CSSE 304
Assignment 8

This assignment has only four problems, but they are non-trivial. Start early!

This is an individual assignment.
No input error-checking is required. You may assume that all arguments have the correct form.

Abbreviation for the textbook:
EoPL - Essentials of Programming Languages, 3rd Edition.

No mutation is allowed in your solutions to the problems in this assignment.

Programming problems

#1 (15 points) free-vars, bound-vars. Given a LcExp e, (free-vars e) returns the set of all variables that occur free in e. bound-vars is similar. Write these procedures directly; do not use occurs-free or occurs-bound in your definitions. Your code only needs to process the simple lambda-calculus expressions from the grammar on page 9 of EoPL, not the extended expressions from problems 3 and 4 from this assignment.

> (free-vars

 '((lambda (x) (x y)) (z (lambda (y) (z y)))))

(y z)

> (bound-vars

 '((lambda (x) (x y)) (z (lambda (y) (z z)))))

(x)

#2 (40 points) Expand occurs-free? and occurs-bound? to incorporate the following language features from all of these problems into your code. You can find the original occurs-free? and occurs-bound? from the textbook at

 http://www.rose-hulman.edu/class/csse/csse304/201030/Resources/Code-from-Textbook/1.scm
a) Scheme lambda expressions may have any number of formal parameters, and Scheme procedure calls may have any number of operands. Modify the formal definitions of occurs-free? and occurs-bound? to allow lambda expressions with any number of formal parameters and procedure calls with any number of arguments. Then modify the procedures occurs-free? and occurs-bound? to follow these new definitions.
b) Extend the formal definitions of occurs-free? and occurs-bound? to include if expressions.
c) Extend the formal definitions of occurs-free? and occurs-bound? to include Scheme let and let* expressions.
d) Extend the formal definitions of occurs-free? and occurs-bound? to include Scheme assignment (set!) expressions. Note that set! does not bind any variables.
(occurs-bound? 'x '(lambda (y) (set! x y)))
  #f
(occurs-free? 'y '(lambda (x a b) y))
 #t

(occurs-free? 'b '(let* ((y a) (x b)) ((x y) z)))
 #t

(occurs-free? 'set! '(lambda (x) (set! x y)))
 #f ; set! is Scheme syntax, not a variable
(occurs-bound? 'z '(lambda () (let* ((x a) (y x)) (if (y z) (lambda () x) (lambda () y)))))  #f

#3 (40 points). lexical-address. Write a procedure lexical-address that takes expressions like those from the previous problem and returns a copy of the expression with every bound variable reference v replaced by a list (: d p). If the variable reference v is free, produce the following list instead: (: free xyz) To produce the symbols : and free, use ’: and ’free.
Hint: It may be easiest to do this with a recursive helper function that keeps track of bound variables and their levels as it descends into various levels of the code.

Examples:

(lexical-address '(lambda (a b c)

 (if (eq? b c)

 ((lambda (c)

 (cons a c))

 a)

 b))) 

(lambda (a b c)

 (if ((: free eq?) (: 0 1) (: 0 2))

 ((lambda (c) ((: free cons) (: 1 0) (: 0 0)))

 (: 0 0))

 (: 0 1)))

(lexical-address

 '((lambda (x y)

 (((lambda (z)

 (lambda (w y)

 (+ x z w y)))

 (list w x y z))

 (+ x y z)))

 (y z))) 

((lambda (x y)

 (((lambda (z)

 (lambda (w y)

 ((: free +) (: 2 0) (: 1 0) (: 0 0) (: 0 1))))

 ((: free list) (: free w) (: 0 0) (: 0 1) (: free z)))

 ((: free +) (: 0 0) (: 0 1) (: free z))))

 ((: free y) (: free z)))

(lexical-address

 '(lambda (a b c)

 (if (eq? b c)

 ((lambda (c) (cons a c))

 a)

 b))) 
(lambda (a b c)

 (if ((: free eq?)(: 0 1) (: 0 2))

 ((lambda (c) ((: free cons) (: 1 0) (: 0 0)))

 (: 0 0))

 (: 0 1)))
#4 (20 points*). un-lexical-address. Its input will be in the form of the output from lexical-address , as described in the previous problem. When I test it, I will evaluate
 (un‑lexical‑address (lexical‑address <some‑expression>))

and see if I get back the original expression. You cannot get credit for this problem unless you also get some of the points for lexical-address. [For example, someone who defined both lexical-address and un-lexical-address to be the identity procedure would trick the grading program into giving them full credit for un-lexical-address, but would earn zero points for both problems as their actual grade after we look at the code by hand.]

* Lexical-address is much harder than un-lexical-address, but flaws in lexical-address will be discovered when writing/testing un-lexical-address.

CSSE 304 Assignment 8
Page 2
04/13/10

