
CSSE 304   Day 07 Summary  

1. After class:  Look over the solutions for matrix-transpose, minimize-interval-list, pascal-triangle, and largest-in-lists.  Write 
down questions that you have about them and ask someone (possibly me) sometime. 
 
 

 
2. Write (all-positive? lon) using map.     Why is this hard?  How do we get around this? 

 
 
 

3. What do we mean by the syntax of a programming language? 
 
What do we mean by the semantics of a programming language? 
 
The left-hand side of a context-free (BNF) grammar production always contains a single _______________   symbol. 
 

  A string that is in the language of a grammar consists of (circle one): 
                              terminals only        nonterminals only         both terminals and nonterminals 
 
4. A BNF Grammar (a.k.a. Context-free grammar) example: 

a. Nonterminals:  <exp>   <term>   <factor>   <number>   <digit> 
b. Terminals:       +    *    )    (    0    1    2    3    4    5    6    7    8    9 
c. Start Symbol:  <exp> 
d. Productions:   

i. <exp>        ::= <exp> + <term>  |  <term> 
ii. <term>      ::= <term> * <factor> | <factor> 

iii. <factor>    ::= ( <exp> )  | <number> 
iv. <number> ::= <number> <digit>   | <digit> 
v. <digit>      ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 

 
5. Show a derivation and a derivation tree for  1 * (2 + 34) from <exp>  [you will need to write small] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
What is the meaning of  Kleene *  ?                                                         Kleene + ? 
 
 
 

6. The slides contain (all in one place, the collection of grammars used in chapter 1 of  EoPL. 
e. <list-of-numbers>   ::= ( {<number>}* ) 
f. <s-list>                    ::= ( {<symbol-exp>}* ) 

<symbol-exp>         ::= <symbol> |  <s-list>     
g. <bintree>                 ::= <number>  |   ( <symbol> <bintree> <bintree> ) 
h. <BST>                     ::= ( ) | (<number>  <BST> <BST> 
i. <datum>                  ::= <number> | <symbol>     |   <string>    | <boolean>   |  <dotted-datum> | <list>  |   <vector> 

<list>                       ::= ( {<datum>}* ) 
<dotted-datum>       ::= ( {<datum>}+ . <datum> ) 
<vector>                  ::=  # <list> 

j. <LcExp>                 ::= Identifier   |                                                       ; variable reference 
                                     (lambda (Identifier) <LcExp>)  |                       ; abstraction 
                                     (<LcExp> <LcExp>)                                         ; application 
 

7. The s-list grammar can also be written as <s-list>  ::=  ()   |  (<s-exp> .  <s-list>) 
                                                                          <s-exp> ::=  <symbol>  |  <s-list> 
 
Examples of s-lists:  
 
 
 
 
 
 
 
8. (probably  tomorrow) we will write and test some of these procedures: 

a. contains? 
b. count-occurrences 
c. notate-depth 
d. flatten 
e. subst 

 
 


