
CSSE 304 Assignment 7 Page 1 09/17/19

CSSE 304 Assignment 7 Updated for Fall, 2019-20

Objectives: You should learn
• More about list processing.
• More about the use of let, letrec, named let, map, and apply.
• How to base recursive programs on recursive datatype definitions.

At the end of this document, there are several questions and answers from previous term’s Piazza.

.
Details for these instructions are in the previous assignment, so not repeated here: Individual assignment.
Comments at beginning, before each problem, and when you do anything non-obvious. Submit to server (test offline first).
Your code must not mutate (unless a particular problem calls for it), read, or write anything. Assume arguments
have correct form unless problem says otherwise.
Abbreviations for the textbooks: EoPL - Essentials of Programming Languages, 3rd Edition
 TSPL - The Scheme Programming Language, 4rd Edition
 EoPL-1 - Essentials of Programming Languages, 1st Edition (handout)

Reading Assignment: See the schedule page. Have you been keeping up with the reading?

Problems to turn in: For many of these, you will want to write one or more helper procedures.

#1 (10 points) vector-append-list (vector-append-list v ls) returns a new vector with the elements of
ls attached to the end of v. Do this without using vector->list, list->vector, or append.
For this problem only, you can and should use mutation: namely the vector-set! procedure. Note that vector-
set! does not return a value.

Hint that I posted on Piazza for a previous term:
Try using this code, and writing the two recursive helper procedures. You are not required to use this code.

(define vector-append-list
 (lambda (vec ls)
 (let ([new-vector (make-vector (+ (vector-length vec) (length ls)))])
 (copy-from-vector new-vector vec 0)
 (copy-from-list new-vector ls (vector-length vec))
 new-vector)))

#2 (10 points) (group-by-two ls) takes a list ls. It returns a list of lists: the elements of ls in groups of two. If ls
has an odd number of elements, the last sublist of the return value will have one element.

 group-by-two: List  ListOf(List)

 > (group-by-two '())
 ()
 > (group-by-two '(a))
 ((a))
 > (group-by-two '(a b))
 ((a b))
 > (group-by-two '(a b c))
 ((a b) (c))
 > (group-by-two '(a b c d e f g))
 ((a b) (c d) (e f) (g))
 > (group-by-two '(a b c d e f g h))
 ((a b) (c d) (e f) (g h))

#3 (20 points) (group-by-n ls n) takes a list ls and an integer n (you may assume that n≥2). Returns a list of lists:
the elements of ls in groups of n. If ls has a number of elements that is not a multiple of n, the length of the last sublist of
the return value will be less than n. For full credit, your code must run in time O(length (ls)). In particular, this means
that no recursive procedure in your code can call (length ls).

 group-by-n: List  ListOf(List)

CSSE 304 Assignment 7 Page 2 09/17/19

 > (group-by-n '() 3)
 ()
 > (group-by-n '(a b c d e f g) 3)
 ((a b c) (d e f) (g))
 > (group-by-n '(a b c d e f g) 4)
 ((a b c d) (e f g))
 > (group-by-n '(a b c d e f g h) 4)
 ((a b c d) (e f g h))
 > (group-by-n '(a b c d e f g h i j k l m n o) 7)
 ((a b c d e f g) (h i j k l m n) (o))
 > (group-by-n '(a b c d e f g h) 17)
 ((a b c d e f g h))
 > (group-by-n '(a b c d e f g h i j k l m n o p q r s t) 17)
 ((a b c d e f g h i j k l m n o p q) (r s t))

#4 (57 points) Consider the following syntax definition from page 9 of EoPL:
 <bintree> ::= <integer> | (<symbol> <bintree> <bintree>)

Note that this representation is quite different than the BST representation in Assignment 6.

Write the following procedures:

• (bt-leaf-sum T) finds the sum of all of the numbers in the leaves of the bintree T.
• (bt-inorder-list T) creates a list of the symbols from the interior nodes of T, in the order that they would be visited

by an inorder traversal of the binary tree.
• (bt-max T) returns the largest integer in the tree.
• (bt-max-interior T) takes a binary tree with at least one interior node, and returns (in O(N) time, where N is the

number of nodes) the symbol associated with an interior node whose subtree has a maximal leaf sum (at least as large as the sum
from any other interior node in the tree). If multiple nodes in the tree have the same maximal leaf-sum, return the symbol
associated with the leftmost (as it appears in the tree’s printed representation) maximal node.

