CSSE 304 Assignment 1 Updated for 2014
Objectives You should learn

· the mechanics of editing and running Scheme programs.

· to write procedures that meet certain detailed specifications. (especially on problem #4)
· to test your code thoroughly.

Especially during the first two weeks, it is crucial that you don't get behind.

The textbooks all have numerous exercises. You should read and give at least a little bit of thought to several of the exercises in the books, and actually work out as many as time allows. Some of the exercises in EoPL contain information that is crucial to understanding the later material in the text. I will assign all of these, but some will simply be thought problems rather than problems to turn in. This is because for many of these problems, the time required for writing them up would be greater than the time required to understand them.

Administrative preliminaries (most of these apply to later assignments also):

This is an individual assignment. You can talk to anyone you want and get as much help as you need, but you should type in the code and do the debugging process, as well as the submission process.

The best way to learn Scheme is to jump in and do it. Hopefully the first problems are “shallow water” problems that you can wade into slowly; later the water begins to get deeper quickly.

Assume that parameters' data types are correct: Unless a problem statement (on this and all CSSE 304 assignments) says otherwise, you may assume that each procedure you write will only be called with the correct number and correct type(s) of arguments. Your code does not have to check the argument count or argument types, unless different kinds of correct input are allowed. Of course, code that is very robust would check these things, but in most assignments for this course I want your focus to be on correctly processing correct arguments.

Indentation and style. Your programs should generally follow the rules in http://www.cs.indiana.edu/proglang/scheme/indentation.html .
I will not be extremely strict about this, but I do want your code to be readable.

Square brackets: Chez Scheme allows you to use a [] pair anywhere that a () pair may be used. Feel free to do this to make it easier to match parentheses and easier to read your code. Especially in

· The various clauses of cond or cases.

· The various variable definitions in a let, let* or letrec.

I will illustrate these uses of square brackets in numerous in-class examples.
At the beginning of your solution file (I suggest naming it 1.ss), there should be a comment that includes your name and the assignment number. Before the code for each problem, place a comment that includes the problem number. Please place the code in your file in order by problem number. If you write an additional helper procedure, place its definitions just after the first procedure that calls it.
Automatic grading program. Most of the programming assignments will be checked for correctness by the online grading program, http://plc.csse.rose-hulman.edu. A certain number of points will be given for each test case. The grading program does not check for style issues, so those checks will be done by hand later for some of the assignments. In order to get all of the points for correctness, it is essential that each procedure that you write has the exact name that is specified in the problem, and that it expects the correct number of arguments of the correct types. In general, no partial credit will be given on programming problems unless your code actually works for some of my test cases. The grading program is not the final authority. If you believe that it has made an error, counting your correct code as incorrect, talk to me. While I try to be very careful, it is certainly possible that the problem is with my test cases instead of your program.

In previous courses, you were usually shown the test data in advance; one of my goals for this course is that you learn to write your own test cases, so I will sometimes not show you my test cases are until after the program is due. But the program will tell you how many points you get for each problem, so if something is wrong you will know it and have an opportunity to try to figure out what is wrong and fix it.

The PLC server, seems to work best in Firefox, although it may also work in other browsers (so far, looks good to me in Chrome). There is no limit to how many times you may submit each assignment, although I urge you not to use it as a substitute for your own off-line testing. For some assignments, I will provide a test-cases.ss file that contains the same test-cases that the grading program uses, so you can test your code off-line instead of repeatedly submitting to the server. With nearly 100 students in the class, the server will likely become sluggish if everyone uses the server for every test run.
Submitting this assignment. All of your Scheme code should be placed in one file; a good name is 1.ss.

Go to http://plc.csse.rose-hulman.edu/, and log in using your Rose-Hulman network username and password. Click Student and Assignment 1, then click the Browse button and browse to your 1.ss file. Finally, click upload. If you do not get all of the points, you can change your 1.ss file and re-submit as many times as you wish. But …
Be courteous: Test your code on your computer before each submission to the grading program. Using the server to test things that you can test off-line will slow down the server for everyone.

Recap: Test-case file for off-line testing: This test-case file may be helpful. Let me know if you discover any errors in it.

Grading program disclaimer: The grading program is made available before assignments are due as a service to you. It is intended as a tool to help you discover the existence of some errors in your program. If the program gives you all of the possible points, it is likely that your code is correct not a guarantee; it merely says that your code passes all of the tests that I have placed on-line. You are still responsible for thinking of your own test cases to thoroughly test your code. I will rarely do this, but I reserve the right to use additional test cases when I actually grade your code. Also, if a "by hand" inspection of your code reveals significant issues in correctness, efficiency, or style, your score for a problem may be less than what the grading script says. The grading server is provided as a convenience to you and me. If it ever goes down, you have the means to test your program without it. If it does go down, send email to csse304-staff@rose-hulman.edu.
Important: Restriction on Mutation. One of the main goals of the first several assignments is to introduce you to the functional style of programming, in which the values of variables are never modified (In Java we could accomplish this by declaring all variables final, but Java language limitations would make this impractical). Until further notice, you may not use set! or any other built-in procedure whose name ends in an exclamation point. Nor may you use any procedures that do input or output. It will be best to not use any exclamation points at all in your code. You may receive zero credit for a problem if any procedure that is part of your solution for that problem changes the value of any existing variable or reads a value from a file. Note that let and lambda do not do mutation; you can use them freely.

