CSSE 304 Day 4

Tail-recursive factorial
Anonymous procedures
box-and-pointer diagrams
map and apply
More recursion practice
(preview of next time? Ilambda and let)

Go for Simple!

= Some students wrote

e (define first (lambda (x) (car x)))
= Simpler:

e (define first car)

12/6/2019

fact example 1

> (define fact
(lambda (n)
(cond
[(zero? n) 1]

[else (* n (fact (- n 1)))])))

> (fact 4)

24

> (fact -2)
C-c C-c

break>q

Escape from infinite loop by
epeatedly pressing ctrl-c

> (trace fact fact2 fact-acc)
(fact fact2 fact-acc)
> (fact 4)
|(fact 4)
| (fact 3)
| |(fact 2)
| | (fact 1)
|(fact 0)

Fact example 2

> (define fact2
(lambda (n)
QRCIHGEEIAYY))
(not (integer? n)))
"error"
(fact-acc n 1))))

> (define fact-acc
(lambda (n acc)
(if (zero? n)
acc
(fact-acc (- n 1)

(* nacc)))))

> (trace fact fact2 fact-acc)
(fact fact2 fact-acc)
> (fact2 4)

|(fact2 4)

|(fact-acc 4 1)
|(fact-acc 3 4)
|(fact-acc 2 12)
|(fact-acc 1 24)
|(fact-acc 0 24)

|24

24

12/6/2019

12/6/2019

Make-adder IR

(lambda (n)
example anbda (1)

Make-adder [SRENIA

(lambda (n)
example anbda (1)

> (define add5 (make-adder 5))
> add5

#<procedure>

> (add5 8)

13

12/6/2019

Make-adder [P

(lambda (n)
example lanbda ()

> (define add5 (make-adder 5))
> add5

#<procedure>

> (add5 8)

13

> ((make-adder 5) 8)

13

Make-adder [SRENIA

(lambda (n)
example anbda (1)

> (define add5 (make-adder 5))
> add5
#<procedure>
> (add5 8)
13
> ((make-adder 5) 8)
13
> (((lambda (m)

(lambda (n)

(+ m n)))
5)
8)

13

Cond

s Similar to if-elif-...-else in other
languages.

(define member?
QEILENERE)
(cond
[(null? 1s) #f]
[(eq? (car 1ls) a) #t]
[else (member? a (cdr 1s))])
))

This example is in the on-line slides, but we won't do it in
class, since we did a slightly simpler version in class on day 2

: cond is like 1f ... else If ... else

(define largest-in-list
(lambda (L)
(cond [(null? L)

(errorf "largest-in-list
"empty list has ~s "
"no largest element'™)]

[(null? (cdr L)) (car L)]

[else (max (car L)

(largest-in-list

(cdr L)1)

; What®"s the efficiency issue with this?

12/6/2019

12/6/2019

= Answer: We have to do two null? tests for every
recursive call.

; more efficient:
(define largest-in-list
(lambda (1s)
(if (null? Is)
(errorf "largest-in-list
"list cannot be empty'™)
(largest-in-non-empty 1s))))
Using max is
simpler, but
this is how we
could do it if
we did not
have or did not
(car 1s) remember

(let ([largest-in-cdr max.
(largest-in-non-empty (cdr Is))])
(it (> (car 1s) largest-in-cdr)
(car 1s)
largest-in-cdr)))))

12/6/2019

; Now define another version with an accumulator
(that is also more robust because it checks for non-numbers)

(define largest-in-list
(lambda (Is)
Gaf (null? 1s)
(errorf "largest-in-list "list cannot be empty')
(largest-in-list-acc (cdr Is) (car 1s)))))

(define largest-in-list-acc
(lambda (Is largest-so-far)

(cond [(null? 1Is) largest-so-far]
[(not (number? (car 1s)))
(errorf "“largest-in-list

"everything in the list must be a number™)]
[(> (car Is) largest-so-far)
(largest-in-list-acc (cdr Is) (car Is))]
[else (largest-in-list-acc (cdr Is)
largest-so-far)])))

Count reflexive pairs

= A relation is a set of ordered pairs; the
set of all first elements is the domain.
The set of all second elements is the
range.

= We represent a relation by a list of 2-
lists. A 2-list is a list whose length is 2.

» A reflexive pair is a 2-list whose first
and last elements are the same.

