Problem list:
fornamed_let
named_let->letrec
dense? (graph problem)

#4 (10 points) Write fornamed_let which takes a for expression as specified below and returns the equivalent named let expression. This procedure replaces only the top-level for expression by an equivalent named let expression. You may assume that the for expression has the proper form. A for expression is defined as follows.

(for (<list of variables and values>) (<conditional expression>) (<list of update expressions>) body)

Examples:
(for->named_let '(for (([i 0][sum 0]) (< i 10) ([+ i 1][+ i sum])) sum))

(let loop ([i 0][sum 0])
 (if (< i 10)
 (loop (+ i 1) (+ i sum))
 sum))

(for->named_let '(for (([n 5] [accu 1]) (not (zero? n)) ([- n 1][* n accu])) accu))

(let loop ([n 5] [accu 1])
 (if (not (zero? n))
 (loop (- n 1) (* n accu))
 accu))

#5 (10 points) Write named_let->letrec which takes a named let expression and returns an equivalent letrec expression. This procedure replaces only the top-level named let expression by an equivalent letrec expression. You may assume that the let expression has the proper form.

Example:
	(named_let->letrec '(let loop ((i 0) (sum 0)) (if (< i 10) (loop (+ i 1) (+ i sum)) sum)))

	(letrec ((loop (lambda (i sum) (if (< i 10) (loop (+ i 1) (+ i sum)) sum)))) (loop 0 0))

#4 (10 points) dense? Write a Scheme predicate (dense? G n) that takes a graph and a number, and determines whether the graph is dense. Dense is defined as having at least n% of the maximum number of edges possible in a graph with the same number of vertices as g. For example:

(dense? '((a (b c d)) (b (a c d)) (c (a b d)) (d (a b c))) 100) #t
(dense? '((a (b c d)) (b (a c d)) (c (a b d)) (d (a b c))) 100.001) #f
(dense? '((alpha (beta)) (beta (alpha)) (gamma ())) 33) #t
(dense? '((alpha (beta)) (beta (alpha)) (gamma ())) 50) #f

From old A7 (added here Fall 2014)
#1 (10 points) vector-append-list (vector-append-list v lst) returns a new vector with the elements of lst attached to the end of v. Do this without using vector->list, list->vector, or append.
For this problem only, you may (and in fact must) use mutation: namely vector-set!
#8 (5 points) Write the procedure (exists? pred ls) that returns #t if pred applied to any element of ls returns #t, #f otherwise.

exists?: predicate relation  Boolean

Examples:
 (exists? number? '(a b 3 c d))  #t
 (exists? number? '(a b c d e))  #f

#10 (10 points) Write the procedure (product set1 set2) that returns a list of 2-lists (lists of length 2) that represents the Cartesian product of the two sets. The 2-lists may appear in any order.
product: set set  set of 2-lists

Examples:
(product '(a b c) '(x y)))  ((a x) (a y) (b x) (b y) (c x) (c y))
[bookmark: _GoBack]

