
CSSE 304 Assignment 2 Page 1 09/07/19

 CSSE 304 Assignment 2 Updated for Fall, 2019-20
Objectives You should learn
• to write procedures that precisely meet given specifications.
• to gain experience with picking out parts of lists.
• to write procedures that make simple decisions.
• to practice using previously-written procedures as helpers for new procedures
• to test your code thoroughly.

Administrative preliminaries (most of these apply to later assignments also). If you did not read the
administrative preliminaries for Assignment 1 in detail, you should do so. They all apply here.

Abbreviations for the textbooks: EoPL - Essentials of Programming Languages, 3rd Edition
 TSPL - The Scheme Programming Language, 4rd Edition (available free scheme.com)
 EoPL-1 - Essentials of Programming Languages, 1st Edition
 (small 4-up excerpt handed out in class, also on Moodle)

Reading Assignment: see the schedule page
Some of the EOPL-1 reading covers topics that are similar to the reading in TSPL, but we believe it is good for you to get more than
one perspective on this (in particular, a perspective that is similar to that of EoPL).

This is an individual assignment. You can talk to anyone and get as much help as you need, but you should type in the code and
do the debugging process, as well as the submission process. You should never give or receive code for the individual assignments.

At the beginning of your file, there should be a comment that includes your name and the assignment number. Before the code
for each required procedure, place a comment that includes the problem number. Please place the code for the problems in order by
problem number.

Submitting this assignment. Write all of the required procedures in one file, 2.ss, and upload it for assignment A2 to the PLC
grading server. As with A1, do testing on your own computer first, so the server does not get bogged down.

Restriction on Mutation continues. One of the main goals of the first few assignments is to introduce you to the
functional style of programming, in which the values of variables are never modified. Until further notice, you may not use set! or
any other built-in procedure whose name ends in an exclamation point. It will be best to not use any exclamation points at all in your
code. You will receive zero credit for a problem if any procedure that you write for that problem uses mutation or calls a
procedure that mutates something.

Assume valid inputs. As in assignment 1, you do not have to check for illegal arguments to your procedures. Note that in
the set? problem, any Scheme list is a valid input.

Problems to turn in:

#1 (5 points) (a) (0) Write the procedure (fact n) which takes a non-negative integer n and returns n factorial. You can just copy
this procedure from Assignment 0, and call it from your choose procedure from part (b).

fact: NonNegativeInteger  Integer

Examples:
 (fact 0)  1
 (fact 1)  1
 (fact 5)  120

(b) (5) Write the procedure (choose n k) which returns the number of different subsets of k items that can be chosen from a set of
n distinct items. This is also known as the binomial coefficient and is sometimes written as �𝑛𝑛𝑘𝑘� or nCk. If you’ve forgotten the
formula for this, a Google search for “Binomial Coefficient” should be helpful.

choose: NonNegativeInteger × NonNegativeInteger  NonNegativeInteger (examples on next page)

http://scheme.com/tspl4
https://plc.csse.rose-hulman.edu/
https://plc.csse.rose-hulman.edu/

CSSE 304 Assignment 2 Page 2 09/07/19

#1 examples:
 (choose 0 0)  1
 (choose 5 1)  5
 (choose 10 5)  252

#2 (5 points) Write a procedure (sum-of-squares lon) that takes a (single-level) list of numbers, lon, and returns the sum
of the squares of the numbers in lon.

sum-of-squares: Listof(Number)  Number

Examples:
 (sum-of-squares '(1 3 5 7))  84
 (sum-of-squares '())  0

#3 (8 points) Write the procedure (range m n) that returns the ordered list of integers starting at the integer m and increasing by
one until just before the integer n is reached (do not include n in the resulting list). This is similar to Python's range function. If n is
less than or equal to m, range returns the empty list.

range: Integer × Integer  Listof(Integer)

Examples:
 (range 5 10)  (5 6 7 8 9)
 (range 5 6)  (5)
 (range 5 5)  ()
 (range 5 3)  ()

