CSSE 304 Assignment #12 (interpreter assignment #1)
This is a pair assignment. The intention is not that you will use a divide-and-conquer approach but that you will all get together to do the work (I.e. pair or trio programming) so that everyone is involved in the solutions of all parts and everyone understands all of it. I will expect everyone to understand all of the code that the group submits, and to do your best to help others understand it. For each interpreter assignment, there will be a brief survey on ANGEL in which you will verify that this is the case.
When you submit it

· Include the usernames of other group member(s) on your submission form (only necessary for your final submission).

· If your interpreter code is distributed over several files (which I highly recommend),
a. Your main file should be main.ss. It should probably just load the other files.
b. Create a .zip file containing all of your source files, including main.ss. You do not have to include chez-init.ss in your .zip file.

c. Submit this .zip file for the A15 assignment on the server.
· After your team's final submission, each member should fill out the participation survey on ANGEL.

Collaborative test case development: I am making some test cases for the interpreter phases available in the PLC grading program.. If you think you have good tests that cover things (or combinations of things) that my test cases don't cover, please post them in the interpreter project folder on Piazza. I may add some of your test cases to the ones that the grading program uses. If I use your test case, I will give you a few homework bonus points.
(75 points) programming problem
This assignment is not conceptually difficult, but there are a few details to get straight. The simple parser and interpreter presented in class can be obtained from http://www.rose-hulman.edu/class/csse/csse304/201030/Homework/Assignment_12/A12-initial-code.zip . Your job is first to understand the given code, and then to add features to this parser and interpreter. You should substitute part or all of your own A10 parser for the simple parser that I provide. Some of the code that you need to add to your interpreter is in the EoPL book. Don't just blindly add it to your code, but be sure that you understand everything as you are adding it.
The textbook describes an alternate, Pascal-like syntax for the interpreted language. The authors' rationale is that you are less likely to get confused between the interpreted language and the implementation language (Scheme) in which you write the interpreter. However, I think you can handle interpreting Scheme-like syntax without much confusion, and that the benefits of writing a Scheme interpreter outweigh the disadvantages. For one thing, you can be sure that your interpreter is getting the correct answer for most expressions, because you can simply input the same expressions to Chez Scheme and see what it returns. Thus, whenever an exercise in the book describes a different syntax, you should use standard Scheme syntax instead.

Summary: The major features you are to add to the interpreted language in this assignment are:

· additional primitive procedures
· some constants ((), #t, and #f)
· quoted values
· string literals, such as "abc"
· vectors and vector constants, such as #(2 4 7)
· if

· let (not let* or named let; those will be in later assignments)
· lambda (just the normal lambda with a proper list of arguments)
· rep and eval-one-exp (two alternative interfaces to your interpreter)

I suggest that you thoroughly test each feature before adding the next one. Augmenting unparse whenever you augment parse is a good idea, to help you with debugging.
Most of my test cases will involve let and/or lambda.

A more detailed description of what you are to do:

For each feature, unless specified otherwise, the syntax and semantics should be the same as Scheme's.

Add the list and Boolean constants (), #t, and #f to the interpreted language. Also add string literals such as "abcd". You do not need to add any string-manipulation procedures, but it will be nice to at least be able to use strings for output messages. Add vector literals (as with strings, Scheme will do the "real" parsing; your parse-exp just has to call vector? to see if an expression is a vector).
Add interpreter support for quoted data.
Add if expressions to the interpreter. Most of the code is in the book, but you will have to adapt it to use boolean and other literal values–– in addition to the numeric values that it already handles. In the book's interpreted language, the authors represent true and false by numbers. In Scheme (and thus in your interpreter, any non-false value should be treated as true. The number 0 is a true value in Scheme (and in your interpreted language), but 0 is a false value in the book's language).

Note: Recall that if has two forms, with and without an "else" expression. You should support both.
Add several primitive procedures including +, -, *, /, add1, sub1, zero?, not, = and < (and the other numeric comparison operators) , and also the primitive procedures cons, car, cdr, list, null?, assq, eq?, equal?, atom?, length, list->vector, list?, pair?, procedure?, vector->list, vector, make-vector, vector-ref, vector?, number?, symbol?, set-car! , set-cdr!, vector-set! to your interpreter. Add the c**r and c***r procedures (where each "*" stands for an "a" or "d").

