CSSE 304
Assignment 10
This is an individual assignment. It is important that each person do this to get up to speed on the concepts contained therein, which will be very important to the interpreter project.

Written problem (submit written or printed at the beginning of class)

1. (20 points) Draw a "closure and environments" diagram showing the closures and local environments created by execution of the following code, following the style used in the class examples.

· A closure has three parts (argument list, code, environment pointer).
· A local environment has two parts (table of variables and their values, and a pointer to an environment that comes from enclosing code (if any).
· Environment pointers always point to environments, never to closures.

· The value of a variable is never an environment.

· Place numbers by the environments and closures that you draw, to indicate the order in which they are created.

· For simplicity in the case of let, you may pretend that it is executed directly (without translation into an application of lambda) so that all you need to show is the environment extension, rather than a closure followed by the environment extension created by application of that closure.
· Also show the changes to the global environment.
[Hint: My solution introduces 5 local environments, 4 closures, and 2 changes to the global environment.]

(define compose2

 (lambda (f g)

 (lambda (x)

 (f (g x)))))

(define h

 (let ([g (lambda (x) (+ 1 x))]

 [f (lambda (y) (* 2 y))])

 (compose2 g f)))

(h 4)
Programming problems (due at 8:05 AM) No mutation is allowed.
1. (30 points) Use difference trees to implement integers as described in EoPL exercise 2.3, page34.
 While this is clearly not an efficient implementation, it gives you an opportunity to deal with the notion of abstract data types and their implementations. Notice that diff-trees are immutable, so it is okay for two diff-trees to share a common subtree. Define the following procedures, plus any others that you need as helpers.

(diff-tree? obj) Is this object a diff-tree?
(diff-tree-negate dt) Produces a diff-tree that represents the negative of the integer
 represented by dt.
(diff-tree-plus dt1 dt2) Produces a diff-tree that represents the sum of the integers

 represented by dt1 and dt2.
(diff-tree-minus dt1 dt2) Produces a diff-tree that represents the integer represented by dt1

 minus the integer represented by dt2.

(diff-tree-equal? dt1 dt2) Do diff-trees dt1 and dt2 represent the same integer?

The following user-interface procedures are not required, but they may be helpful as you develop test-cases and debug your code:

(diff-tree->integer dt) Produces the integer represented by dt.
(integer->diff-tree n) Produces a diff-tree that represents the integer n.
(diff-tree-successor dt)
(diff-tree-predecessor dt)

 Examples: (Note that because there are an infinite number of possible diff-trees that represent each integer, some of your answers may not be the same as mine):

> (define one '(one))
> (define zero '(diff (one) (one)))

> (define two (diff-tree-plus one one))
> two
(diff (one) (diff (diff (one) (one)) (one)))

> (define minus-two (diff-tree-minus zero two))
> minus-two

(diff

 (diff (one) (one))

 (diff (one) (diff (diff (one) (one)) (one))))

> (define four (diff-tree-minus two minus-two))
> four
(diff

 (diff (one) (diff (diff (one) (one)) (one)))

 (diff

 (diff (one) (one))

 (diff (one) (diff (diff (one) (one)) (one)))))

> (define minus-three (diff-tree-plus one (diff-tree-negate four)))
> minus-three
(diff

 (one)

 (diff

 (diff (one) (diff (diff (one) (one)) (one)))

 (diff

 (diff (one) (one))

 (diff (one) (diff (diff (one) (one)) (one))))))

> (diff-tree->integer minus-three)
-3

> (integer->diff-tree 8)
(diff

 (diff

 (diff

 (diff

 (diff

 (diff

 (diff (one) (diff (diff (one) (one)) (one)))

 (diff (diff (one) (one)) (one)))

 (diff (diff (one) (one)) (one)))

 (diff (diff (one) (one)) (one)))

 (diff (diff (one) (one)) (one)))

 (diff (diff (one) (one)) (one)))

 (diff (diff (one) (one)) (one)))

2. (85 points) You should use the definitions in http://www.rose-hulman.edu/class/cs/csse304/201030/Homework/Assignment_10/parse.ss as a starting point.