Abbreviations for the textbooks:
EoPL
- Essentials of Programming Languages, 3rd Edition

TSPL
- The Scheme Programming Language, 3rd Edition (available online free)

EoPL-1
- Essentials of Programming Languages, 1st Edition

 (small 4-up excerpt handed out in class)

Reading Assignment and thought problems

Continue the reading assignments on the schedule page. In both TSPL and EoPL-1, you will encounter a few difficult concepts that we will clarify in class during the next few class days. From the reading, I want you to get the simple ideas yourself, and get exposure to the more difficult material, so it will make more sense when we discuss it in class.
Consider TSPL Exercise 2.2.3. For each part, figure out what the value should be, then try it out in Scheme to see if you are correct. If not, try to understand why (ask for help if needed).

Think about TSPL Exercises 2.2.4 and 2.2.5. Also 2.4.1 and 2.4.2 (if you think you have the right answers, you can check by trying it in Scheme).

Do Exercise TSPL 2.5.1. It would be silly for me to collect and grade it, because everyone can get the correct answers by simply entering the expressions in Scheme. So your goal, as always, should be to understand how these things work.

Much of the EOPL-1 reading will duplicate Assignment 0’s reading in TSPL, but I believe it is good for you to get more than one perspective on this. You should do EOPL-1 exercises 1.2.1, 1.2.2, and 1.2.3 mentally; then enter the code into Scheme to check your work. There is nothing to turn in for these exercises. Page 22 is challenging—see the Assignment 0 FAQ.
If you find some of the reading to be rough going, don’t panic. The authors of both books have a habit of going along explaining simple stuff and suddenly throwing in an example that is very challenging. Just slow down, read it a couple more times, and write down questions that you can ask me, the assistants, or other students later.
Programming Problems to turn in (there are six problems):
In all of these problems, you may assume that the procedures that you write will be called with legal arguments. You do not have to check for illegal input. For example, you may assume that the argument to the procedure from problem #1 is an integer or a rational number.

#1 (5 points) Write a Scheme procedure (Fahrenheit->Celsius temperature) that takes an integer or rational number temperature as its argument. The argument represents a Fahrenheit temperature, and the procedure returns the corresponding Celsius temperature as an integer or rational number..

In the notation of EoPL, Fahrenheit->Celsius : Number  Number

I.e., Fahrenheit→Celsius is a function that takes a number as an argument and returns a number.
Examples:

 (Fahrenheit->Celsius 32) => 0

 (Fahrenheit->Celsius 0) => -160/9

 (Fahrenheit->Celsius -40) => -40

 (Fahrenheit->Celsius 241/5) => 9

Did you forget the conversion formula? A search on Google for "Fahrenheit to Celsius" may help. Be sure to use integers or fractions, not floating-point numbers, in your conversion code.

Background for problems 2-4 A (closed) interval of real numbers includes all numbers between the endpoints (inclusive). We can represent an interval in Scheme by a list of two numbers ′(first second). This represents the interval {x : first ≤ x ≤ second }. We will not allow empty intervals, so first must always be less than or equal to second. If first = second, the interval contains exactly one number.

#2 (5 points) Write a Scheme procedure (interval-contains? interval number) where interval is an interval and number is a number. It returns a Boolean value that indicates whether number is in interval.

interval-contains? : Interval  Number  Boolean

Examples:

 (interval-contains? '(5 8) 6) => #t

 (interval-contains? '(5 8) 5) => #t

 (interval-contains? '(5 8) 4) => #f

 (interval-contains? '(5 5) 14) => #f

#3 (8 points) Write a Scheme procedure (interval-intersects? i1 i2) where i1 and i2 are intervals.

It returns a Boolean value that indicates whether the intervals have a nonempty intersection. The intersection is allowed to be a single point.
interval-intersects? : Interval  Interval  Boolean

Examples:

 (interval-intersects? '(1 4) '(2 5))
=> #t

 (interval-intersects? '(2 5) '(1 14))
=> #t

 (interval-intersects? '(2 5) '(1 2))
=> #t

 (interval-intersects? '(1 1) '(1 1))
=> #t

 (interval-intersects? '(1 3) '(12 17))
=> #f

#4 (8 points) The union of two intervals is a list containing

· both intervals, if the intervals don’t intersect, or

· a single, possibly larger, interval if the intervals do intersect.

Write a Scheme procedure (interval-union i1 i2) that returns the union of the intervals i1 and i2.

interval-union: Interval  Interval Listof(Interval)

Examples (make careful note of the form of the values returned by the first three):

 (interval-union '(1 5) '(2 6)) => ((1 6))

 (interval-union '(1 5) '(2 4)) => ((1 5))

 (interval-union '(1 5) '(5 5)) => ((1 5))

 (interval-union '(1 5) '(15 25)) => ((1 5) (15 25))

 (interval-union '(5 5) '(25 25)) => ((5 5) (25 25))

#5 (4 points) Write the procedure (divisible-by-7? num)

that returns #t if num is divisible by 7, and #f otherwise.

divisible-by-7? : NonNegativeInteger  Boolean

Examples:

 (divisible-by-7? 12) => #f

 (divisible-by-7? 21) => #t

You may assume that num is a positive integer (and your code does not have to test for this).

