
12/6/2019

1

CSSE 304 Day 4

Tail-recursive factorial
Anonymous procedures

box-and-pointer diagrams
map and apply

More recursion practice
(preview of next time? lambda and let)

Go for Simple!

 Some students wrote
• (define first (lambda (x) (car x)))

 Simpler:
• (define first car)

12/6/2019

2

fact example 1

> (define fact
(lambda (n)

(cond
[(zero? n) 1]
[else (* n (fact (- n 1)))])))

> (fact 4)
24
> (fact -2)

C-c C-c
break>q

> (trace fact fact2 fact-acc)
(fact fact2 fact-acc)
> (fact 4)
|(fact 4)
| (fact 3)
| |(fact 2)
| | (fact 1)
| | |(fact 0)
| | |1
| | 1
| |2
| 6
|24
24

Escape from infinite loop by
repeatedly pressing ctrl-c

Fact example 2
> (define fact2

(lambda (n)
(if (or (negative? n)

(not (integer? n)))
"error"
(fact-acc n 1))))

> (define fact-acc
(lambda (n acc)

(if (zero? n)
acc
(fact-acc (- n 1)

(* n acc)))))

> (trace fact fact2 fact-acc)
(fact fact2 fact-acc)
> (fact2 4)
|(fact2 4)
|(fact-acc 4 1)
|(fact-acc 3 4)
|(fact-acc 2 12)
|(fact-acc 1 24)
|(fact-acc 0 24)
|24
24

12/6/2019

3

Make-adder
example

> (define make-adder
(lambda (m)
(lambda (n)
(+ m n))))

>

Make-adder
example

> (define make-adder
(lambda (m)
(lambda (n)
(+ m n))))

> (define add5 (make-adder 5))
> add5
#<procedure>
> (add5 8)
13

12/6/2019

4

Make-adder
example

> (define make-adder
(lambda (m)
(lambda (n)
(+ m n))))

> (define add5 (make-adder 5))
> add5
#<procedure>
> (add5 8)
13
> ((make-adder 5) 8)
13

Make-adder
example

> (define make-adder
(lambda (m)
(lambda (n)
(+ m n))))

> (define add5 (make-adder 5))
> add5
#<procedure>
> (add5 8)
13
> ((make-adder 5) 8)
13
> (((lambda (m)

(lambda (n)
(+ m n)))

5)
8)

13

12/6/2019

5

Cond

 Similar to if-elif-…-else in other
languages.

(define member?

(lambda (a ls)

(cond

[(null? ls) #f]

[(eq? (car ls) a) #t]

[else (member? a (cdr ls))])

))

This example is in the on-line slides, but we won’t do it in
class, since we did a slightly simpler version in class on day 2

; cond is like if ... else if ... else

(define largest-in-list
(lambda (L)
(cond [(null? L)

(errorf 'largest-in-list
"empty list has ~s "
" no largest element")]

[(null? (cdr L)) (car L)]
[else (max (car L)

(largest-in-list
(cdr L)))])))

; What's the efficiency issue with this?

12/6/2019

6

 Answer: We have to do two null? tests for every
recursive call.

; more efficient:
(define largest-in-list

(lambda (ls)
(if (null? ls)
(errorf 'largest-in-list

"list cannot be empty")
(largest-in-non-empty ls))))

(define largest-in-non-empty
(lambda (ls)

(if (null? (cdr ls))
(car ls)
(let ([largest-in-cdr

(largest-in-non-empty (cdr ls))])
(if (> (car ls) largest-in-cdr)

(car ls)
largest-in-cdr)))))

Using max is
simpler, but
this is how we
could do it if
we did not
have or did not
remember
max.

12/6/2019

7

; Now define another version with an accumulator
; (that is also more robust because it checks for non-numbers)

(define largest-in-list
(lambda (ls)
(if (null? ls)

(errorf 'largest-in-list "list cannot be empty")
(largest-in-list-acc (cdr ls) (car ls)))))

(define largest-in-list-acc
(lambda (ls largest-so-far)
(cond [(null? ls) largest-so-far]

[(not (number? (car ls)))
(errorf 'largest-in-list

"everything in the list must be a number")]
[(> (car ls) largest-so-far)
(largest-in-list-acc (cdr ls) (car ls))]

[else (largest-in-list-acc (cdr ls)
largest-so-far)])))

Count reflexive pairs

 A relation is a set of ordered pairs; the
set of all first elements is the domain.
The set of all second elements is the
range.

