
CSSE333 Introduction to Databases – Lab Assignment

Lab 7: Stored Procedures
Pair Programming
You may choose to work with a partner on this lab. This lab is the most challenging thus
far, so we are encouraging (but not requiring) pair programming.

Objective
The goal of this lab is to introduce you to stored procedures. You will be creating a few
stored procedures that will allow users to create, update and delete order details in the
Northwind database. These stored procedures will enforce some simple business logic.

Resources
The example stored procedures get_Order Details_1 and update_Order Details_1 found
in the file SprocExamples.txt (in the Lab Instructions folder on Angel) provide
examples of coding conventions, validating parameters, raising errors, and appropriate
comments.

Turn in Instructions
Place your .sql files for creating your stored procedures in a .rar (or .zip). Also include a
text file named who.txt listing you and your partner’s names. Place your archive in
the Lab 7 drop box.

CSSE333 Introduction to Databases – Lab Assignment

Assignment Details
1) In your copy of Northwind, you will first create basic frameworks for the stored

procedures. You can do this either by using the Create Procedure Basic Template
in the Template Explorer(View> Template Explorer) within Server Management
Studio or by using the following queries:

CREATE PROCEDURE [insert_Order Details_1]
 (@OrderID_1 [int],
 @ProductID_2 [int],
 @UnitPrice_3 [money] = NULL,
 @Quantity_4 [smallint],
 @Discount_5 [real] = 0)
AS
INSERT INTO [Northwind].[dbo].[Order Details]
 ([OrderID], [ProductID], [UnitPrice], [Quantity], [Discount])
VALUES (@OrderID_1, @ProductID_2, @UnitPrice_3, @Quantity_4, @Discount_5)
GO
CREATE PROCEDURE [update_Order Details_1]
 (@OrderID_1 [int],
 @ProductID_2 [int],
 @NewQuantity_4 [smallint]= NULL,
 @NewUnitPrice_3 [money] = NULL,
 @NewDiscount_5 [real] = NULL)
AS
-- Update Order Detail values
UPDATE [Northwind].[dbo].[Order Details]
SET [Quantity] = @NewQuantity_4, [UnitPrice] = @NewUnitPrice_3, [Discount]
= @NewDiscount_5
WHERE ([OrderID] = @OrderID_1 AND [ProductID] = @ProductID_2)
GO
ALTER PROCEDURE [delete_Order Details_1]
 (@OrderID_1 [int],
 @ProductID_2 [int])
AS
--Delete the row with the given OrderID and ProductID in the OrderDetails
table
DELETE [Northwind].[dbo].[Order Details] WHERE ([OrderID] = @OrderID_1
AND [ProductID]= @ProductID_2)
GO

2) The stored procedure [delete_Order Details_1] simply takes an order ID and

product ID and deletes the corresponding record from the Order Details table.
When an item is deleted from Order Details, the company wants to adjust the
quantity in stock for the product to reflect that the units weren’t sold after all.
Your first task is to refine the stored procedure to account for this.
You should modify the stored procedure. One way to do so, is to expand your
copy of Northwind, then expand “Programmability” and “Stored Procedure”.
Right click on “delete_Order Details_1” and select “Modify”.

a. Your procedure must be well documented. It should have comments for

CSSE333 Introduction to Databases – Lab Assignment

major subsections. It should also include a header block describing the
purpose of the procedure, giving an example usage, your name(s), and the
current date. See the stored procedures listed in Resources above for
examples.

b. Your procedure should validate parameters. It should return an error code
(a non-zero result) and print a message if the parameters are invalid.
Parameters are valid if the given order ID appears in the table and if the
given product ID appears in that order.

c. Your procedure should return 0 if the delete is successful, otherwise it
should return an error code and print a message.

3) The stored procedure [update_Order Details_1] wizard takes all the data for a
single row in the Order Details table, plus an additional order ID and product ID
corresponding to the primary key. The stored procedure finds the row with the
matching primary key and updates that row’s values to match those passed to the
procedure.
Your task is to refine the stored procedure to meet the following additional
requirements:

a. The OrderID and ProductID of a row cannot be changed. That is, the
procedure should take just one of each argument and should use those
arguments to find the row to be changed. Only the Quantity, UnitPrice,
and Discount of that row can be changed. (If an end user wanted to
change the OrderID or ProductID, she would have to delete the row and
add a new row.)

b. The Quantity, UnitPrice and Discount parameters should be optional. One
way to do this is to set default “magic” values for the parameters in the
procedure declaration, like @UnitPrice [money] = 0. Then you can
check whether the actual value of @UnitPrice matches the default,
indicating that the argument was omitted. You should choose default
values that won’t actually be used. (Consider, can you really do that?)

c. When updating the record, do not change Quantity, UnitPrice and
Discount values unless new values were provided.

d. Adjust the quantity in stock for the product by adding the old quantity
back to inventory and subtracting the new quantity from inventory.

e. However, if there is not enough of a product in stock, then abort the stored
procedure without making any changes to the database.

f. Print a message if the quantity in stock of a product drops below its
Reorder Level as a result of the update.

In addition to satisfying the functional requirements above, make sure that your
stored procedure is well documented, validates parameters, and returns
appropriate result codes as in the previous task.

4) The stored procedure [insert_Order Details_1] takes all the data for a single row
in the Order Details table and adds a row with those values to the table.

CSSE333 Introduction to Databases – Lab Assignment

Your task is to refine the stored procedure to meet the following additional
requirements:

a. Make the UnitPrice and Discount parameters optional, using the technique
discussed in the previous task.

b. If no UnitPrice is given, then use the UnitPrice value from the product
table.

c. If no Discount is given, then use a discount of 0.
d. Adjust the quantity in stock for the product by subtracting the quantity

sold from inventory.
e. However, if there is not enough of a product in stock, then abort the stored

procedure without making any changes to the database.
f. Print a message if the quantity in stock of a product drops below its

Reorder Level as a result of the update.
In addition to satisfying the functional requirements above, make sure that your
stored procedure is well documented, validates parameters, and returns
appropriate result codes as in the previous tasks.

5) Complete the anonymous feedback for Lab 7 on Angel.

Turn in Instructions

Place your .sql files for creating your stored procedures in a .rar (or .zip). Also include a
text file named who.txt listing you and your partner’s names. Place your archive in
the Lab 7 drop box.

Revision History

Jan 14, 2006: Minor editing by Curt Clifton
Jan 10, 2006: Revised for SQL Server 2005 by Eliza Brock
Jan 11, 2006: Revised by Curt Clifton and Steve Chenoweth
Jan 10, 2006: Written by Will Mathies

