1 Inductive Sets of Data

(define occcurs-free?
{(lambda (var exp)
(cond
{ (aymbol? exp) (eqv? var exp))
{(eqv? (car exp) lambda)
{and (not (eqgv? (caadr exp) var})
(occurs-free? var (caddr exp))))
{else {(or {occurs-free? var (car exp))
(occurs-free? var (cadr exp}l)il}))

{define occurs-bound?
(lambda (var exp)
{cond
({symbol? exp) #£)
((eqv? (car exp) ‘lambda)
{or {occurg-bound? var (caddr exp))
{and {eqgv? {caadr exp) var}

(cccurs-free? wvar (caddr exp)))})

{elge {or (cccurs-bound? wvar {car exp))
(occurs-bound? var (cadr exp)))))})

Figure 1.1 occurs-free? and occurs-bound?

Exercise 1.22 [*] Scheme lambda expressions may have any number of formal
parameters, and Scheme procedure calls may have any number of operands. Mod-
ify the formal definitions of occurs free and occurs bound to allow lambda expres-
sions with any number of formal parameters and procedure calls with any number
of operands. Then modify the procedures occurs-free? and occurs-bound? to
follow these new definitions.

Exercise 1.23 %] Extend the formal definitions of occurs free and occurs bound to
include 1 £ expressions.

Exercise 1.24 [**]| Extend the formal definitions of occurs free and occurs bound to
include Scheme let and let* expressions.

Exercise 1.25 [*] Extend the formal definitions of occurs free and occurs bound to
include Scheme quotations (expressions of the form (quote (datumy})).

Exercise 1.26 [**} Extend the formal definitions of occurs free and occurs bound to
include Scheme assignment {set |) expressions.

1.3.2

1.3 Scoping and Binding of Varinbles 33

Scope and Lexical Address

The next problem is to associate with each variable reference the declaration
to which it refers. It turns out to be easier to think about the reverse problem:
given a declaration, which variable references refer to it?

Typically, the binding rules of a language associate with each declaration
of a variable a region of the program within which the declaration is effective.
For example, in the Scheme expression

(lambda (x} ...}

the region for x is the body of the lambda expression, and in a top-level defi-
nition
(define x ...)

the region is the whole program.

This is not the entire story, however, because many modern languages,
including Scheme, allow regions to be nested within each other, as when one
lambda expression appears in the body of another. Such languages are said
to be block-structured, and the regions are sometimes called blocks.

For example, in Scheme the body of the Lambda expression above might
contain another declaration of x. In this case the inner declaration takes
precedence over the outer one. Consider

> (define x - ;o eall this x1
{lambda (x) ; call this x2

{(map
(lambda (x) ; call this x3
(+ x 1}) ; refers to =3
x}}) ; refers to x2
= {x (1 2 3)) ; refers to x1
{2 3 4}

Here the expression (+ x 1) is within the region of all three declarations of
x. It therefore takes its binding from the innermost declaration of x, the one
on the fourth line. Block-structured languages whose scope rules work in
this way are said to use lexical binding.

We define the scope of a variable declaration to be the text within which
references to the variable refer to the declaration. Thus the scope of a dec-
laration is the region of text associated with the declaration, excluding any
inner regions associated with declarations that use the same variable name.
We say that the inner declaration of x shadows the outer declarations of x, or

1 Inductive Sets of Data

that the inner declaration creates a hole in the scope of the outer one. Alter-
natively, we may speak of the declarations that are visible at the point of a
variable reference, meaning those that contain the variable reference within
their scope.

The declaration of a variable v has a scope that includes all references to
v that occur free in the region associated with the declaration. Those refer-
ences to v that occur bound in the region associated with its declaration are
shadowed by inner declarations.

Applying this to the preceding example, the region of the x declared on
the first line is the read-eval-print loop’s top level, which includes the body
of the definition: however, its scope does not include the body of the defined
procedure, since x does not occur free in the procedure (lambda (x} ...).
The scope of the formal parameter x in the fourth line is the lambda expres-
sion’s body, (+ x 1). This formal parameter creates a hole in the scope of
the formal parameter x in the second line. The scope of the x in the second
line includes the reference to x as the second argument to map, but not the
reference to x as the first argument to +. The inner declarations of x shadow
the outer declarations of x.

In a language with lexical binding, there is a simple algorithm for deter-
mining the declaration to which a variable reference refers. Search the
regions enclosing the reference, starting with the innermost. As each succes-
sively larger region is encountered, check whether a declaration of the given
variable is associated with the block. If one is found, it is the declaration
of the variable. If not, proceed to the next enclosing region. If the outer-
most (top-level or global) region is reached and no declaration is found, the
variable reference is free.

Exercise 1.27 [*] In the following expressions, draw an arrow from each variable
reference to its associated formal parameter declaration.

(lambda (x)
(lambda (y)
{ (lambda (x)
(x vy))
x))}

{lambda (=)
((lambda {a b c)
(a (lambda (a) {+ & <)) b})
{lambda (f x)
(f {z x)))))

1.3 Scoping and Binding of Variables 35

{lambda (x)
(lambda (y)
({(lambda (x)
{x v)]
X)i

(lambda (=z)
({(lambda {(a b ¢)

(a (lambda (a) [(+_a c}]) b))
(lambda (f x} (£ (z x))|)))

Figure 1.2 Contour diagrams

Exetrcise 1.28 [*] Repeat the above exercise with programs written in a block-
structured language, other than Scheme.

It is sometimes more helpful to picture the borders of regions, rather than
the interiors of regions. These borders are called contours. For example, the
contours in the preceding exercise can be drawn as in figure 1.2.