Details of the exercise:

· Copy the code to your computer and modify parse-exp and unparse-exp so that they work for all of the expressions that were legal for the occurs-free and occurs-bound exercises from Assignment 8, plus letrec and named let expressions.

· Allow multiple bodies for lambda, let (including named let), let*, and letrec expressions. Also allow (lambda x lambda-body …) (note that the x is not in parentheses) or an improper list of arguments in a lambda expression, such as
(lambda (x y . z) …).

· Add if expressions, with or without the third "else" expression; also add set! expressions.

· Expand the kinds of literals recognized by parse-exp to include strings, quoted lists (proper and improper), vectors, and the Boolean constants #t and #f. You may want to define a lit-exp variant of the expression datatype, and have parse-exp turn each of these cases into a lit-exp.

· Make parse-exp bulletproof. Add error checking to your parse-exp procedure. It should "do the right thing" when given any Scheme data as its argument. Error messages should be as specific as possible (that will help you tremendously when you write your interpreter in a later assignment). Call the eopl:error procedure (same syntax as Chez Scheme's error, whose documentation can be found at http://www.scheme.com/csug/system.html#g2206) ; the first argument to eopl:error must be 'parse-exp. This will enable the grading program to process your error message properly, recognizing that the error is generated by your program rather than by a built-in procedure.

· Modify unparse-exp so it accepts as input any expression object produced by parse-exp, and returns the original concrete syntax expression that produced that parsed expression. Suggestion: when you modify or add a case to parse-exp, go ahead and make the corresponding change to unparse-exp and test both.
The grading program will have two kinds of tests for this assignment:

1. Call parse-exp with an argument that is not a valid expression, then check to make sure that your program flags it as an error (see above description of how to do this).

2. Call (unparse-exp (parse-exp x)), where x is a valid expression, and check to see if you get back the original expression. I will never directly compare the output of your parse-exp to any particular answer, since you have some leeway in what your parsed expressions look like. Note: It is possible to "pass" these tests by simply defining both procedures to be the identity procedure, so that you do not parse at all. This is clearly unacceptable.
Here are some examples of what parse-exp might do. Your results from parse-exp do not have to be identical to mine, except that the error cases must call eopl:error with first argument 'parse-exp, so that the output (in Chez Scheme, at least) will begin with "Error in parse-exp". The second example is not a sample test case, since I stated that I will not call this procedure this way; it is simply intended to show what your procedure might produce. There is another example in the PowerPoint slides from the day when we introduced parsing.
The output that I show in the second example is from Chez Scheme, where constructors based on define-datatype are transparent (you can see the contents of what they produce). In DrScheme, they are opaque. The Chez Scheme records are much nicer for debugging. As in Assignment 9, your code that uses records must be representation-independent; you must use cases rather than car and cdr to access the fields of a record.

> (parse-exp '(let ((w x y)) z))
Error in parse-exp: Invalid concrete syntax (let ((w x y)) z).

> (parse-exp '(lambda x (if (< x (* x 2)) #t "abc")))

(lambda-exp

 variable

 (x)

 ((if-exp

 (app-exp

 (var-exp <)

 ((var-exp x)

 (app-exp (var-exp *) ((var-exp x) (lit-exp 2)))))

 (lit-exp #t)

 (lit-exp "abc"))))
> (unparse-exp
 (parse-exp

 '((lambda (x)

 (if x 3 4))
 5)))

((lambda (x)

 (if x 3 4))

 5)

Note that the outer list surrounding the if-exp is because a lambda (or a let, let*, letrec) can have multiple bodies. This one has only one body, thus a we have list of one expression.

The symbol 'variable in the parsed expression is to indicate that when this code is executed, it produces a procedure that can take a variable number of arguments (because in the original code it is (lambda x …) rather than lambda (x) …). This is one of several ways that you might handle that special case. Another approach is to have a separate data-type variant, lambda-exp-variable.

CSSE 304 Assignment 8
Page 1
04/19/10

