CSSE 304

Assignment 7

The programming problems may be done alone or with one other student. The intention is that you get together and do pair programming, not that you split up the problems so each of you only has to do half of them. If you do it with a partner, both partners are responsible for making sure that each partner understands all of your code and could do similar problems individually if called upon to do so. Either partner can submit the assignment. Carefully enter your partner's username on the grading program submission page (You must do this the last time you submit). Also, place both partner's names in a comment at the top of your code, along with a statement that says that each of you believes the other understands the code you are submitting (if you don't believe that about your partner, don't put his/her name on the assignment). Your partner does not have to be in the same section of CSSE 304 as you.
If you would like to work with a partner but do not know who to work with, send me an email message by 11AM on Monday, March 29 with the subject line

 CSSE 304: Need a partner for A7.

If someone else sends me such an email, I will match you with them. If I have choices, I will match you with someone whose homework performance so far is similar to yours. By sending me such an email you are implicitly agreeing to work with whoever I assign to you and to do your share of the work.

No input error-checking is required. You may assume that all arguments have the correct form.

Abbreviations for the textbook:
EoPL
- Essentials of Programming Languages, 3rd Edition.

No mutation is allowed, except on the iterator problem, where mutation is necessary.

Programming problems

#1 (20 points) Recall the following syntax definition from page 9 of EOPL:

 <bintree> ::= <number> | (<symbol> <bintree> <bintree>)

Write a bt-recur procedure, similar to the list-recur and snlist-recur procedures from class and the previous homework. Calling bt-recur produces a procedure that recurs over all of the elements of a bintree.

Then use bt-recur to create the following two procedures:

· (bt-sum T) finds the sum of all of the numbers in the leaves of the bintree T.

· (bt-inorder T) creates a list of the symbols from the interior nodes of T, in the order that they would be visited in an inorder traversal of the binary tree.

The following transcript should help your understand what bt-sum and bt-inorder do. I do not show the code that was used to construct t1.

> t1

(a (b 1 4) (c (d 2 5) 3))

> (bt-sum t1)

15

> (bt-inorder t1)

(b a d c)

> (define t2 (list 'e 6 t1))

> t2

(e 6 (a (b 1 4) (c (d 2 5) 3)))

> (bt-sum t2)

21

> (bt-inorder t2)

(e b a d c)

Note: Just as in the snlist-recur problems from the previous assignment, the definitions of bt-sum and bt-inorder should not contain any explicit recursive calls. All recursion must be produced by bt-recur.

#2 (30 points). S-lists are defined on page 8 of EoPL. You are to write a procedure called make-slist-leaf-iterator. This procedure takes an s-list as its argument, and returns a iterator procedure that takes no arguments (a.k.a. a thunk). Each time the iterator procedure is called, it returns the next symbol from the s-list. If the iterator is called again after the symbols from the s-list have been exhausted, it returns #f. An example should help you to understand what an s-list leaf iterator is supposed to do (things in bold are the things that I typed, the others are Scheme's responses):

> (define iter (make-slist-leaf-iterator '((a (b c) () d) () e)))

> (iter)

a

> (iter)

b

> (iter)

c

> (iter)

d

> (iter)

e

> (iter)

#f

> (iter)

#f

Obviously the iterator procedure must maintain a state if it is to exhibit this behavior.

One simple approach to creating the iterator would be to simply call flatten on the s-list, and then simply use cdr to traverse the resulting list. However, this approach has a property that no iterator should have! It requires visiting every symbol in the s-list before the iterator is asked to return the first symbol from the s-list. If we create an iterator procedure for an s-list that contains thousands of symbols, but then we call that iterator only a few times, the iterator should not have to deal with all of the symbols in the s-list.

Thus you are not allowed to use any such approach that "preprocesses" the entire s-list in order to make the iteration simpler.

The standard way to do tree iterators is to use a stack to keep track of subtrees whose left side we have already visited. In this case, the stack will keep track of cdrs of the pairs whose cars we have already visited. The idea is similar to the tree iterators presented in chapter 18 of the CSSE 230 book: Mark Allen Weiss, Data Structures and Problem Solving using Java, 3nd Edition.

You may want to write mutually-recursive helper procedures, similar in function to Weiss's first and advance methods.

Should an s-list leaf iterator do a preorder or postorder traversal? It doesn't matter, since we are only iterating the leaves; preorder and postorder visit the leaves in the same order.

Be careful about empty sublists. Notice in the example above that the iterator skips them.

My version of an s-list leaf iterator procedure has only one persistent local variable, a stack object.

To make things a little bit easier for you, here is the code that I used for constructing a stack (You can find it in

http://www.rose-hulman.edu/class/csse/csse304/201030/Homework/Assignment_07/stack.ss)

(define make-stack

 (lambda ()

 (let ([stk '()])

 (lambda (msg . args)

 (case msg

 [(empty?) (null? stk)]

 [(push) (set! stk (cons (car args) stk))]

 [(pop) (let ([top (car stk)])

 (set! stk (cdr stk))

 top)]

 [else (error 'stack "illegal message to stack object: ~a" msg)])))))

#3 (25 points) On pp 20-22 of EoPL, you should have read about (subst new old snlst), which substitutes new for each occurrence of old in the sn-list snlst. Recall that sn-lists are defined in Assignment 6, and are based on s-lists from page 8 of EoPL. Recall that an sn-list consists of arbitrarily-nested lists (possibly empty) of symbols and numbers. Now write subst-leftmost, which takes the same arguments (plus a comparison predicate, described below), but only substitutes new for the leftmost occurrence of old. By "leftmost", I mean the occurrence that would show up first if Scheme printed the list Another way of saying it is "the one that is encountered first in a preorder traversal". Your procedure must “short-circuit”, i.e. avoid traversing the cdr of any sublist if the substitution has already been done anywhere in the car of that sublist. You should only traverse the parts of the tree that are necessary to find the leftmost occurrence and do the substitution, then copy the references to all of the remaining cdrs without traversing the sublists of those cdrs. I.e., yYou must not traverse the same sublist twice.

In order to make the procedure slightly more general (and easier to test), subst-leftmost will have an additional argument that subst does not have. It is an equality procedure, used to determine whether an individual symbol or number in the list matches old.

(subst-leftmost 'k 'b '((c d a (e () f b (c b)) (a b)) (b)) eq?)  ((c d a (e () f k (c b)) (a b)) (b))

(subst-leftmost 2 1 '(3 (-1 5) 1 4) (lambda (x y) (= (abs x) (abs y))))  (3 (2 5) 1 4)

(define subst-leftmost ; substitute new for the leftmost occurrence of old in snlist (occurrence defined by equality-pred?)

 (lambda (new old snlist equality-pred?) ; you fill in the rest .
 ...))

Note: Mutation could be used effectively in this problem, but I want you to get a bit more practice on purely functional programming, and this problem will certainly give you that practice!

CSSE 304 Assignment 7
Page 1
03/26/10