Execution of the scoping algorithm may then be viewed as a journey out-
ward from a variable reference. In this journey a number of contours may be
crossed before arriving at the associated declaration. The number of contours
crossed is called the lexical (or static) depth of the variable reference. It is cus-

tomary to use “zero-based indexing,” thereby not counting the last contour
crossed. For example, in

(lambda (x vy)
({lambda (a}
{(x (a v)})
x})

the reference to x on the last line and the reference to a have lexical depth

zero, while the references to x and y in the third line have lexical depth one.
The declarations associated with a region may be numbered in the order of

their appeatance in the text. Each variable reference may then be associated

1 Inductive Sets of Data

with two numbers: its lexical depth and its position, again using zero-based
indexing, of its declaration in the declaring contour (its declaration position).
Taken together, these two numbers are the variable reference’s lexical address.
To illustrate lexical addresses, we may replace every variable reference ©
in an expression by
(v:dp

where d is its lexical depth and p is its declaration position. The above exam-
ple then becomes

{lambda {x v

{({lambda (a)
{(x : 1 0) {{@ :+ 00) {y :11))3)

{(x : 0 0)))

Since the lexical address completely specifies each variable reference, vari-
able names are then superfluous! Thus variable references could be replaced
by expressions of the form (: dp), and formal parameter lists could be
replaced by their length, as in

{(lambda 2
{ {lambda 1
(t: 1 0) ({: 00} {: 1 1))})
{(: 0 0}))

Names for lexically-bound variables are certainly a great help in writing and
understanding programs, but they are not necessary in executing programs.

Exercise 1.29 [#] What is wrong with the following lexical-address expression?

{larbda (a)
{(lambda (a)
a : 1 0)))

Exercise 1.30 [¥] Write a Scheme expression that is equivalent to the following
lexical-address expression from which variable names have been removed.

{lambda 1
{(lambda 1
{: 1 0)))

Compilers routinely calculate the lexical address of each variable refer-
ence. Once this has been done, the variable names may be discarded uniess
they are required to provide debugging information.

1.3 Scoping and Binding of Variables 37

Exercise 1.31 [**] Consider the subset of Scherme specified by the BNF rules

{expression) = ({identifier)

u= (if {expression) {expression) {expression))
(lambda ({{identifier}}*} {expression})
{{{expression) }T)

1

1i

Write a procedure lexical-address that takes any expression and returns the
expression with every variable reference v replaced by alist (v : d p), as above.
If the variable reference v is free, produce the list (v free) instead.

> (lexical-address ’ (lambda (a b c)
(if (eqv? b C)
{ (lambda {c)
(cons a c))
al
b))
(lambda {a b c)
(if ({egv? free) (b : 0 1) (c : 0 2))
({(lambda (c)
({cons free) {a : 1 0) (¢ .0 0})})
(a : 0 0))
(b : 0 1)))

Exercise 1.32 [**] Write the procedure un-lexical -address, which takes lexical-
address expressions with formal parameter lists and with variable references of the
form (: d p),or (v free) and returns an equivalent expression formed by sub-
stituting standard variable references for the lexical-address information, or #£ if no
such expression exists.

> (un-lexical-address ’ (lambda (a)
{lambda

{
{((: 10 0 0) {: 0 1))

)

)

b ¢}
)|
(lambda {a) {(lambda (b ¢} (a b c)))
> {un-lexical-address * (lambda {a

#f

{lambda (a) (: 0 1))}))

Exercise 1.33 [**] Some languages do not allow an inner declaration to declare a
variable already declared in an outer declaration. Write a procedure that takes a
lambda calculus expression and checks to see if it contains such a redeclaration.

Further Reading

Scheme was introduced in (Sussman & Steele, 1975; 1998). Its development
is recorded in (Steele & Sussman, 1978; Clinger ¢t al., 1985; Rees et al., 1986;
Clinger et al., 1991; Kelsey ef al., 1998). The standard definitions of Scheme

1 Inductive Seis of Data

are provided by the TEEE standard (1991) and the Revised® Report on the Algo-
rithmic Language Scheme (Kelsey et al., 1998). (Dybvig, 1987; 1996) provides a
short introduction to Scheme that includes a number of insightful examples.

Those new to recursive programming and symbolic computation might
look at The Little Schemer (Friedman & Felleisen, 1996), or The Little MLer
(Felleisen & Friedman, 1996), or for the more historically-minded, The Little
LISPer (Friedman, 1974).

The lambda calculus was introduced in (Church, 1941) to study mathemat-
ical logic. Introductory treatments of the lambda calculus may be found in
(Hankin, 1994), (Peyton Jones, 1987), or (Stoy, 1977). (Barendregt, 1981; 1991)
provides an encyclopedic reference.

2.1

Data Abstraction

Specifying Data via Interfaces

Every time we decide to represent a certain set of quantities in a particular
way, we are defining a new data type: the data type whose values are those
representations and whose operations are the procedures that manipulate
those entities. ‘ o

The representation of these entities is often complex, so we do not want to
be concerned with their details when we can avoid them. We may also decide
to change the representation of the data. The most efficient representation is
often a lot more difficult to implement, so we may wish to develop a simple
implementation first and only change to a more efficient representation if
it proves critical to the overall performance of a system. If we decide to
change the representation of some data for any reason, we must be able to
locate all parts of a program that are dependent on the representation. This
is accomplished using the technique of data abstraction.

Data abstraction divides a data type into two pieces: an interface and an
implementation. The interface tells us what the data of the type represents,
what the operations on the data are, and what properties these operations
may be relied on to have. The implementation provides a specific represen-
tation of the data and code for the operations that makes use of the specific
data representation.

A data type that is abstract in this way is said to be an abstract data type. The
rest of the program, the client of the data type, manipulates the new data only
through the operations specified in the interface. Thus if we wish to change
the representation of the data, all we must do is change the implementation
of the operations in the interface.

