CSSE 304
Assignment 13 Updated for Spring 2013-14
This is an individual assignment. It is important that each person do this to get up to speed on the concepts contained therein, which will be very important to the interpreter project.

Written problem. Bring a written or printed solution to the Session 22 class meeting; a late day may not be used or earned for this part of the assignment. You are allowed to earn or use a late day for the parse-exp programming problem.
1. (30 points) Draw a "closure and environments" diagram like the ones we did in class, showing all of the closures and local environments created by execution of the following code, following the style used in the class examples, as well as the relationships between them.
· A closure has three parts (argument list, code, environment pointer).
· A local environment has two parts (table of variables and their values, and a pointer to an environment that comes from enclosing code (if any).
· Environment pointers always point to environments, never to closures.

· The value of a variable in an environment is never an environment, nor is it code.

· Place sequence numbers (start with 1) near the local environments and closures that you draw, to indicate the order in which they are created during the execution of the code.

· For simplicity in the case of let, you should pretend that it is executed directly (without translation into an application of lambda), so that all you need to show is the environment extension, rather than creation of a closure followed by the environment extension created by the application of that closure.
· Show the changes to the global environment, and include those in your sequence numbering.
[Hint: My solution introduces 5 local environments, 4 closures, and 2 changes to the global environment. Yours probably should do the same]

(define compose2

 (lambda (f g)

 (lambda (x)

 (f (g x)))))

(define h

 (let ([g (lambda (x) (+ 1 x))]

 [f (lambda (y) (* 2 y))])

 (compose2 g f)))

(h 4)

2. (85 points) You should use the definitions in http://www.rose-hulman.edu/class/cs/csse304/201030/Homework/Assignment_10/parse.ss as a starting point.

Details of the exercise:

· Copy the code to your computer; then modify the expression datatype, parse-exp, and unparse-exp so that they work for all of the expressions that were legal for the occurs-free and occurs-bound exercises from Assignment 10, and also for letrec and named let expressions.

· Allow multiple bodies for lambda, let (including named let), let*, and letrec expressions. Also allow (lambda x lambda-body …) (note that the x is not in parentheses) or an improper list of arguments in a lambda expression, such as (lambda (x y . z) …).

· Add if expressions, with or without the "else" expression;
· add set! expressions.

· Expand the expression datatype to include lit-exp, which will be the parsed form for numbers, strings, quoted lists, symbols, the two Boolean constants, and any other expression that evaluates to itself. Then make parse-exp to recognize these literals.
· Make parse-exp bulletproof. Add error checking to your parse-exp procedure. It should "do the right thing" when given any Scheme data as its argument. Error messages should be as specific as possible (that will help you tremendously when you write your interpreter in a later assignment). Call the eopl:error procedure (same syntax as Chez Scheme's errorf, whose documentation can be found at http://www.scheme.com/csug8/system.html#./system:s2) ; the first argument to eopl:error must be 'parse-exp. This will enable the grading program to process your error message properly, recognizing that the error is generated by your program rather than by a built-in procedure.

· Modify unparse-exp so it accepts as input any valid expression object produced by parse-exp, and returns the original concrete syntax expression that produced that parsed expression. Suggestion: when you modify or add a case to parse-exp, go ahead and make the corresponding change to unparse-exp and test both.
The grading program will have two kinds of tests for this assignment:

1. Call parse-exp with an argument that is not a valid expression, then check to make sure that your program flags it as an error using (eopl:error 'parse-exp …).

2. Call (unparse-exp (parse-exp x)), where x is a valid expression, and check to see if you get back the original expression. I will never directly compare the output of your parse-exp to any particular answer, since you have some leeway in what your parsed expressions look like. Note: It is possible to "pass" these tests by simply defining both procedures to be the identity procedure, so that you do not parse at all. This is clearly unacceptable.
Here are some examples of what parse-exp might do. Your results from parse-exp do not have to be identical to mine, except that the error cases must call eopl:error with first argument 'parse-exp, so that the output (in Chez Scheme, at least) will begin with "Error in parse-exp". The second example is not a sample test case, since I stated that I will not call this procedure this way; it is simply intended to show what your procedure might produce. There is another example in the PowerPoint slides from the day when we introduced parsing (Day 18 in Spring, 2014).
The output that I show in the second example is from Chez Scheme, where constructors based on define-datatype are transparent (you can see the contents of what they produce). In DrScheme, they are opaque. The Chez Scheme records are much nicer for debugging. As in Assignment 12, your code that uses records must be representation-independent; you must use cases rather than car and cdr to access the fields of a record.

> (parse-exp '(let ((w x y)) z))
Error in parse-exp: Invalid concrete syntax (let ((w x y)) z).

> (parse-exp '(lambda x (if (< x (* x 2)) #t "abc")))

(lambda-exp

 variable

 (x)

 ((if-exp

 (app-exp

 (var-exp <)

 ((var-exp x)

 (app-exp (var-exp *) ((var-exp x) (lit-exp 2)))))

 (lit-exp #t)

 (lit-exp "abc"))))
> (unparse-exp
 (parse-exp

 '((lambda (x)

 (if x 3 4))
 5)))

((lambda (x)

 (if x 3 4))

 5)

Note that the outer list surrounding the if-exp is because a lambda (or a let, let*, letrec) can have multiple bodies. This one has only one body, thus a we have list of one expression.

The symbol 'variable in the parsed expression is to indicate that when this code is executed, it produces a procedure that can take a variable number of arguments (because in the original code it is (lambda x …) rather than lambda (x) …). This is one of several ways that you might handle that special case. Another approach is to have a separate data-type variant, lambda-exp-variable.

CSSE 304 Assignment 8
Page 1
04/08/14

