CSSE 304 Day 11 (and perhaps 12)

1. Question from the previous class: Other procedures that can be shorter if written using list-recur. Instructor’s example.

2. Question from the previous class: Which of the 5 procedures that we wrote using list-recur is a bad idea to write that way? Why?

Recall: Grammar for lambda-calculus expresions:

<LcExpr>::= <identifier> | variable use
(lambda (<identifier>) <LcExpr>) | abstraction
(<LcExpr> <LcExpr>) application

3. Use this grammar to derive ((lambda (x) (x y)) z)| Variable x occurs free in the LcExp e iff
one of the following is true:
F1.eisavariable, and e is the same as Xx.
F2. e is an abstraction (A (y) "), where y is different from x and x
occurs free ine'.
F3. e is an application (e1 e2), where x occurs free in e, or in e;.
Variable x occurs bound in the LcExp e iff
one of the following is true:
B1. e is an abstraction (A (y) e'), where x occurs bound in €', or x
and y are the same variable and x occurs free in €',
B2. e is an application (e1 e2) where x occurs bound in e; or in ez.

4. Free and bound occurrences of variables. Formal definitions of occurs free and occurs bound (in box above)
5. Examples:In each of the following expressions, does x occur free and/or
occur bound?

* X
e t
- X1 Follow the grammar. occurs-free? is defined in EoPL

(define (occurs-bound? sym exp)

e (lambda (x) (x 1))

« ((lambda (x) X) X)

(lambda (x) (lambda (t) (t x)))

6. The lexical depth of a bound occurrence of a variable is the number of
levels of nested 1ambdas and lets between this occurrence and the
variable's definition. In (lambda (x) (lambda (y) (x y))),the

occurrence of y has depth 0 and the occurrence of x has depth 1.

7. The lexical address of a bound occurrence of a variable is a pair (d p), where d is that occurrence's lexical depth, and p is the
variable's position within its "declaration list". The lexical address of a free variable includes the variable's name and an indication
that it is free.

8. Example:
In (lambda (x z)
(lambda (y)
((xy) 2)))
The occurrence of x has depth 1 and position 0.
The occurrence of y has depth 0 and position 0.
The occurrence of z has depth 1 and position 1.

9. Example of output from the lexical-address procedure that you will write:
(lexical-address '(lambda (a b c) (lambda (a b c)
(if (eq? b c) if ((: f ?) (:01) (: 02
((lambda (c) ¢ Eglamgjg t(?g)) () ())

(cons a c)) ((: free cons) (: 10 (: 0 9)))
2 > (: 6 0))
) (: 0 1))
10. Exercise: What is the output from; Note: We are only looking at syntactic properties now.

Don't worry about whether this code has a useful meaning in Scheme.
(lexical-address
"((lambda (x y)
(((lambda (z)
(lambda (w y)

(+ xzwy)))
(list w x y 2z))
(+ xy z)))

(y 2)))