 We represent a relation by a list of 2-
lists. A 2-list is a list whose length is 2.

 A reflexive pair is a 2-list whose first
and last elements are the same.

 Count-reflexive-pairs (work it out live)

Probably won’t do this in class, but good practice for you

12/6/2019

8

cons vs. list vs. append
 box-and-pointer diagrams
 (define x '(1 2 3))

 (define y '(4 5))

 (define z '(6 7))

 (cons x y)

(list x y)

(append x y z)

apply
What if a procedure expects a number of
individual arguments, but we actually
have the things that should be its
arguments in a list?
We’d like to write
(define list-sum (lambda (L) (+ L)))

but + doesn’t expect a list of arguments.
So we write
define list-sum (lambda (L) (apply + L)))

Application of apply is like consing apply’s
first argument onto the list that is its
second argument, and then evaluating.

More on map and
apply soon

12/6/2019

9

Recursive procedures

 (make-list n obj) returns a list of n "copies"
of obj. [If obj is a 'by-reference" object, such
as a list, it makes n copies of the reference].

 (firsts ′((a b) (c d) (e f)))
 (a c e)
 Do it "from scratch".

 (map-unary f ls) applies f to each element of
ls, and returns the list of the results.
 (map-unary (lambda (x) (+ x 2))

'(3 5 9)) 
(5 7 11)

 How could we use map to write firsts?

map-unary is a
special case of built-in
procedure map.

More recursive procedures
 positives

• (positives ′(1 -3 6 0 2 -1 7)) (1 6 2 7)
• Write and use filter-in

 sorted?
• (sorted? <= '(3 4 2 6))  #f
• (sorted? >= '(4 3 2 1))  #t

 We’ll be lucky if we get this far, but,
ever the optimist, I included more
slides. They are probably a preview of
something we’ll do next time.

12/6/2019

10

lambda with an improper list
of arguments

 Used when procedure expects a variable
number of arguments.
• (lambda x body)

 when the resulting procedure is applied, all of
the arguments are placed into a list and bound
to x.
Then body is evaluated.

• (lambda (x y . z) body)
• when the resulting procedure is applied, the

first two arguments are bound to x and y,
• any remaining arguments are placed into a

list and bound to z. Then body is evaluated.Q1

Procedures with an unknown
number of arguments

12/6/2019

11

lambda the magnificent
review and summary

 Lambda is the “function-maker”. define is the
“variable-assigner”. There is no special connection
between the two:

• We can store procedures in a data structure
without naming them:

lambda the magnificent

 We can pass a procedure as an
argument to another procedure:

12/6/2019

12

lambda the magnificent
 We create a new procedure and

return it.

 Scheme is not the only language
with first-class procedures …

A first-class data object

 Can be stored in a data structure
 Can be passed as an argument to a procedure
 Can be returned by a procedure

 In Scheme, procedures are first-class

12/6/2019

13

Translation of let
(define L '(4 3 2))

(let ([first (car L)]

[second (cadr L)])

(list (+ first second) (- first second)))

The let expression is equivalent to
((lambda (first second)

(list (+ first second) (- first second)))

(car L)

(cadr L))
let and cond are both
examples of “syntactic
sugar”, as are and and or.

more on let
(define xxx

(lambda (L)

(let ([a (car L)]

[b (cdr L)]

[c (car b)])

(list c a))))

What goes wrong if we evaluate (xxx '(1 2
3))?

Translate the let expression to an application
of lambda

12/6/2019

14

let*
What we really wanted was
(define xxx

(lambda (L)
(let* ([a (car L)]

[b (cdr L)]
[c (car b)])

(list c a))))

which translates into
(define xxx

(lambda (L)
(let ([a (car L)])
(let ([b (cdr L)])

(let ([c (car b)])
(list c a))))))