The Scheme modulo procedure may be helpful here.

#6 (2 points) Write the procedure (ends-with-7? num) that returns #t if the decimal representation of num ends with 7, and #f otherwise.

Ends-with-7? : NonNegativeInteger  Boolean

Examples:

 (ends-with-7? 96) => #f

 (ends-with-7? 31489370283367) => #t

You may assume that num is a positive integer (i.e., your code does not have to test for this).

My intention is that your code will use arithmetic instead of string operations to determine the correct answer.

Reminder: Did you check to be sure that each of your procedures has exactly the name and arguments specified here?

"work-ahead" practice problems (not to be turned in yet; some of these will appear on later assignments)

These are problems that I assigned in previous years. If you feel like you need some extra practice, these would be good ones to do. I may actually assign some of them at some point in the course.

These practice problems will deal with points and vectors in 3 dimensions.
We will represent a point or a vector by a list of 3 numbers.

For example, the list (5 6 -7) can represent either the vector 5i + 6j - 7k or the point (5, 6, -7).

Note that Scheme has a built-in vector type with associated procedures. This built-in type is used for representing arrays. In order to avoid having your code conflict with this built-in type, you should use vec instead of vector in the names of your functions and their arguments. We could use the built-in vector type for this problem, but I choose not to do so, so that you can get additional practice with picking out parts of lists.

Some of you have written similar functions in Python or Java. While the computations are essentially the same in Scheme, the Scheme code is generally simpler and shorter, but less portable. Hopefully by doing problems that you have done before, you can think less about how to do the computation and more about how to express it in a functional style in Scheme.

#P1 Write the procedure (make-vec-from-points p1 p2) that returns the vector that goes from the point p1 to the point p2. For example,

(make-vec-from-points '(1 3 4) '(3 6 2)) => (2 3 -2)

Note that when I write "Write the procedure (make-vec-from-points p1 p2)", it is a shorthand for

"Write the procedure make-vec-from-points with two arguments which I refer to here as p1 and p2."

The definition of such a procedure would begin

(define make-vec-from-points

 (lambda (p1 p2)

 ...))

#P2 Write the procedure (dot-product v1 v2) that returns the dot-product (scalar product)

of the two vectors v1 and v2. For example, (dot-product '(1 2 3) '(4 5 6)) => 32
#P3 Write the procedure (vec-length v) that returns the magnitude of the vector v.

For example, (vec-length '(3 4 12)) => 13
#P4 Write the procedure (distance p1 p2) that returns the distance from the point p1 to the point p2.

 For example, (distance '(1 3 4) '(3 6 2)) => 4.1231056256176606
#P5 Write the procedure (cross-product v1 v2) that returns the cross-product (vector product) of the

two vectors v1 and v2. For example, (cross-product '(1 3 4) '(3 6 2)) => (-18 10 -3).

#P6 Write the procedure (parallel? v1 v2) that returns #t if v1 and v2 are parallel vectors,

#f otherwise. (You only have to guarantee that it will work if the coefficients of both vectors are integers or rational

numbers. Otherwise round-off error may make two parallel vectors appear to be non-parallel or vice-versa).

For example,
(parallel? '(1 3 4) '(3 6 2)) => #f.

(parallel? '(1 3 4) '(-3 -9 -12)) => #t.

Note that the zero vector is parallel to everything.

#P7 Write the procedure (collinear? p1 p2 p3) that returns #t if the points p1, p2, and p3 are

all on the same straight line, #f otherwise. Same disclaimer about round-off error as in #6.

For example, (collinear? '(1 3 4) '(3 6 2) '(7 12 -2) => #t.

#P8 Write the procedure (same-point? p1 p2) that returns #t if the points p1, and p2 have the same coordinates (and thus represent the same point), and returns #f otherwise.

For example,
(same-point? '(1 3 4) '(1 3 4)) => #t

 (same-point? '(1 3 4) '(3 2 4)) => #f

#P9 Write the procedure (member-point? p list-of-points) that returns #t if the point p
is one of the points in the list list-of-points and returns #f otherwise.

For example,
(member-point? '(1 3 4) '()) => #f

(member-point? '(1 3 4) '((2 3 5) (1 3 4) (1 1 4))) => #t

(member-point? '(1 3 4) '((2 3 5) (1 3 5) (1 5 4))) => #f

#P10 Write the procedure (nearest-point p list-of-points) that returns the point in the

non-empty list list-of-points that is closest to p. If two points "tie" for nearest, return either one.

For example, (nearest-point '(1 2 1) '((7 5 0) (2 1 0) (-6 -7 -8)) => (2 1 0)

Problems P1 - P10 are optional practice problems (not to be turned in);
the six A1 turn-in problems are on earlier pages.
CSSE 304 Assignment 1
Page 5
03/08/14