This bt-max-interior procedure is trickier than it looks at first!
• You may not use mutation.
• You may not traverse any subtree twice (such as by calling bt-leaf-sum on every interior node).
• You may not create any additional size-Ω(N) data structures that you then traverse to get the answer.
• Think about how to return enough info from each recursive call to solve this without doing another traversal.

 Note: We will revisit this linear-time bt-max-interior problem several times during this course. If you do not get this
version, the later versions will be harder for you, so you should do what it takes to get this one.

#5 (50 points)

These s-list procedures have a lot in common with the s-list procedures that we wrote during our Session 8 class.
Recall the extended BNF grammar for s-lists:

<s-list> ::= ({<s-expression>}*)
<s-expression> ::= <symbol> | <s-list> FOLLOW THE GRAMMAR!

(a) (slist-map proc slist) applies proc to each element of slist.

 slist-map: procedure x Slist  NestedListOfThingsThatAreInTheRangeOfProcedure

 (slist-map symbol? '((a (()) b) c () (d e)))  ((#t (()) #t) #t () (#t #t))

 (slist-map (lambda (x)
 (let ([s (symbol→string x)])
 (string→symbol (string-append s s))))
 '((b (c) d) e ((a)) () e))  ((bb (cc) dd) ee ((aa)) () ee)

(b) (slist-reverse slist) reverses slist and all of its sublists.

 slist-reverse: Slist  Slist

http://www.rose-hulman.edu/class/csse/csse304/202010/Live-in-class/

CSSE 304 Assignment 7 Page 3 09/17/19

 (slist-reverse '(a (b c) () (d (e f))))  (((f e) d) () (c b) a)

(c) (slist-paren-count slist) counts the number of parentheses required to produce the printed

representation of slist. You must do this by traversing the structure, not by having Scheme give you a
string representation of the list and counting parenthesis characters. You can get this count by looking at
cars and cdrs of slist).

 slist-paren-count: Slist  Integer

 (slist-paren-count '())  2
 (slist-paren-count '(a (b c) d))  4
 (slist-paren-count '(a (b) (c () ((d)))))  12

(d) (slist-depth slist) finds the maximum nesting-level of parentheses in the printed representation
of slist. You must do this by traversing the structure, and not by having Scheme give you a string
representation of the list and counting the maximum nesting of parenthesis characters.
 slist-depth: Slist  Integer

 (slist-depth '())  1
 (slist-depth '(a b c))  1
 (slist-depth '(a (b c) d))  2
 (slist-depth '(a (b (c)) (a b)))  3
 (slist-depth '(((a) (()) b) (c d) e))  4

(e) (slist-symbols-at-depth slist d)returns a list of the symbols from slist whose depth is
the positive integer d. They should appear in the same order in the return list as in the original s-list. This
one has the basic pattern of the other s-list procedures, but when writing the solution, I found it easier to use a
slight variation on that pattern.

 slist-symbols-at-depth: Slist x PositiveInteger  ListOf(Symbol)

(slist-symbols-at-depth '(a (b c) d) 2)  (b c)
(slist-symbols-at-depth '(a (b c) d) 1)  (a d)
(slist-symbols-at-depth '(a (b c) d) 3)  ()

#6 (10 points) (path-to slist sym) produces a list of cars and cdrs that (when read left-to-right) take us to the
position of the leftmost occurrence of sym in the s-list slist. Notice that the returned list contains the symbols 'car and
'cdr, not the car and cdr procedures. Return #f if sym is not in slist. Only traverse as much of slist as is necessary
to find sym if it is there.

> (path-to '(a b) 'a)
(car)
> (path-to '(c a b) 'a)
(cdr car)
> (path-to '(c () ((a b))) 'a)
(cdr cdr car car car)
> (path-to '((d (f ((b a)) g))) 'a)
(car cdr car cdr car car cdr car)
> (path-to '((d (f ((b a)) g))) 'c)
#f

Note: s-lists are always proper lists.

CSSE 304 Assignment 7 Page 4 09/17/19

#7 (25 points) Predefined Scheme procedures like cadr and cdadr are compositions of up to four cars and cdrs. You are
to write a generalization called make-c...r, which does the composition of any number of cars and cdrs. It takes one
argument, a string of a's and d's, which are used like the a's and d's in the names of the pre-defined c…r functions. For
example, (make-c...r "adddd") is equivalent to (compose car cdr cdr cdr cdr).