#4 (10 points) In mathematics, we informally define a set to be a collection of items with no duplicates. In Scheme, we could
represent a set by a (single-level) list. We say that a list is a set if and only if it contains no duplicates. We say that two objects o1
and o2 are duplicates if (equal? o1 o2). Write the predicate (set? list), that takes any list as an argument and determines
whether it is a set.

set? : list  Boolean

Examples:
 (set? '())  #t ; empty set
 (set? '(1 (2 3) (3 2) 5))  #t ; (2 3) and (3 2) are not equal?
 (set? '(r o s e - h u l m a n))  #t
 (set? '(c o m p u t e r s c i e n c e))  #f ; duplicates

#5 (5 points) The union of two sets is the set of all items that occur in either or both sets (the order of the items in the list does not
matter).

union: Set × Set  Set

Examples:
 (union '(a f e h t b) '(g c e a b))  (a f e h t b g c) ; (or some permutation of it)
 (union '(2 3 4) '(1 a b 2))  (2 3 4 1 a b) ; (or some permutation of it)

CSSE 304 Assignment 2 Page 3 09/07/19

The remaining problems in A2 continue the sequence of points, lines and vectors problems
from A1. Here is a repeat of some of the instructions from A1. You may want to copy some of
your A1 procedures into your A2 solution code file, so you can use them as helpers for your A2
procedures.

#6 (5 points) Write the procedure (cross-product v1 v2) that returns the cross-product (vector product) of the
two vectors v1 and v2. Recall that cross-product is only defined for three-dimensional vectors.

cross-product: Vector × Vector  Vector

Examples:
 (cross-product '(1 3 4) '(3 6 2))  (-18 10 -3)
 (cross-product '(1 3 4) '(3 9 12))  (0 0 0)

#7 (5 points) Write the procedure (parallel? v1 v2) that returns #t if v1 and v2 are parallel vectors, #f otherwise. Note
that the zero vector is parallel to everything. You only have to guarantee that your procedure will work if the coefficients of both
vectors contain only integers or rational numbers. Otherwise round-off error may make two parallel vectors appear to be non-parallel
or vice-versa.

parallel?: Vector × Vector  Boolean

Examples:
 (parallel? '(1 3 4) '(3 6 2))  #f.
 (parallel? '(1 3 4) '(-3 -9 -12))  #t.

#8 (3 points) Write the procedure (collinear? p1 p2 p3) that returns #t if the points p1, p2, and p3 are all on the same
straight line, #f otherwise. Same disclaimer about round-off error as in the previous problems.

collinear?: Point × Point × Point  Boolean

Examples:
 (collinear? '(1 3 4) '(3 6 2) '(7 12 -2))  #t
 (collinear? '(1 3 4) '(3 6 2) '(7 12 1))  #f.

#9 (12 points) Write the procedure (nearest-point p list-of-points) that returns the point in the non-empty list list-
of-points that is closest to p. If two points "tie" for nearest, return the one that appears first from list-of-points. This is
probably the most difficult problem in this assignment.

nearest-point: Point × Listof(Point)  Point

Examples:
 (nearest-point '(1 2 1) '((7 5 0) (2 1 0) (-6 -7 -8)))  (2 1 0)

 Piazza questions and answers from previous terms

We will represent a point or a vector by a list of 3 numbers. For example, the list (5 6 -7) can
represent either the vector 5i + 6j - 7k or the point (5, 6, -7). In the procedure type specifications below,
I'll use Point and Vector as the names of the types, even though both will be implemented by the same
underlying Scheme type.

Note that Scheme has a built-in vector type and associated procedures to manipulate vectors.
Scheme’s vector type is similar to the Object[] array type in Java. In order to avoid having your
code conflict with this built-in type, you should use vec instead of vector in the names of your
functions and their arguments. We could use Scheme’s vector type to represent the vector in this
problem, but I choose not to do so, so that you will get additional practice with picking out parts of lists.

