntax:

 IDENTITY [(seed, increment)]
 Example:

 CREATE TABLE Users(
name CHAR(20),
id int IDENTITY (0, 5));

Getting Last Identity Value
 Use @@identity in scripts
 INSERT INTO Users(name)

VALUE ('Molly');

SELECT 'Last identity used: ' +
CONVERT(char, @@identity)

AS Answer;

GUIDs
 Globally unique

identifiers
 Generated with newid()

function
 Used with DEFAULT

constraint

Example
 CREATE TABLE Household(

HouseholdID uniqueidentifier
NOT NULL DEFAULT newid(),

…
);

Generating Scripts
 Can generate scripts from objects

 Right click database
 Tasks → Generate Scripts…

 Useful for:
 Storing schemas in version control system
 Creating test environment
 Training

Recommended Practices
 Specify Appropriate Data Types and Data

Type Sizes (duh!)
 Always Specify Column Characteristics in

CREATE TABLE
 Generate Scripts to Recreate Database Objects

Slide based on MS-CreatingTables.ppt