> (define caddddr (make-c...r "adddd"))
> (caddddr '(a (b) (c) (d) (e) (f)))
(e)
> ((make-c...r "") '(a b c))
(a b c)
> ((make-c...r "a") '(a b c))
a
> ((make-c...r "ddaddd") '(a b c ((d e f g) h i j)))
(i j)
> ((make-c...r "addddddddddd") '(a b c d e f g h i j k l m))
l

I have provided the code for compose. We will discuss this solution in class soon. For now you can just use it here. For
full credit, you should write make-c...r in a functional style that only applies (calls)

• built-in procedures (including, car, cdr, map, and apply, of course),
• anonymous procedures, and
• compose (which I am giving you, so it does not count as a self-written recursive procedure)

in your definition of make-c...r. More precisely, you may not write and call your own recursive procedures
(define compose
 (case-lambda
 [() (lambda (x) x)]
 [(first . rest)
 (let ([composed-rest (apply compose rest)])
 (lambda (x) (first (composed-rest x))))]))

Hint: My solution uses the built-in procedures map, apply, string->list, list->string,
string->symbol, and eval; also the character constants #\c and #\r. You are not required to use these, but you
may find them helpful. I do not assume that you are already familiar with all of them; The Scheme Programming
Language contains info on them; my intention is that you demonstrate an ability to look up and use new procedures. My
solution calls map multiple times.

Piazza posts related to this assignment from previous terms:

A7 #1 vector-append-list
Here is an example that has some things in common with vector-append-list. It makes a new vector that is the
reverse of it's argument. Ths procedure is not directly useful for problem #1, but it may help you to better
understand the use if vectors.

(define vector-reverse ; return a vector that is the reverse of v

 (lambda (v)

 (let* ([v-len (vector-length v)]

 [result (make-vector v-len #f)])

 (let loop ([i 0])

 (if (< i v-len) ; one-armed if, has no "else" part.

 (begin (vector-set! result (- v-len i 1)

 (vector-ref v i))
 (loop (+ i 1))))
 result))))

(vector-reverse '#(2 3 4 5))

CSSE 304 Assignment 7 Page 5 09/17/19

Are we required to use vector-set! for our solution? As it's not too difficult to have a solution making use of the
vector procedure instead.

 Claude Anderson 5 months ago
No, you are not required to use vector-set!

Most Scheme mutation procedures (such as vector-set!) do not return a
value.
The subject line says it all.

A7 Bintree internal sum
Is it allowed if we return the sum for each internal node and just find the max of those sums? It only adds another
O(n) to find the max.

the instructors' answer,
where instructors collectively construct a single answer
But it bypasses what I wanted you to figure out how to do, so no.

group-by-two and group-by-n: Don't be afraid to apply reverse in your code
I talked with a student today who was reluctant to use reverse, thinking that I have discouraged its use. I think it
may be easiest and most efficient to write the group-by procedures using cons, and then reversing the list once
you have all of it. Calling reverse once is O(N). Appending each element to the end of a list (one at a time) is
O(N^2).

Seeing the procedure that compose makes
I'm writing make-c...r, and am having a hard time debugging since tracing the function just gives #<procedure>,
so I can't really see what's going wrong with the composing.
Is there some way to see the function that compose makes or if not other ways to debug it?

Edit: right now I'm at the point where I'm composing a list of cars and cdrs (ex: '(car cdr cdr)) , and would be
helped if I could see what the result of composing them looked like

the students' answer,
where students collectively construct a single answer
You may be able to trace compose itself.
the instructors' answer,
where instructors collectively construct a single answer
Actions
trace-lambda may be what you need

(trace-lambda trace-name (args) bodies), where trace-name is a name that you make up so that the tracing can
identify which procedure is being traced.

There are also trace-let, trace-letrec, and trace-define.

https://piazza.com/class/is9cjqgxyh31b?cid=47
https://piazza.com/class/is9cjqgxyh31b?cid=47
https://piazza.com/class/jl863803n0a6tl?cid=55

	Most Scheme mutation procedures (such as vector-set!) do not return a value.
	A7 Bintree internal sum
	group-by-two and group-by-n: Don't be afraid to apply reverse in your code
	Seeing the procedure that compose makes

