
CSSE333 Introduction to Databases – Lab Assignment

Lab 4: Tables and Constraints

Objective

You have had a brief introduction to tables and how to create them, but we want to have a
more in-depth look at what goes into creating a table, making good choices about data
types, and enforcing constraints to maintain the integrity of your data. In this lab you will
create a new table that contains user-defined data types, as well as different sorts of
relationships and constraints.

Turn-in Instructions

At the end of the lab you will create scripts to reproduce

(1) the Login table,
(2) the new UserProfiles table, and
(3) your new user-defined data types.

You’ll do this by right clicking on the object, going to “Script object As…” and selecting
“CREATE TO”. You’ll use the naming convention <name of object>_<your
username>.sql.

Assignment Details

Task 1
SQL Server 2005 has the following data types available:
Common Data

Type
SQL Server system
supplied data types Number of bytes

Integer

int
bigint
smallint
tinyint
bit (0 or 1)

4
8
2
1

1 bit

Exact Numeric
decimal [(p[,s])]
numeric [(p[,s])] digits before
and after the decimal

2 – 17

Approximate
numeric

float [(n)]
real

8
4

Monetary money
smallmoney

8
4

Date and time datetime
smalldatetime

8
4

Character
char[(n)]
varchar[(n)]
text, varchar(max)

0-8000
0-8000
0-2 GB

CSSE333 Introduction to Databases – Lab Assignment

Unicode
Character

nchar[(n)]
nvarchar[(n)]
ntext, nvarchar(max)

0-8000 (up to 4000 characters)
0-8000 (up to 4000 characters)

0-2 GB

Binary Binary[(n)]
Varbinary[(n)] 0-8000

Image image 0-2 GB
Global
Identifier

uniqueidentifier 16

Special

Cusor
Timestamp
Sysname
Table
Sql_variant

0-8
8

256
256

0-8016
In addition to all these built in types, SQL Server also allows you to create your own
unique data types. A user-defined datatype is defined for a specific database. If the new
type is defined in the ‘master’ database, it is automatically included in all databases that
are subsequently created. The definition of these datatypes are stored in the ‘systypes’
table. User-defined data types are useful when there is a common data type element
amongst many tables in the database.

You have decided that you need more information stored about users than what the Login
table (which you created in lab 1 in your copy of the Northwind database) currently
specifies. One additional thing that you need to store is users’ first and last names.
Since these are such common elements in a database, you’ll want to create a datatype
for first names and one for last names.

Open SQL Server Management Studio and select New Query. You will be using
a command called ‘CREATE TYPE’ which creates user-defined data types (see
example below). Name your user defined data-types in some appropriate and
descriptive manner. Choose an appropriate system-defined data type. (There are
quite a few design considerations to keep in mind: variable or fixed length data,
maximum possible length for a name, disk space, whether or not null is a valid
entry.) Don’t forget to include an appropriate USE database command!

Example CREATE TYPE command:

CREATE TYPE UID
FROM varchar(10) NOT NULL;

Refer to the Books Online documentation in the Help menu for an explanation of the
parameters for CREATE TYPE.

When done with the task, in the Object Explorer look under Programmability Types to
check your work.

CSSE333 Introduction to Databases – Lab Assignment

Task 2
In your Login table, you defined “LoginID” as a PRIMARY KEY. This will be used as a
lookup column in a new table containing additional user data, “linking” the tables
together with a PRIMARY KEY / FOREIGN KEY relationship.

Go to your original copy of Northwind. This should have your “Login” table in it.

a. Create a new table called “UserProfiles”.
b. Create a FOREIGN KEY column with an appropriate name. To make

relationships between tables, click on the button which allows you to
“manage relationships”. This dialog allows you to add PRIMARY KEY /
FOREIGN KEY relationships by pushing the “Add” button. Your
primary key is in your Login table, and your foreign key is what you just
created in the UserProfiles table. Data type and properties must match
between keys. Be sure to give your relationship an appropriate name.
Also, set appropriate Delete and Update policies; see the “INSERT and
UPDATE” section of the dialog.

c. Create columns for the first name and last names (using your user-defined
data types) and name them appropriately.

d. Because you want to know about the age and location of the people
accessing your system, create columns to store their birthday and the state
where they live. Choose appropriate names and data types.

Task 3
SQL Server allows you to put constraints on your data to verify its integrity. CHECK
constraints can be added using either a query or regular management view. The
Transact-SQL to add a CHECK constraint looks like this:
 USE <database name>
 ALTER TABLE dbo.<table name>
 ADD CONSTRAINT <constraint name>
 CHECK (<conditional statement>)

Among other things, conditional statements can use =, >, <, >=, or <= and can be
connected using the AND and OR keywords.

To add a CHECK in management view, click on the table where you want to add the
constraint, right click and select “modify”. In the table design, click “manage check
constraints”, and then click the “Add” button in the resulting “Check Constraints” dialog.

Add a constraint to the column storing the birthday of the user. Specify that it must
be after 01-01-1900 and before today’s date, which can be generated with a pre-
defined system function. (Hint: Look up ‘current date and time’ in the Online Books
index.)

After adding the constraint, test it by adding data to the UserProfiles table. (You learned
how to do this in Lab 1.)

CSSE333 Introduction to Databases – Lab Assignment

Task 4
SQL Server also allows you to specify properties of columns. It occurs to you that if
usernames are not unique, you will have some problems with logging into your system.

Open a new query. Use an ALTER TABLE query to specify that the username
column in the Login table must be unique. Example:

USE Northwind -- Substitute the name of your copy of Northwind here
ALTER TABLE dbo.Suppliers
ADD
CONSTRAINT U_CompanyName
 UNIQUE NONCLUSTERED (CompanyName)

Look in the Object Explorer for this new constraint. (Hint: Try looking under “Keys”.)

Task 5

Assume you only want to have people from certain states allowed to access your
database. Create a check on the column where you stored which state they were
from. The check should only allow this column to contain the values (‘IN’, ‘IA’,
‘IL’,‘MO’) or any combination of your favorite states. (Hint: Search help for the
keyword “IN”.)

Edit the data in UserProfiles to test your new check.

Turn-in Instructions

Open Management Studios. Create a scripts to reproduce

(1) the Login table,
(2) the UserProfiles table, and
(3) Your user-defined data types

Do this by right clicking on the object, going to “Script object As…” and selecting
“CREATE TO” then “File…”. Use the naming convention <name of
object>_<your username>.sql. Review the scripts and verify that the generated
code satisfies the requirements of the lab.

Create a .zip or .rar archive of these .sql files. Submit the archive to the drop box on
ANGEL.

Revision History

Dec. 13, 2006: Cleaned up by Curt Clifton and Eliza Brock
Dec. 7, 2006: Updated for SQL Server 2005 by Andrew Foltz
Jan. 12, 2006: Clarified turn-in instructions, Curt Clifton.
Dec. 12, 2005 Updated by Curt Clifton and Steve Chenoweth

CSSE333 Introduction to Databases – Lab Assignment

Dec. 15, 2004: Reviewed and edited by Andy Cooper.
Dec. 13, 2004: Created by Jennifer Ford.

