
CSSE 304 Day 27

Warm-up for call/cc:

1. A receiver is an argument (which happens to also be a procedure) passed to a procedure, with the intention that the
procedure will eventually pass values to that argument. In some situation, receivers are referred to as “callbacks”.

a. The continuations that we pass to CPS procedures (in the scheme-procedure representation) are receivers.

b. The consumer procedures that we pass to call-with-values are receivers.

c. call-with-output-file is another example of a procedure that expects a receiver as an argument.

2. Pretend that we have a procedure escape-+ that adds its arguments and returns this sum as the final answer, no matter
what the context.

a. (* (escape-+ 5 6) 3) 

b. (escape-+ (escape-+ 2 4) 5) 

3. More generally, suppose that we have a procedure escaper that takes a procedure as an argument and returns an
equivalent escape procedure.

a. (escaper +) creates a procedure that is equivalent to escape-+

b. (+ 3 ((escaper +) 4 5)) 

c. (+ ((escaper (lambda (x)
 (- (* x 3) 7)))
 5)
 4) 

d. A slide gives details of how you can experiment with escaper in Chez Scheme.

4. Let p be a procedure. If an application of p abandons the current continuation and does something else instead, we call p an
escape procedure.

a. An example of a Scheme escape procedure that we have already used:

b. Is escaper an escape procedure?

5. We consider the dining-out procedure from the slides, along with a reading from the Springer and Friedman book.
Your takeaway: In future discussions, I will often refer to “taking a photograph”, “saving the photograph”, and “rubbing a
photograph.” You should leave today’s class knowing what those things mean.

Definition of call/cc and simple examples:

6. Note the detailed definition of call/cc that is on the slide whose title is CALL/CC.

Here is a summary of that definition:

(call/cc receiver)  (receiver continuation),
Hence the name: call-with-current-continuation.
Rephrasing it: What is that continuation?

If c is a procedure that represents the execution context of this application of call/cc, then the continuation is
equivalent to (escaper c).

7. call/cc example: (+ 3 (call/cc (lambda (k) (* 2 (k 5)))))
a. The receiver is
b. The context c of the call/cc application is
c. The continuation is
d. Thus (+ 3 (call/cc (lambda (k) (* 2 (k 5))))) is equivalent to

8. Another call/cc example : (+ 3 (call/cc (lambda (k) (* 2 5))))

a. The receiver is
b. The context c is
c. The continuation is
d. Thus (+ 3 (call/cc (lambda (k) (* 2 5)))) is equivalent to

9. Another call/cc example: (+ 3 (call/cc (lambda (k) (k (* 2 5)))))
a. The receiver is
b. The context c is
c. The continuation is
d. Thus (+ 3 (call/cc (lambda (k) (k * 2 5))))) is equivalent to

10. (define xxx #f)
 (+ 5 (call/cc (lambda (k)
 (set! xxx k)
 2))) ; xxx is equivalent to?
 (* 7 (xxx 4))

11. (call/cc procedure?)

