
CSSE 304
Assignment 3

Objectives You should learn

· to write procedures that meet certain specifications.

· To deal with first-class procedures.

· to write recursive procedures in a functional style.

· to test your code thoroughly.

Administrative preliminaries (See assignment 2 for the details of each of these):

This is an individual assignment.

Comments at the beginning of your file, and before each problem.

Turning in this assignment. Upload it for assignment A3 in the PLC grading program.

Restriction on Mutation continues.

Reading Assignment: See the schedule page

Problems to turn in: For many of these, you will want to write one or more helper procedures.
#1 (10 points) curry2. This is EoPL-1 Exercise 1.3.4, page 28. Note the example that is part of the problem. Recall that EoPL-1 is the "4 pages per page" handout that was distributed on the first day of class.
#2 (10 points) EoPL-1 Exercise 1.3.5, page 28. Call your procedure curried-compose .

For example, (((curried-compose car) cdr) '(a b c)) => b
#3 (10 points) compose. EoPL-1 Exercise 1.3.7, page 29. This one will most likely begin

 (define compose

 (lambda list-of-functions ; notice the lack of parentheses around the argument name.

((compose list list) 'abc) => ((abc))

((compose car cdr cdr) '(a b c d)) => c

#4 (10 points) Write the procedure make-list-c that is a curried version of make-list.

(Note that make-list is described in TSPL Exercise 2.8.3, and the code for it is in the Solutions section at the end of TSPL).

We also developed it in class during Week 1.

For example, ((make-list-c 3) 'xyz) => (xyz xyz xyz)

For example, (let ([triple (make-list-c 3)])

 (triple "cat")) => ("cat" "cat" "cat")

make-list-c : Integer  (SchemeObject  Listof(SchemeObject))

#5 (5 points) A matrix is a rectangular grid of data items. We can represent a matrix in Scheme by a list of lists (the inner lists must all have the same length. For example, we represent the matrix

	1
	2
	3
	4
	5

	4
	3
	2
	1
	5

	5
	4
	3
	2
	1

by ((1 2 3 4 5) (4 3 2 1 5) (5 4 3 2 1)) . We say that this matrix has 3 rows and 5 columns or (more concisely) that it is a 3×5 matrix. A matrix must have at least one row and one column.

Write a Scheme procedure (matrix-ref m row col), where m is a matrix, and row and col are integers. Like every similar structure in modern programming languages, the index numbers begin with 0 for the first row or column. This procedure returns the value that is in row row and column col of the matrix m. Your code does not have to check for illegal inputs or out-of-bounds issues.

matrix-ref : Listof(Listof(Integer))  Integer  Integer  Integer

For example, if m is the above matrix,

(matrix-ref m 0 0)  1

(matrix-ref m 1 3)  1

(matrix-ref m 2 2)  3

[Hint: Your code may call the Scheme list-ref procedure .]

Background for problems 6–8 A graph can be represented in Scheme as a list of vertices. A vertex is represented a list containing a symbol and a list of symbols. These are the name of the vertex and a list of the names of the vertices directly adjacent to it. No two verticies may be labeled with the same symbol. Also, no vertex can be adjacent to itself. For example, the complete graph on three symbols could be represented as '((a (b c)) (b (a c)) (c (a b))). Undirected graphs assume that if an edge exists between a and b then b will appear in a’s edge list and a will appear in b’s. Assume that graphs are undirected unless told otherwise.

#6 (5 points) max-edges. Write a Scheme procedure (max-edges n) that takes a nonnegative integer and returns the maximum number of edges that an undirected graph of n vertices could have. The formula is well-known. Look online if you don’t know it already. Do not use the factorial function. This should be able to run on very large inputs.

max-edges : Integer  Integer

For example

(max-edges 0)
 0

(max-edges 1)
 0

(max-edges 2)
 1

(max-edges 14)
 91

#7 (15 points) complete? Write a Scheme predicate (complete? G) that takes a graph, G (you may assume that it is a valid graph), and determines whether it is complete (i.e. every vertex is directly connected by an edge to every other vertex once but not to itself). Note that the null graph and the graph containing only one vertex are both complete. You may assume G is a valid graph, as defined in assignment 2.

Complete? : Graphof(Symbol)  Boolean

For example:

(complete? '((a (b c d)) (b (a c d)) (c (a b d)) (d (a b c))))  #t

(complete? '((alpha (beta)) (beta (alpha)) (gamma ())))  #f
(complete? '())  #t

#8 (15 points) complete. Write a Scheme procedure (complete ls) that takes a list of symbols and returns the complete graph on vertices labeled with those symbols.

complete: Listof(Symbol)  matrix-ref : Graphof(Symbol)

For example:

(complete '(a))

 ((a ()))

(complete '(a b c))

 ((a (b c)) (b (a c)) (c (a b)))

(complete '())

 ()

(complete? (complete '(q w e r t y u i o p)))
 #t

#9 (20 points) pascal-triangle. If you are not familiar with Pascal’s triangle, see this page: http://en.wikipedia.org/wiki/Pascal_triangle . The first recursive formula that appears on that page will be especially helpful for this problem.
Write a Scheme procedure (pascal-triangle n) that takes an integer n, and returns a “list of lists” representation of Pascal’s triangle. The required format should be apparent form the examples below (note that line-breaks are insignificant; it’s just the way Scheme’s pretty-printer displays the output):

pascal-triangle : Integer  Listof(Listof(Integer))

> (pascal-triangle 4)

((1 4 6 4 1) (1 3 3 1) (1 2 1) (1 1) (1))

> (pascal-triangle 12)

((1 12 66 220 495 792 924 792 495 220 66 12 1)

 (1 11 55 165 330 462 462 330 165 55 11 1)

 (1 10 45 120 210 252 210 120 45 10 1)

 (1 9 36 84 126 126 84 36 9 1)

 (1 8 28 56 70 56 28 8 1)

 (1 7 21 35 35 21 7 1)

 (1 6 15 20 15 6 1)

 (1 5 10 10 5 1)

 (1 4 6 4 1)

 (1 3 3 1)

 (1 2 1)

 (1 1)

 (1))

> (pascal-triangle 0)

((1))

> (pascal-triangle -3)

()

You should seek to do this simply and efficiently. You may need more than one helper procedure. If your collection of procedures for this problem starts creeping over 25 lines of code, perhaps you are making it too complicated. There is a straightforward solution that is considerably shorter than that.

#10 (15 points). This part is not to be submitted to the PLC grading web site, but rather printed and submitted in class.
First, include your code from Problem #9.

(a) Do a big-theta analysis of your code. I.e., is it Θ(N), Θ(N2), Θ(N3), Θ(N log N), or what? Don’t just give an answer, but explain how you arrive at it. Be sure to take into account the run-time of the standard Scheme procedures that you use. For example, because we know how a list is represented internally, we know that the running time for length when called on a list of N items must be Θ(N).

(b) What is the theoretical minimum big-theta running time for any code that produces the first N rows of Pascal’s triangle? How do you know?

Note: For both parts of this problem, you may assume that simple arithmetic operations (like * and +) are constant time operations, even though this is not strictly true.
Note: Some of the problems in this assignment are somewhat challenging. Start early; plan to get a few of the problems done each day.
CSSE 304 Assignment 3
Page 1
03/17/10

