
CSSE 304 Day 26

Add set! to the interpreted language. Some or all of this may not happen today.

Reference ADT: (deref ref) and (set-ref! ref val). If we have apply-env-ref, we get apply-env “almost for free”

The set! case of eval-exp is simple: [set!-exp (id exp)
 (set-ref! (apply-env-ref env id)
 (eval-exp exp env))]

One approach to implementing references: the cell ADT:

(cell value) creates a cell containing the value.
(cell-ref cell) gives us the value in the cell.
(cell-set! cell value) replaces the value in the cell.
(cell? obj) asks if an object is a cell.

Use cells to implement the reference ADT. (i.e. to implement deref and set-ref!)

In the extend-env implementation, replace vals with (map cell vals)

Code for apply-env-ref

Now all that is left is to implement cells.

1. A cell could be a pair:

2. A cell could be a vector:

3. A cell could be a built-in Chez Scheme datatype: a box.

Warmup for call/cc

1. Continuations review: Consider the evaluation of the expression:
 (let ([x (+ y 2)])
 (if (< x 4) 5 (- x 6))

What is the continuation of
(+ y 2) ? 6 ?

(- x 6) ? (< x 4) ?

2. A receiver is an argument (which happens to also be a procedure) passed to a procedure, with the intention that the
procedure will eventually pass values to that argument. In some situation, receivers are referred to as “callbacks”.

a. The continuations that we pass to CPS procedures are receivers.

b. The consumer procedures that we pass to call-with-values are receivers.

c. call-with-output-file is another example of a procedure that expects a receiver as an argument.

3. Suppose that we have a procedure escape-+ that adds its arguments and returns this sum as the final answer, no matter
what the context.

a. (* (escape-+ 5 6) 3) 

b. (escape-+ (escape-+ 2 4) 5) 

4. More generally, suppose that we have a procedure escaper that takes a procedure as an argument and returns an
equivalent escape procedure.

a. (escaper +) creates a procedure that is equivalent to escape-+

b. (+ 3 ((escaper +) 4 5)) 

c. (+ ((escaper (lambda (x)
 (- (* x 3) 7)))
 5)
 4) 

d. A slide gives details of how you can experiment with escaper.

5. Let p be a procedure. If an application of p abandons the current continuation and does something else instead, we call p an
escape procedure.

a. An example of a Scheme escape procedure that we have already used:

Is escaper an escape procedure?

