
12/4/2019

1

CSSE 304 Day 3
Announcements

Call Roll
Instructor Intro (different slides)

Course Intro
Recursion practice

Puzzle:
Can we overwrite lambda?
I.e. (define (lambda n) (* n n)) ?

Instructor Intro

 On separate slides.
 For more details, see the video on

Moodle.

12/4/2019

2

An email I received last summer

Course Intro

 Education is not a spectator sport.
 You can only learn a little bit by

watching me.
 Most of what you learn will be

because of what you read for
yourself, think for yourself, code for
yourself.

 Don't take the "Here I am, teach
me!" approach!

12/4/2019

3

What the course is NOT called:

 Let's superficially learn about 5 new
languages.
• Which ones should we study?
• Which are going to be most

important in 20 years? 40 years?
• How many people think you will

program in C, C++, Python, PHP, or
Java in 2050?

• Actually, you probably will!
• Old languages never die, they

just mutate to include new
paradigms.

I want you to become a linguist

 A linguist usually knows only few languages
well, but she knows bits and pieces of other
languages.

 What distinguishes the linguist is knowing
principles behind languages.

 My dictionary defines linguist as "a person
who studies the history and structure of
language."

12/4/2019

4

What to cover?
 "PLC" is such a broad area that we

could easily offer 3 courses on just
the elementary concepts central to
programming languages today, with
almost no intersection. (PLP)

 Some hard choices have to be made

 Will you like my choices?
• No matter what choices I make, many

important things will be left out.

Anatomy vs. Physiology
from Encyclopedia Americana:
Physiology is the study of processes common

to all living organisms, as well as those
special to particular groups of animals and
plants.

Traditionally physiology has focused on the
FUNCTIONS of these processes, relying on
experimental methods to observe the
processes under controlled conditions.
A visit to the zoo:

Feeding the animals vs.
making a giraffe-tiger

12/4/2019

5

Why Scheme for CSSE304?
 In PLC, Scheme is not an end in itself.
 Scheme will serve two purposes

in this course:
1. A place to see new programming concepts

without having to learn syntax of lots of
languages.

2. A laboratory environment in which to better
understand PL concepts by implementing
them in our own interpreters.

 After a steep initial language learning curve,
the overhead cost of introducing each new
programming concept or paradigm in
Scheme is low.

Why start the course with Scheme?

 In an introductory Chemistry lab, the first
couple of weeks would mainly involve
• Learning to use the lab equipment efficiently

and safely
• while doing a little bit of real chemistry

 Scheme-a-thon in this course is
similar.

 At the end of that time, you should be
comfortable with the Lab Equipment
• Scheme should then be a springboard (not a

barrier) when we use it later
• During the Scheme introduction, we'll also

encounter several important new PL concepts

12/4/2019

6

Read the textbooks

 Most of TSPL is easy to read. But
there are exceptions.

 You may need ultiple passes
through some parts of EoPL .
• Perhaps a few days between

readings.
 Reading assignments are usually a

little bit ahead of lectures.
• Because of the above.

I won't pretend!
 This is a difficult course for some

people.
 Intellectual level is high.
 Don't let it get away from you.
 You’ll have to "keep at it".

• as I should have done in Math 120 at
Caltech. More on that soon!

 Especially if it was a real
struggle for you to earn a B in
CSSE 230.
• OOTH, some people who did not do well

in 230 do very well in 304!

12/4/2019

7

Easy and hard problems
 Some problems are easy, some are hard.

 In some RHIT courses, there seems to be the
expectation that all students will get all of the
problems. Not here!

 In this class, I expect that all students will get most
of the problems if they work hard at them.

 But there will be a few problems that only a few
students will get.

 All students will learn something by trying all
problems.

 You will sometimes need to cry "uncle" and move
on to a different problem.

 Don't give up too easily, but don't be afraid to get
help or to simply move on occasionally.

Thinking outside the box

 Different languages support many
approaches (paradigms) to
programming.

 Develop a mindset that welcomes and
evaluates new paradigms.
• "If it's not in Java, …" 1975 – 1997 - 2014

12/4/2019

8

The best language is ______

 If you leave this course
thinking that there is, will be,
or ought to be a "holy grail" of
languages--a language that will
be all things for all people for
all purposes…
• … then I will have failed.

Delayed reactions

 Over the years, many alumni have
come to me and said:
• I didn't 'get it' while I was taking 304,
• but soon after graduation I used many

of the things from this course.
• Then I understood the value of it.

12/4/2019

9

Some of my goals for you

 I want you to learn some PL
terminology

 I want you to learn to ask (and
sometimes answer) the "why"
questions about language features

 I want you to come out of this course
saying, "I have had the opportunity to
think about programming in some very
new ways"

You have things to contribute

 Many of you have used languages
that I have not used
• or language features that I have not

used
 Your perspectives may add to the

BoK (Body of Knowledge) in this
course
• Please don't be stingy!
• Share your perspectives, ask questions,

etc.