= Count-reflexive-pairs (work it out live)

Probably won’t do this in class, but good practice for you

12/6/2019

cons vs. list vs. append

= box-and-pointer diagrams
n (define x '(1 2 3))

n (define y '(4 5))

n (define z '(6 7))

s (cons x y)

(list x y)

(append x y z)

apply
What if a procedure expects a number of
individual arguments, but we actually
have the things that should be its
arguments |n d ||St7 More on map and

We'd like to write apply soon

(define list-sum (lambda (L) (+ L)))
but + doesn’t expect a list of arguments.
So we write
define list-sum (lambda (L) (apply + L)))

Application of apply is like consing apply’s

first argument onto the list that is its
second argument, and then evaluating.

12/6/2019

Recursive procedures

= (make-list n obj) returns a list of n "copies"
of obj. [If obj is a 'by-reference" object, such
as a list, it makes n copies of the reference].
= (firsts ‘((a b) (cd) (ef)))
= (ace)

= Do it "from scratch".

(map-unary f Is) applies f to each element of
Is, and returns the list of the results.

= (map-unary (lambda (x) (+ x 2))
ERE))) >

map-unary is a
special case of built-in
procedure map.

CRA

How could we use map to write firsts?

More recursive procedures
positives
o (positives '(1-3602-17))2 (1627)
e Write and use filter-in
sorted?
o (sorted? <="'(3426)) > #f
e (sorted? >='4321)) & #t

= We'll be lucky if we get this far, but,
ever the optimist, I included more
slides. They are probably a preview of
something we’ll do next time.

12/6/2019

lambda with an improper list

of arguments

= Used when procedure expects a variable
number of arguments.

e (lambda x body)

= when the resulting procedure is applied, all of
the arguments are placed into a list and bound
to x.
Then body is evaluated.

e (lambda (x y . z) body)
e when the resulting procedure is applied, the
first two arguments are bound to x and vy,

e any remaining arguments are placed into a
list and bound to z. Then body is evalugl'led.

Procedures with an unknown
number of arguments

> {define count-my-args
{lambda L
(length L))
= locount-my-args 1 1 2 2 3 3 04 5
=

> (define two-fixed-args—and-more

(lambda (x y . zZ)

(+ = ¥y (apply + z})))

> (two—fixed-args—and-more 2 3 4 5)
14
> (two—fized-args—and-more 2)
Exception: incorrect number of arguments to #<p
rocedure>

10

lambda the magnificent
review and summary

= Lambda is the “function-maker”. define is the
“variable-assigner”. There is no special connection
between the two:
> {((lambda (x y) {(+ x {* 2 y})) 3 5)
13

e We can store procedures in a data structure
without naming them:

> idefine pz {(list (lambda {x]
K [(lambda (y)

> p2

#<procedure> #<procedure>)
{{car p2y 4)

{
>
g
>

lambda the magnificent

= We can pass a procedure as an
argument to another procedure:

> (1list car cdr)
(#<procedure car> #<procedure cdr>)

12/6/2019

11

12/6/2019

lambda the magnificent

= We create a new procedure and
return it.

(define make-adder ; a procedure that takes a numeric argument
{Lambda (n) ; and creates and returns a new procedure.
{(Lambda (m)

)

)

{(+ m n}
> (make-adder 3
#<procedure>
(define add3 (make-adder 3))
(add3 4)

»

{ (make-adder 3) 4)

= Scheme is not the only language
with first-class procedures ...

A first-class data object

= Can be stored in a data structure
= Can be passed as an argument to a procedure
= Can be returned by a procedure

= In Scheme, procedures are first-class

12

Translation of let

(define L (4 3 2))
(let ([first (car L)]
[second (cadr L)])
(list (+ first second) (- first second)))

The let expression is equivalent to
((lambda (first second)
(list (+ first second) (- first second)))
(car L)
(cadr L))

let and cond are both
examples of “syntactic
sugar”, as are and and or.

more on let

(define xxx
(lambda (L)
(let (Ja (car L)]
[b (cdr L)]
[c (car b)D)
(list c a))))

What goes wrong if we evaluate (xxx "(1 2

3))?

Translate the let expression to an application
of lambda

12/6/2019

let*

What we really wanted was
(define xxx
(lambda (L)
(let* (Ja (car L)]
[b (cdr L)]
[c (car b)D)
(list c a))))

which translates into
(define xxx
(lambda (L)

(let (Ja (car LD
(let (b (cdr LD
(let (J[c (car b)]D)
(list c a))))))

12/6/2019

14