Note: You may simply use built-in Scheme procedures to implement most of the primitive procedures, as I did in the interpreter that I provided for you.

Add let (not named-let) expressions to the parser, with the standard Scheme syntax.
(let ((var exp)…) body1 body2 …). The ... is basically the same thing as the Kleene * (like the notation we used with define-syntax); it means "zero or more occurrences of the previous item". A let expression must have at least one body. (This work should have been done in a previous assignment). It is okay for you to interpret named let as well, but this is not required until a later assignment.
Add code similar to Section 3.4 to allow let expressions to be interpreted. Note that after the extended environment is created, the bodies are executed in order, and the value of the last body is returned. I suggest that you test this code and understand it thoroughly, before you go on to implement lambda.
 Add lambda expressions of the form (lambda (var ...) body1 body2 ...)

See the description of rep (short for "read-eval-print") below for a description of what to print if a closure is part of the final value of an expression entered at the top level in the interpreter.

Modify (the parser and interpreter) to signal an error if a closure is called with the wrong number of arguments.
In later assignments, you'll add many syntactic and semantic forms, including define, letrec, and set!
INTERFACES TO YOUR INTERPRETER

A. A normal interactive interface (read-eval-print loop)

This interface will be used primarily for your interactive testing of your interpreter and to facilitate interaction if you bring the interpreter to me for help. The user should load your code, type
 (rep)
and begin entering Scheme expressions. Your read-eval-print loop should display a prompt that is different from the normal Scheme prompt. It should read and evaluate an expression, print the value, and then prompt for the next expression. If the value happens to be (or contain) a closure, your interpreter should not print the internal representation of the closure, but instead it should print <interpreter-procedure>. For debugging purposes, you might want to write a separate procedure called rep-debug that behaves like rep, except that it displays the internal representation of everything that it prints, including procedures. Using trace on your eval-exp procedure can be a tremendous help, but be prepared to wade through a lot of output!
If the user types(exit) as an input expression to your interpreter, the interpreter should exit and simply return to the Scheme top-level. What happens when the user enters illegal Scheme code or encounters a run-time error? Ideally, the interpreter should print an error message and return to the "read" portion of the "read-eval-print" loop. Think about how you might do that. But I do not expect you to do it for this assignment. A sample transcript follows:

> (rep)
--> (+ 3 5)
8

--> (list 6 (lambda (x) x) 7)

(6 <interpreter-procedure> 7)

--> (cons 'a '(b c d))
(a b c d)

--> (let ([a 4])

 (+ a 6))
10

--> ((lambda (x)

 ((lambda (y)

 (+ x y))

 5))
 6)

11

--> (let ([t '(3 4)])

 (if (< (car t) 1)

 7

 (let ()

 (set-car! t (+ 1 (cadr t)))

 (cons (cadr t) (car t)))))

(4 . 5)
--> (((lambda (f)

 ((lambda (x) (f (lambda (y) ((x x) y))))

 (lambda (x) (f (lambda (y) ((x x) y))))))

 (lambda (g)

 (lambda (n)

 (if (zero? n)

 1

 (* n (g (- n 1)))))))

 6)

720

-->(exit)
B. single-procedure interface (eval-one-exp procedure)
I will use my grading program (and possibly an interactive run also) to test your program. I think this interface will also help you to do more automated testing yourself.

In addition to the (rep) interactive interface, you must provide the procedure eval-one-exp. The code I have given you below is intended to clarify its function, not to make you rewrite your interpreter. You will of course need to adapt it to your particular program. It may be possible to arrange things so that your rep procedure can call eval-one-exp.

(define eval-one-exp ; may need to be enhanced later.

 (lambda (exp) (eval-exp (parse exp))))))
>(eval-one-exp '(- (* 2 3) (* 6 3)))
-12

>

Note that eval-one-exp does not have to be available to the user when running your interpreter interactively. It only has to be available from the normal Scheme prompt.

CSSE 304
First interpreter assignment
04/11/14