12/4/2019

10

End of Course Intro

 Back to our regularly scheduled
Scheme intro…

The “similar example in Java” Question
from A0 hand-in

https://en.wikipedia.org/wiki/String_interning

12/4/2019

11

Recap - Predicates
 What's a predicate?
 How can you usually recognize that a

given procedure is a predicate?
 eq? vs equal?
 eqv? From TSPL:

• eq? cannot be used to compare numbers and
characters reliably. Although every inexact
number is distinct from every exact number,
two exact numbers, two inexact numbers, or
two characters with the same value may or
may not be identical (i.e., not eq?)

• eq? is cheaper than eqv?

Some A1 solutions

12/4/2019

12

What is common to all procedures?

 What is it that every procedure
application always does?
• evaluates procedure and arguments first
• In which order?

 Not necessarily true of non-procedures.
• (quote x) ; x is not evaluated.
• (define x 3) ; x is not evaluated.
• (if x y z) ; either y or z is not evaluated.
• (or x y z) ; y and z may not be evaluated.
• (lambda (x) (+ x 3)) ; x is not evaluated.

fact example 1

> (define fact
(lambda (n)

(cond
[(zero? n) 1]
[else (* n (fact (- n 1)))])))

> (fact 4)
24
> (fact -2)

C-c C-c
break>q

> (trace fact fact2 fact-acc)
(fact fact2 fact-acc)
> (fact 4)
|(fact 4)
| (fact 3)
| |(fact 2)
| | (fact 1)
| | |(fact 0)
| | |1
| | 1
| |2
| 6
|24
24

Escape from infinite loop by
repeatedly pressing ctrl-c

12/4/2019

13

Fact example 2
> (define fact2

(lambda (n)
(if (or (negative? n)

(not (integer? n)))
"error"
(fact-acc n 1))))

> (define fact-acc
(lambda (n acc)

(if (zero? n)
acc
(fact-acc (- n 1)

(* n acc)))))

> (trace fact fact2 fact-acc)
(fact fact2 fact-acc)
> (fact2 4)
|(fact2 4)
|(fact-acc 4 1)
|(fact-acc 3 4)
|(fact-acc 2 12)
|(fact-acc 1 24)
|(fact-acc 0 24)
|24
24

Cond

 Similar to if-elif-…-else in other
languages.

(define member?

(lambda (a ls)

(cond

[(null? ls) #f]

[(eq? (car ls) a) #t]

[else (member? a (cdr ls))])

))

12/4/2019

14

; cond is like if ... else if ... else

(define largest-in-list
(lambda (L)
(cond [(null? L)

(errorf 'largest-in-list
"empty list has ~s "
" no largest element")]

[(null? (cdr L)) (car L)]
[else (max (car L)

(largest-in-list
(cdr L)))])))

; What's the efficiency issue with this?

; more efficient:
(define largest-in-list

(lambda (ls)
(if (null? ls)
(errorf 'largest-in-list

"list cannot be empty")
(largest-in-non-empty ls))))

(define largest-in-non-empty
(lambda (ls)

(if (null? (cdr ls))
(car ls)
(let ([largest-in-cdr

(largest-in-non-empty (cdr ls))])
(if (> (car ls) largest-in-cdr)

(car ls)
largest-in-cdr)))))

Using max is
simpler, but
this is how we
could do it if
we did not
have max.

12/4/2019

15

; Now define another version with an accumulator
; (that is also more robust)

(define largest-in-list
(lambda (ls)
(if (null? ls)

(errorf 'largest-in-list "list cannot be empty")
(largest-in-list-acc (cdr ls) (car ls)))))

(define largest-in-list-acc
(lambda (ls largest-so-far)
(cond [(null? ls) largest-so-far]

[(not (number? (car ls)))
(errorf 'largest-in-list

"everything in the list must be a number")]
[(> (car ls) largest-so-far)
(largest-in-list-acc (cdr ls) (car ls))]

[else (largest-in-list-acc (cdr ls)
largest-so-far)])))

Count reflexive pairs

 A relation is a set of ordered pairs; the
set of all first elements is the domain.
The set of all second elements is the
range.

 We represent a relation by a list of 2-
lists. A 2-list is a list whose length is 2.

 A reflexive pair is a 2-list whose first
and last elements are the same.

 count-reflexive-pairs (work it out live)

12/4/2019

16

More recursive procedures
 Sum of squares of the first n

non-negative integers
 (square-all ls) returns a list of the

squares of the numbers in ls.
 (make-list n obj) returns a list of n

"copies" of obj. [If obj is a “by-
reference” object, such as a list, it
makes n copies of the reference].

We may not get to some (and maybe all) of this
slide today. If that is the case, I suggest trying
them for some simple recursion practice.