http://en.wikipedia.org/wiki/Cross_product#Coordinate_notation

CSSE 304 Assignment 2 Page 4 09/07/19

(next page

Assignment 2 Problem 9 (Nearest Point)
I pass all of the test cases, except for
(nearest-point '(1 4 3) '((1 3 2) (1 5 2) (1 6 13) (1 3 3) (1 4 2))).
The expected answer is (1 3 3) and I am getting (1 3 2)
I am failing this case because the distance to (1 3 2) is 1.414, while the distance to (1 3 3) is 1.
However, I'm almost certain that round-off error is causing the 1.414 to be evaluated to 1, which results in a tie, causing the first
in the list to be taken.
In Assignment 2, it was stated we could assume all points would be such that distance would result in an integer, so we would
not have to worry about rounding errors. Should we just ignore this test, or does anyone know how to get around this rounding
problem?

the students' answer,
where students collectively construct a single answer
If the distance squared of one item is more than the distance square of another item, that item is further away. You don't need
the distance, you just need to compare the squares.

~ An instructor (
Claude Anderson

) endorsed this answer ~

the instructors' answer,
where instructors collectively construct a single answer

Unless you did something specific to convert a distance to an integer, I cannot imagine 1.41 getting rounded off to 1. I suggest
using Scheme's trace mechanism to trace distance and your recursive procedure that looks for the nearest point. Then run it for
this test case so you can see what values it is getting for distances and how they are being used as the code moves along.

 list? vs. pair?
Recall that a pair is simply a container for two values; the simplest way to make one is to apply cons.
A list is a linked list of pairs. Each pair except the last one is a reference to the next pair in the list; the cdr of the last pair must
be null, otherwise the list is improper.

pair? is a constant-time procedure that simply asks, "is this value a reference to a pair?"

list? is a linear-time operation that asks, "is this value a reference to the first pair of a proper list?

So efficiency is one basis to choose between the two tests.

I hope that the following transcript will help you better understand these procedures.

> (list? '())

#t

> (pair? '())

CSSE 304 Assignment 2 Page 5 09/07/19

#f

> (list? '(a b c))

#t

> (pair? '(a b c))

#t

> (list? '(a b . c))

#f

> (pair? '(a b .c))

#t

> (pair? 'a)

#f

> (list? 'a)

#f

duplication in lists
Can you ever do better than O(n^2) for determining the duplication of numbers in a list?

A novel approach might be for each index compare this value to all other index values.

Another way is to pre-process with a sorting algorithm with Big O lower than O(n^2). Then compare each value next to each
other. This is O(n) + complexity of sort.
However sorting isn't an easy option in this case since we can't mutate anything yet.

So are we left to O(n^2) efficiency for now until we learn more about manipulation in scheme?

the instructors' answer,
where instructors collectively construct a single answer
Actions
If you don't use any auxiliary data structure, N^2 is the best you can do. If you copy the numbers into a binary heap or balanced
tree you can do O(N log N) worst case. With a hash table you can have O(N) expected value, but O(N^2) worst case.

Finally, I don’t think Scheme’s sort procedure mutates anything.

Operations with lists
I had no problem using - and + between a number and a list, but I do if I use it with two lists, even if there is only one element
on them. Are there special operators for adding and substracting the elements in a list? Or is it not possible to operate with them
being in a list?
Thank you

https://piazza.com/class/jl863803n0a6tl?cid=14

CSSE 304 Assignment 2 Page 6 09/07/19

hw1
This private post is only visible to Instructors and 2 others

edit ·good question0

Updated 2 months ago by

Ana Huerta

the instructors' answer,
where instructors collectively construct a single answer
Actions
Depending on what you are trying to do, apply may be what you need. Or (for things like A2-A5) you can use a loop or (for A1
where all lists have fixed length) you can just write two or three - or + expressions.

Comparing numeric quantities
If x and y are known to be numbers, use (= x y) instead of (equal? x y) to compare them.

https://piazza.com/class/jl863803n0a6tl?cid=19
https://piazza.com/class/jl863803n0a6tl?cid=19
https://piazza.com/class/jl863803n0a6tl?cid=19
https://piazza.com/class/jl863803n0a6tl?cid=19
https://piazza.com/class/jl863803n0a6tl?cid=19

	(next page
	Assignment 2 Problem 9 (Nearest Point)
	list? vs. pair?
	duplication in lists
	Operations with lists
	Comparing numeric quantities

