
CSSE 304 Day 29Summary call/cc:

1. call/cc definition
a. call/cc is an abbreviation for call-with-current-continuation
b. call/cc is a procedure that takes one argument; the argument is a receiver.
c. This receiver is a procedure that takes one argument; that argument (in this case) is a continuation.
d. A continuation is a procedure (that takes one argument); that continuation embodies the context of the application of

call/cc. It is an escape procedure.
e. The application (call/cc receiver) has the same effect as (receiver continuation), where the continuation is
f. an escape procedure that embodies the execution context of the entire call/cc expression.

2. call/cc definition summary:
a. (call/cc receiver)  (receiver continuation), Hence the name: call-with-current-continuation.
b. Rephrasing it: What is that continuation?

If c is a procedure that represents the execution context of this application of call/cc, then the continuation is
equivalent to (escaper c).

3. call/cc example
a. (call/cc receiver) (receiver continuation),
b. Consider (+ 3 (call/cc (lambda (k) (* 2 (k 5)))))
c. The receiver r1 is (the procedure created by evaluating) (lambda (k) (* 2 (k 5)))
d. The context c1 is (the procedure created by evaluating) (lambda (v) (+ 3 v))
e. The continuation k1 is (escaper c1)
f. Thus (+ 3 (call/cc (lambda (k) (* 2 (k 5))))) is equivalent to

(+ 3 (call/cc r1))
 (+ 3 (r1 k1)) definition of call/cc
 (+ 3 (* 2 (k1 5))) normal Scheme application of a procedure.
 (k1 5) k1 is an escape procedure.
 8 Normal Scheme evaluation.

4. More call/cc examples
(+ 3 (call/cc (lambda (k) (* 2 5))))

r2: (lambda (k) (* 2 5))
 k2: same as k1.

(+ 3 (call/cc r2))  (+ 3 (r2 k2))  (+ 3 10)  13. Escape procedure k2 is never called.

(+ 3 (call/cc (lambda (k) (k (* 2 5)))))

5. (define xxx #f)
 (+ 5 (call/cc (lambda (k)
 (set! xxx k)
 2))) ; xxx is equivalent to?
 (* 7 (xxx 4))

6. (call/cc procedure?)

7. list-index example is detailed in the slides:

8. ((car (call/cc list)) (list cdr 1 2 3))

(let ([f 0] [i 0])
 (call/cc (lambda (k) (set! f k)))
 (printf "~a~n" i)
 (set! i (+ i 1))
 (if (< i 10) (f "ignore")))

9. (define strange1
 (lambda (x)
 (display 1)
 (call/cc x)
 (display 2)))

 (strange1 (call/cc (lambda (k) k)))

(define strange2 ; try this one yourself soon
 (lambda (x)
 (display 1)
 (call/cc (lambda (j) (x j)))
 (display 2)
 (call/cc (lambda (c) (x c)))
 (display 3)))

(strange2 (call/cc (lambda (k) k)))

