
Follow the grammar. occurs-free? is defined in EoPL

(define (occurs-bound? sym exp)

CSSE 304 Day 11 (and perhaps 12)

1. Question from the previous class: Other procedures that can be shorter if written using list-recur. Instructor’s example.

2. Question from the previous class: Which of the 5 procedures that we wrote using list-recur is a bad idea to write that way? Why?

Recall: Grammar for lambda-calculus expresions:
 <LcExpr> ::= <identifier> | variable use
 (lambda (<identifier>) <LcExpr>) | abstraction
 (<LcExpr> <LcExpr>) application

3. Use this grammar to derive ((lambda (x) (x y)) z)

4. Free and bound occurrences of variables. Formal definitions of occurs free and occurs bound (in box above)
5. Examples:In each of the following expressions, does x occur free and/or

occur bound?

• x

• t

• (x t)

• (lambda (x) (x t))

• ((lambda (x) x) x)

• (lambda (x) (lambda (t) (t x)))

6. The lexical depth of a bound occurrence of a variable is the number of
levels of nested lambdas and lets between this occurrence and the
variable's definition. In (lambda (x) (lambda (y) (x y))), the
occurrence of y has depth 0 and the occurrence of x has depth 1.

7. The lexical address of a bound occurrence of a variable is a pair (d p), where d is that occurrence's lexical depth, and p is the
variable's position within its "declaration list". The lexical address of a free variable includes the variable's name and an indication
that it is free.

Variable x occurs free in the LcExp e iff
one of the following is true:

F1. e is a variable, and e is the same as x.
F2. e is an abstraction (λ (y) e'), where y is different from x and x
occurs free in e'.
F3. e is an application (e1 e2), where x occurs free in e1 or in e2.

Variable x occurs bound in the LcExp e iff
one of the following is true:

B1. e is an abstraction (λ (y) e'), where x occurs bound in e', or x
and y are the same variable and x occurs free in e'.
B2. e is an application (e1 e2) where x occurs bound in e1 or in e2.

8. Example:
In (lambda (x z)
 (lambda (y)
 ((x y) z)))
The occurrence of x has depth 1 and position 0.
The occurrence of y has depth 0 and position 0.
The occurrence of z has depth 1 and position 1.

9. Example of output from the lexical-address procedure that you will write:

(lexical-address '(lambda (a b c)
 (if (eq? b c)
 ((lambda (c)
 (cons a c))
 a)
 b))) 

10. Exercise: What is the output from: Note: We are only looking at syntactic properties now.
 Don't worry about whether this code has a useful meaning in Scheme.

(lexical-address
 '((lambda (x y)
 (((lambda (z)
 (lambda (w y)
 (+ x z w y)))
 (list w x y z))
 (+ x y z)))

 (y z)))

(lambda (a b c)
 (if ((: free eq?) (: 0 1) (: 0 2))
 ((lambda (c)
 ((: free cons) (: 1 0 (: 0 0)))
 (: 0 0))
 (: 0 1)))

