
1

CSSE 304 – Winter 2019-20
Programming Language Concepts

Pick up three handouts from the back table
http://www.rose-hulman.edu/class/csse/csse304/

https://plc.csse.rose-hulman.edu/
https://piazza.com/rose-hulman/winter2020/csse304/

https://www.rose-hulman.edu/class/csse/csse304/202020/announcements.html
Claude Anderson

Professor of Computer Science and Software Engineering
F-210 812-877-8331

Typical office hours MTRF 1:00-3:00 (plus other hours many days)
My weekly schedule is also linked from the course Schedule Page

anderson@rose-hulman.edu
csse304-staff@rose-hulman.edu

TAs: Alysa Crawford, Qiuyun Li, Valerie Liu, Fisher Shen, Quinn McKown,
Ben Goldstein, Mitchell Schmidt, Jessica Myers, Duncan McKee

Joanna Garrett and Tommy McMichen– PercopoTutors for the Learning Center

CSSE 304 Day 1

• Pass the attendance sheet (daily)
– Today's sheet: tell me what name you'd like to be called by me

and by other students.

• Brief Announcements

• What's on the web?

• Scheme Intro (assumes that you viewed the five videos)

• Instructor/course intro: will happen Day 3
– because we will dive into Scheme for the first two class days.

• Scheme-a-thon: Days 1-12.

2

Announcements
• TA lab hours begin today.
• Student assistants can give you help on installing Scheme and/or editors,

getting started with Scheme programming.

• Please give me feedback on how the assistants are doing.
• If something else is going on in F-217, the

assistants may be in F-225. If you don't know
who the assistant is, be bold and ask.

Daily Course Announcements
• Each Day's announcements will be in the

announcements.html document, linked
from the Resources column of the
Schedule page.

• Announcements In-between class times:
Piazza or email
Mostly Piazza

3

Scheme-athon begins!

• It continues through Friday, Dec 20

If you are a member of NPS, plan
to suspend your membership for this term!

From today’s class notes

• This is from The Scheme Programming
Language “Summary of Forms”

• What’s the difference between “procedure”
and “syntax”?

4

From today’s class notes
• Talk with the other student(s) at your table.

• What will Scheme print when we enter each of these?

Overview of Scheme
• The next six slides give an overview of the

Scheme language.

• Good stuff! Pretty self-explanatory.

• Duplicated on your class notes hand-out.

• Read it before tomorrow’s class; if you
have questions, ask them in tomorrow’s
class.

• Now we are going to jump right into more
Scheme exploration.

5

Overview of Scheme 1
• Invented in 1975 by Guy Steele and Gerald

Sussman at MIT.

• Syntax similar to LISP, semantics more like
the Algol family (Pascal, Ada, C, Java …)

• Expression-oriented and interactive (like
Maple, Python, MatLab).

Overview of Scheme 2
• Data and programs have the same syntax

http://xkcd.com/859/
• (Linked) lists are a fundamental, built-in data

type
• Not statically typed (similar to Python, Maple,

PHP, JavaScript; unlike C and Java)
• Everything is in prefix form:

(+ a b) instead of a + b
• Argument passing is similar to Java

– primitives are passed to procedures by value
– others (lists, vectors*, etc.): references passed by

value. * vector is Scheme's array type.
Similar to Java arrays

6

Overview of Scheme 3
• Symbols can be data

– Somewhat similar to Maple

• Procedures are (first-class) data
– Can pass them as arguments to other procedures

– A procedure can create and return another
procedure

– Can store a procedure in a data structure (such
as a list or array of procedures)

– More on this soon!

• Minimal procedure overloading.

Overview of Scheme 4
• Java’s new operator has no Scheme equivalent

– Instead there are specific procedures for creating
objects of each type:

• cons creates a pair (pair is Scheme's main data type)

• vector creates a vector (like a C or Java array)

• list creates a (proper) list of its arguments

• string creates a string from zero or more characters

• lambda (which is not a procedure*) creates a procedure

• define-syntax (also not a procedure) creates new syntax
that extends the Scheme language itself

*In the Summary of Forms at the end of TSPL,
"not a procedure" is denoted by "syntax"

http://scheme.com/tspl4/summary.html

7

Scheme data types and constants
• Numbers

– 6 -12 14283917850923094767626456

– 5/17 (+ 1/3 1/6) (max 5 7 3)

– 7.05 3.5e7 (+ 2e3 3e2)

– TSPL section 6.3 lists the available
operations on numbers.

• Boolean (note that if returns a value)
– #t #f (if (< a b) a (+ b 1))

• String
– ″This is a String″

(string-length ″Hello″)

• Character
– #\A #\newline (char->integer #\A)

• Symbol (quote hello) ′hello

• Vector (like an array in other languages)
– #(1 3 2) (make-vector 5 7)

(vector-ref v 4)

• Empty List ()

• Pair (3 . 5)

• List of three elements: (3 5 7)

• Improper list (3 5 7 . 8)
• List of lists: ((2 4) (5 6 7) (8) ())

Data types and constants 2

Draw pictures

8

Live demo
Scheme source file-name extensions

– .ss , .scm I’ll use .ss

• I'll demonstrate SWL and the Emacs editor.

• In-class coding will be in the Live-in-class folder,
linked from Resources column of Day 1 of the
schedule page.

• We will continue this demo/discussion tomorrow.

• You can follow along on your computer,
or you can just watch, think, and ask
questions.

